[1] GLYN-JONES S, PALMER A J R, AGRICOLA R, et al. Osteoarthritis[J]. Lancet, 2015, 386: 376-387.
[2] CAI G, CICUTTINI F, AITKEN D, et al. Comparison of radiographic and MRI osteoarthritis definitions and their combination for prediction of tibial cartilage loss, knee symptoms and total knee replacement: a longitudinal study[J]. Osteoarthritis and Cartilage, 2020, 28: 1062-1070.
[3] CUI A, LI H, WANG D, et al. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies[J]. EClinicalMedicine, 2020, 29-30: 100587.
[4] HUNTER D J, BIERMA-ZEINSTRA S. Osteoarthritis[J]. Lancet, 2019, 393: 1745-1759.
[5] SHANE A A, LOESER R F. Why is osteoarthritis an age-related disease?[J]. Best Pract Res Clin Rheumatol, 2010, 24: 15-26.
[6] TANG X, WANG S, ZHAN S, et al. The Prevalence of Symptomatic Knee Osteoarthritis in China: Results From the China Health and Retirement Longitudinal Study[J]. Arthritis Rheumatol, 2016, 68: 648-653.
[7] LONG H, ZENG X, LIU Q, et al. Burden of osteoarthritis in China, 1990–2017: findings from the Global Burden of Disease Study 2017[J]. Lancet Rheumatol, 2020, 2: e164-e172.
[8] WANG K, DONG X, LIN J. The Illness Burden of Knee Osteoarthritis in China: A Prospective Study[J]. Osteoarthritis and Cartilage, 2017, 25: S219-S220.
[9] CHEN H, WU J, WANG Z, et al. Trends and Patterns of Knee Osteoarthritis in China: A Longitudinal Study of 17.7 Million Adults from 2008 to 2017[J]. Int J Environ Res Public Health, 2021, 18: 8864.
[10] SPENDER J K. On some Hitherto Undescribed Symptoms in the Early History of Osteoarthritis[J]. Br Med J, 1888, 14: 781-783.
[11] PERLMAN R L, GOVINDARAJU D R. Archibald E. Garrod: the father of precision medicine[J]. Genet Med, 2016, 18: 1088-1089.
[12] KOHN M D, SASSOON A A, FERNANDO N D. Classifications in Brief: Kellgren-Lawrence Classification of Osteoarthritis[J]. Clin Orthop Relat Res, 2016, 474: 1886-1893.
[13] THAKUR M, DAWES J M, MCMAHON S B. Genomics of pain in osteoarthritis[J]. Osteoarthritis Cartilage, 2013, 21: 1374-1382.
[14] SAFIRI S, KOLAHI A A, SMITH E, et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017[J]. Ann Rheum Dis, 2020, 79: 819-828.
[15] LIU Q, WANG S, LIN J, et al. The burden for knee osteoarthritis among Chinese elderly: estimates from a nationally representative study[J]. Osteoarthritis Cartilage, 2018, 26: 1636-1642.
[16] HUNTER D J, SCHOFIELD D, CALLANDER E. The individual and socioeconomic impact of osteoarthritis[J]. Nat Rev Rheumatol, 2014, 10: 437-441.
[17] CISTERNAS M G, MURPHY L, SACKS J J, et al. Alternative Methods for Defining Osteoarthritis and the Impact on Estimating Prevalence in a US Population-Based Survey[J]. Arthritis Care Res (Hoboken), 2016, 68: 574-580.
[18] LOSINA E, PALTIEL A D, WEINSTEIN A M, et al. Lifetime medical costs of knee osteoarthritis management in the United States: impact of extending indications for total knee arthroplasty[J]. Arthritis Care Res (Hoboken), 2015, 67: 203-215.
[19] REYNARD L N, LOUGHLIN J. The genetics and functional analysis of primary osteoarthritis susceptibility[J]. Expert Rev Mol Med, 2013, 15: e2.
[20] STYRKARSDOTTIR U, THORLEIFSSON G, HELGADOTTIR H T, et al. Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31[J]. Nat Genet, 2014, 46: 498-502.
[21] ZENGINI E, HATZIKOTOULAS K, TACHMAZIDOU I, et al. Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis[J]. Nat Genet, 2018, 50: 549-558.
[22] SHEPHERD C, ZHU D, SKELTON A J, et al. Functional Characterization of the Osteoarthritis Genetic Risk Residing at ALDH1A2 Identifies rs12915901 as a Key Target Variant[J]. Arthritis Rheumatol, 2018, 70: 1577-1587.
[23] LOESER R F, GOLDRING S R, SCANZELLO C R, et al. Osteoarthritis: A disease of the joint as an organ[J]. Arthritis Rheumatol, 2012, 64: 1697-1707.
[24] POOLE A R. Osteoarthritis as a whole joint disease[J]. HSS J, 2012, 8: 4-6.
[25] CAMARERO-ESPINOSA S, ROTHEN-RUTISHAUSER B, FOSTER E J, et al. Articular cartilage: from formation to tissue engineering[J]. Biomater Sci, 2016, 4: 734-767.
[26] RIM Y A, NAM Y, JU J H. The Role of Chondrocyte Hypertrophy and Senescence in Osteoarthritis Initiation and Progression[J]. Int J Mol Sci, 2020, 21: 2358.
[27] LIAN C, WANG X, QIU X, et al. Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin beta1-SMAD1 interaction[J]. Bone Res, 2019, 7: 8.
[28] SOPHIA F A J, BEDI A, RODEO S A. The basic science of articular cartilage: structure, composition, and function[J]. Sports Health, 2009, 1: 461-468.
[29] GOLDRING M B. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis[J]. Ther Adv Musculoskelet Dis, 2012, 4: 269-285.
[30] LOTZ M K, CARAMES B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA[J]. Nat Rev Rheumatol, 2011, 7: 579-587.
[31] GOLDRING M B. Articular cartilage degradation in osteoarthritis[J]. HSS J, 2012, 8: 7-9.
[32] RAHMATI M, NALESSO G, MOBASHERI A, et al. Aging and osteoarthritis: Central role of the extracellular matrix[J]. Ageing Res Rev, 2017, 40: 20-30.
[33] ROBINSON W H, LEPUS C M, WANG Q, et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis[J]. Nat Rev Rheumatol, 2016, 12: 580-592.
[34] WU P, HOLGUIN N, SILVA M J, et al. Early response of mouse joint tissue to noninvasive knee injury suggests treatment targets[J]. Arthritis Rheumatol, 2014, 66: 1256-1265.
[35] LEPETSOS P, PAPAVASSILIOU A G. ROS/oxidative stress signaling in osteoarthritis[J]. Biochim Biophys Acta, 2016, 1862: 576-591.
[36] CHEN D, SHEN J, ZHAO W, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism[J]. Bone Res, 2017, 5: 16044.
[37] ZHU S, ZHU J, ZHEN G, et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain[J]. J Clin Invest, 2019, 129: 1076-1093.
[38] ZHEN G, WEN C, JIA X, et al. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis[J]. Nat Med, 2013, 19: 704-712.
[39] ZHU J, ZHEN G, AN S, et al. Aberrant subchondral osteoblastic metabolism modifies NaV1.8 for osteoarthritis[J]. Elife, 2020, 9: e57656.
[40] LIU J, WU X, LU J, et al. Exosomal transfer of osteoclast-derived miRNAs to chondrocytes contributes to osteoarthritis progression[J]. Nat Aging, 2021, 1: 368-384.
[41] KUANG L, WU J, SU N, et al. FGFR3 deficiency enhances CXCL12-dependent chemotaxis of macrophages via upregulating CXCR7 and aggravates joint destruction in mice[J]. Ann Rheum Dis, 2020, 79: 112-122.
[42] CHEN X, GONG W, SHAO X Y, et al. METTL3-mediated m 6 A modification of ATG7 regulates autophagy-GATA4 axis to promote cellular senescence and osteoarthritis progression[J]. Ann Rheum Dis, 2022, 81: 87-99.
[43] CATHELINE S E, HOAK D, CHANG M, et al. Chondrocyte-Specific RUNX2 Overexpression Accelerates Post-traumatic Osteoarthritis Progression in Adult Mice[J]. J Bone Miner Res, 2019, 34: 1676-1689.
[44] CHEN D, KIM D J, SHEN J, et al. Runx2 plays a central role in Osteoarthritis development[J]. J Orthop Translat, 2020, 23: 132-139.
[45] HUANG J, ZHAO L, FAN Y, et al. The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression[J]. Nat Commun, 2019, 10: 2876.
[46] ZHU M, TANG D, WU Q, et al. Activation of β-Catenin Signaling in Articular Chondrocytes Leads to Osteoarthritis-Like Phenotype in Adult β-Catenin Conditional Activation Mice[J]. J Bone Miner Res, 2009, 24: 12-21.
[47] TANG J, SU N, ZHOU S, et al. Fibroblast Growth Factor Receptor 3 Inhibits Osteoarthritis Progression in the Knee Joints of Adult Mice[J]. Arthritis Rheumatol, 2016, 68: 2432-2443.
[48] LIN C, LIU L, ZENG C, et al. Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12[J]. Bone Res, 2019, 7: 5.
[49] KOIKE M, NOJIRI H, OZAWA Y, et al. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration[J]. Sci Rep, 2015, 5: 11722.
[50] HU W, CHEN Y, DOU C, et al. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis[J]. Ann Rheum Dis, 2021, 80: 413-422.
[51] SELLAM J, BERENBAUM F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis[J]. Nat Rev Rheumatol, 2010, 6: 625-635.
[52] GUERMAZI A, ROEMER F W, HAYASHI D, et al. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study[J]. Ann Rheum Dis, 2011, 70: 805-811.
[53] PESSLER F, DAI L, DIAZ-TORNE C, et al. The synovitis of "non-inflammatory" orthopaedic arthropathies: a quantitative histological and immunohistochemical analysis[J]. Ann Rheum Dis, 2008, 67: 1184-1187.
[54] BONDESON J, BLOM A B, WAINWRIGHT S, et al. The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis[J]. Arthritis Rheumatol, 2010, 62: 647-657.
[55] DONG H S, JEREMY S, ORR S, et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4[J]. Arthritis Res Ther, 2012, 8: R7.
[56] WANG X, HUNTER D J, JIN X, et al. The importance of synovial inflammation in osteoarthritis: current evidence from imaging assessments and clinical trials[J]. Osteoarthritis Cartilage, 2018, 26: 165-174.
[57] ROELOFS A J, KANIA K, RAFIPAY A J, et al. Identification of the skeletal progenitor cells forming osteophytes in osteoarthritis[J]. Ann Rheum Dis, 2020, 79: 1625-1634.
[58] REYA T, CLEVERS H. Wnt signalling in stem cells and cancer[J]. Nature, 2005, 434: 843-850.
[59] VALENTA T, HAUSMANN G, BASLER K. The many faces and functions of β-catenin[J]. EMBO J, 2012, 31: 2714-2736.
[60] SCHUNK S J, FLOEGE J, FLISER D, et al. WNT-β-catenin signalling - a versatile player in kidney injury and repair[J]. Nat Rev Nephrol, 2021, 17: 172-184.
[61] MACDONALD B T, TAMAI K, HE X. Wnt/beta-catenin signaling: components, mechanisms, and diseases[J]. Dev Cell, 2009, 17: 9-26.
[62] NUSSE R, CLEVERS H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities[J]. Cell, 2017, 169: 985-999.
[63] ZHU M, CHEN M, ZUSCIK M, et al. Inhibition of beta-catenin signaling in articular chondrocytes results in articular cartilage destruction[J]. Arthritis Rheumatol, 2008, 58: 2053-2064.
[64] NALESSO G, THOMAS B L, SHERWOOD J C, et al. WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis[J]. Ann Rheum Dis, 2017, 76: 218-226.
[65] TONG W, ZENG Y, CHOW D H K, et al. Wnt16 attenuates osteoarthritis progression through a PCP/JNK-mTORC1-PTHrP cascade[J]. Ann Rheum Dis, 2019, 78: 551-561.
[66] ZHU M, TANG D, WU Q, et al. Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice[J]. J Bone Miner Res, 2009, 24: 12-21.
[67] WANG M, LI S, XIE W, et al. Activation of β-catenin signalling leads to temporomandibular joint defects[J]. Eur Cell Mater, 2014, 28: 223-235.
[68] ZHOU Y, WANG T, HAMILTON J L, et al. Wnt/β-catenin Signaling in Osteoarthritis and in Other Forms of Arthritis[J]. Curr Rheumatol Rep, 2017, 19: 53.
[69] XIA C, WANG P, FANG L, et al. Activation of β-catenin in Col2-expressing chondrocytes leads to osteoarthritis-like defects in hip joint[J]. J Cell Physiol, 2019, 234: 18535-18543.
[70] LI W, XIONG Y, CHEN W, et al. Wnt/β-catenin signaling may induce senescence of chondrocytes in osteoarthritis[J]. Exp Ther Med, 2020, 20: 2631-2638.
[71] BLOM A B, BROCKBANK S M, VAN LENT P L, et al. Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signaling protein 1[J]. Arthritis Rheumatol, 2009, 60: 501-512.
[72] HONSAWEK S, TANAVALEE A, YUKTANANDANA P, et al. Dickkopf-1 (Dkk-1) in plasma and synovial fluid is inversely correlated with radiographic severity of knee osteoarthritis patients[J]. BMC Musculoskelet Disord, 2010, 11: 257.
[73] VAN-DEN-BOSCH M H, BLOM A B, VAN-DE-LOO F A, et al. Brief Report: Induction of Matrix Metalloproteinase Expression by Synovial Wnt Signaling and Association With Disease Progression in Early Symptomatic Osteoarthritis[J]. Arthritis Rheumatol, 2017, 69: 1978-1983.
[74] OH H, CHUN C H, CHUN J S. Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice[J]. Arthritis Rheumatol, 2012, 64: 2568-2578.
[75] FUNCK-BRENTANO T, BOUAZIZ W, MARTY C, et al. Dkk-1-mediated inhibition of Wnt signaling in bone ameliorates osteoarthritis in mice[J]. Arthritis Rheumatol, 2014, 66: 3028-3039.
[76] SNELLING S J, DAVIDSON R K, SWINGLER T E, et al. Dickkopf-3 is upregulated in osteoarthritis and has a chondroprotective role[J]. Osteoarthritis Cartilage, 2016, 24: 883-891.
[77] VAN-DEN-BOSCH M H, BLOM A B, SLOETJES A W, et al. Induction of Canonical Wnt Signaling by Synovial Overexpression of Selected Wnts Leads to Protease Activity and Early Osteoarthritis-Like Cartilage Damage[J]. Am J Pathol, 2015, 185: 1970-1980.
[78] CLEVERS H, NUSSE R. Wnt/β-catenin signaling and disease[J]. Cell, 2012, 149: 1192-1205.
[79] LI Y, XIAO W, SUN M, et al. The Expression of Osteopontin and Wnt5a in Articular Cartilage of Patients with Knee Osteoarthritis and Its Correlation with Disease Severity[J]. Biomed Res Int, 2016, 2016: 9561058.
[80] ONUORA S. Osteoarthritis: Wnt inhibitor shows potential as a DMOAD[J]. Nat Rev Rheumatol, 2017, 13: 634.
[81] DESHMUKH V, HU H, BARROGA C, et al. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee[J]. Osteoarthritis Cartilage, 2018, 26: 18-27.
[82] DE-PALMA A, NALESSO G. WNT Signalling in Osteoarthritis and Its Pharmacological Targeting[J]. Handb Exp Pharmacol, 2021, 269: 337-356.
[83] DESHMUKH V, O'GREEN A L, BOSSARD C, et al. Modulation of the Wnt pathway through inhibition of CLK2 and DYRK1A by lorecivivint as a novel, potentially disease-modifying approach for knee osteoarthritis treatment[J]. Osteoarthritis Cartilage, 2019, 27: 1347-1360.
[84] LIETMAN C, WU B, LECHNER S, et al. Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis[J]. JCI Insight, 2018, 3: e96308.
[85] HELD A, GLAS A, DIETRICH L, et al. Targeting β-catenin dependent Wnt signaling via peptidomimetic inhibitors in murine chondrocytes and OA cartilage[J]. Osteoarthritis Cartilage, 2018, 26: 818-823.
[86] TAKAMATSU A, OHKAWARA B, ITO M, et al. Verapamil protects against cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling[J]. PLoS One, 2014, 9: e92699.
[87] XIA H, CAO D, YANG F, et al. Jiawei Yanghe decoction ameliorates cartilage degradation in vitro and vivo via Wnt/β-catenin signaling pathway[J]. Biomed Pharmacother, 2020, 122: 109708.
[88] LI K, ZHANG Y, ZHANG Y, et al. Tyrosine kinase Fyn promotes osteoarthritis by activating the β-catenin pathway[J]. Ann Rheum Dis, 2018, 77: 935-943.
[89] JIMI E, GHOSH S. Role of nuclear factor-kappaB in the immune system and bone[J]. Immunol Rev, 2005, 208: 80-87.
[90] MARCU K B, OTERO M, OLIVOTTO E, et al. NF-kappaB signaling: multiple angles to target OA[J]. Curr Drug Targets, 2010, 11: 599-613.
[91] HOFFMANN A, BALTIMORE D. Circuitry of nuclear factor kappaB signaling[J]. Immunol Rev, 2006, 210: 171-186.
[92] OECKINGHAUS A, GHOSH S. The NF-kappaB family of transcription factors and its regulation[J]. Cold Spring Harb Perspect Biol, 2009, 1: a000034.
[93] YASUDA T. Activation of Akt leading to NF-κB up-regulation in chondrocytes stimulated with fibronectin fragment[J]. Biomed Res, 2011, 32: 209-215.
[94] ARRA M, SWARNKAR G, ALIPPE Y, et al. IκB-ζ signaling promotes chondrocyte inflammatory phenotype, senescence, and erosive joint pathology[J]. Bone Res, 2022, 10: 12.
[95] HUANG B, YANG X D, LAMB A, et al. Posttranslational modifications of NF-kappaB: another layer of regulation for NF-kappaB signaling pathway[J]. Cell Signal, 2010, 22: 1282-1290.
[96] IOTSOVA V, CAAMAÑO J, LOY J, et al. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2[J]. Nat Med, 1997, 3: 1285-1289.
[97] CARON M M, EMANS P J, SURTEL D A, et al. Activation of NF-κB/p65 facilitates early chondrogenic differentiation during endochondral ossification[J]. PLoS One, 2012, 7: e33467.
[98] KOBAYASHI H, CHANG S H, MORI D, et al. Biphasic regulation of chondrocytes by Rela through induction of anti-apoptotic and catabolic target genes[J]. Nat Commun, 2016, 7: 13336.
[99] ULIVI V, GIANNONI P, GENTILI C, et al. p38/NF-kB-dependent expression of COX-2 during differentiation and inflammatory response of chondrocytes[J]. J Cell Biochem, 2008, 104: 1393-1406.
[100] YOON D S, LEE K M, CHOI Y, et al. TLR4 downregulation by the RNA-binding protein PUM1 alleviates cellular aging and osteoarthritis[J]. Cell Death Differ, 2022, 29: 1364-1378.
[101] KAPOOR M, MARTEL-PELLETIER J, LAJEUNESSE D, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis[J]. Nat Rev Rheumatol, 2011, 7: 33-42.
[102] YIN M J, YAMAMOTO Y, GAYNOR R B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta[J]. Nature, 1998, 396: 77-80.
[103] SCHEINMAN R I, GUALBERTO A, JEWELL C M, et al. Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors[J]. Mol Cell Biol, 1995, 15: 943-953.
[104] AITKEN D, LASLETT L L, PAN F, et al. A randomised double-blind placebo-controlled crossover trial of HUMira (adalimumab) for erosive hand OsteoaRthritis - the HUMOR trial[J]. Osteoarthritis Cartilage, 2018, 26: 880-887.
[105] KLOPPENBURG M, RAMONDA R, BOBACZ K, et al. Etanercept in patients with inflammatory hand osteoarthritis (EHOA): a multicentre, randomised, double-blind, placebo-controlled trial[J]. Ann Rheum Dis, 2018, 77: 1757-1764.
[106] WANG S X, ABRAMSON S B, ATTUR M, et al. Safety, tolerability, and pharmacodynamics of an anti-interleukin-1α/β dual variable domain immunoglobulin in patients with osteoarthritis of the knee: a randomized phase 1 study[J]. Osteoarthritis Cartilage, 2017, 25: 1952-1961.
[107] COHEN S B, PROUDMAN S, KIVITZ A J, et al. A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee[J]. Arthritis Res Ther, 2011, 13: R125.
[108] CONAGHAN P G, COOK A D, HAMILTON J A, et al. Therapeutic options for targeting inflammatory osteoarthritis pain[J]. Nat Rev Rheumatol, 2019, 15: 355-363.
[109] PETURSSON F, HUSA M, JUNE R, et al. Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes[J]. Arthritis Res Ther, 2013, 15: R77.
[110] TERKELTAUB R, YANG B, LOTZ M, et al. Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1β and tumor necrosis factor α[J]. Arthritis Rheumatol, 2011, 63: 1928-1937.
[111] GE Y, ZHOU S, LI Y, et al. Estrogen prevents articular cartilage destruction in a mouse model of AMPK deficiency via ERK-mTOR pathway[J]. Ann Transl Med, 2019, 7: 336.
[112] ZHOU S, LU W, CHEN L, et al. AMPK deficiency in chondrocytes accelerated the progression of instability-induced and ageing-associated osteoarthritis in adult mice[J]. Sci Rep, 2017, 7: 43245.
[113] MOMCILOVIC M, HONG S P, CARLSON M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro[J]. J Biol Chem, 2006, 281: 25336-25343.
[114] NEUMANN D. Is TAK1 a Direct Upstream Kinase of AMPK?[J]. Int J Mol Sci, 2018, 19: 2412.
[115] CHENG J, HU X, DAI L, et al. Inhibition of transforming growth factor β-activated kinase 1 prevents inflammation-related cartilage degradation in osteoarthritis[J]. Sci Rep, 2016, 6: 34497.
[116] WANG Y, ZHAO X, LOTZ M, et al. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α[J]. Arthritis Rheumatol, 2015, 67: 2141-2153.
[117] WANG J, LI J, SONG D, et al. AMPK: implications in osteoarthritis and therapeutic targets[J]. Am J Transl Res, 2020, 12: 7670-7681.
[118] YEUNG F, HOBERG J E, RAMSEY C S, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase[J]. EMBO J, 2004, 23: 2369-2380.
[119] FENG K, CHEN Z, PENGCHENG L, et al. Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model[J]. J Cell Physiol, 2019, 234: 18192-18205.
[120] KUO S J, LIU S C, HUANG Y L, et al. TGF-β1 enhances FOXO3 expression in human synovial fibroblasts by inhibiting miR-92a through AMPK and p38 pathways[J]. Aging (Albany NY), 2019, 11: 4075-4089.
[121] LI J, ZHANG B, LIU W X, et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling[J]. Ann Rheum Dis, 2020, 79: 635-645.
[122] FENG X, PAN J, LI J, et al. Metformin attenuates cartilage degeneration in an experimental osteoarthritis model by regulating AMPK/mTOR[J]. Aging (Albany NY), 2020, 12: 1087-1103.
[123] WANG C, YAO Z, ZHANG Y, et al. Metformin Mitigates Cartilage Degradation by Activating AMPK/SIRT1-Mediated Autophagy in a Mouse Osteoarthritis Model[J]. Front Pharmacol, 2020, 11: 1114.
[124] KONG C, WANG C, SHI Y, et al. Active vitamin D activates chondrocyte autophagy to reduce osteoarthritis via mediating the AMPK-mTOR signaling pathway[J]. Biochem Cell Biol, 2020, 98: 434-442.
[125] WANG C, GAO Y, ZHANG Z, et al. Safflower yellow alleviates osteoarthritis and prevents inflammation by inhibiting PGE2 release and regulating NF-κB/SIRT1/AMPK signaling pathways[J]. Phytomedicine, 2020, 78: 153305.
[126] WANG L, SHAN H, WANG B, et al. Puerarin Attenuates Osteoarthritis via Upregulating AMP-Activated Protein Kinase/Proliferator-Activated Receptor-γ Coactivator-1 Signaling Pathway in Osteoarthritis Rats[J]. Pharmacology, 2018, 102: 117-125.
[127] MA T, LV L, YU Y, et al. Bilobalide Exerts Anti-Inflammatory Effects on Chondrocytes Through the AMPK/SIRT1/mTOR Pathway to Attenuate ACLT-Induced Post-Traumatic Osteoarthritis in Rats[J]. Front Pharmacol, 2022, 13: 783506.
[128] KIM Y C, GUAN K L. mTOR: a pharmacologic target for autophagy regulation[J]. J Clin Invest, 2015, 125: 25-32.
[129] SAXTON R A, SABATINI D M. mTOR Signaling in Growth, Metabolism, and Disease[J]. Cell, 2017, 169: 361-371.
[130] LAPLANTE M, SABATINI D M. mTOR signaling in growth control and disease[J]. Cell, 2012, 149: 274-93.
[131] CHEN X, LIU M, TIAN Y, et al. Cryo-EM structure of human mTOR complex 2[J]. Cell Res, 2018, 28: 518-528.
[132] HOLZ M K, BALLIF B A, GYGI S P, et al. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events[J]. Cell, 2005, 123: 569-580.
[133] SARBASSOV D D, GUERTIN D A, ALI S M, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex[J]. Science, 2005, 307: 1098-1101.
[134] ARRIOLA APELO S I, LAMMING D W. mTORC2 Puts Its Shoulder to Krebs' Wheel[J]. Mol Cell, 2016, 63: 723-725.
[135] GANGLOFF Y G, MUELLER M, DANN S G, et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development[J]. Mol Cell Biol, 2004, 24: 9508-9516.
[136] PAL B, ENDISHA H, ZHANG Y, et al. mTOR: a potential therapeutic target in osteoarthritis?[J]. Drugs R D, 2015, 15: 27-36.
[137] ZHANG Y, VASHEGHANI F, LI Y H, et al. Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis[J]. Ann Rheum Dis, 2015, 74: 1432-1440.
[138] ZHANG H, WANG H, ZENG C, et al. mTORC1 activation downregulates FGFR3 and PTH/PTHrP receptor in articular chondrocytes to initiate osteoarthritis[J]. Osteoarthritis Cartilage, 2017, 25: 952-963.
[139] VASHEGHANI F, ZHANG Y, LI Y H, et al. PPARγ deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage[J]. Ann Rheum Dis, 2015, 74: 569-578.
[140] YANG H, WEN Y, ZHANG M, et al. MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint[J]. Autophagy, 2020, 16: 271-288.
[141] KARONITSCH T, KANDASAMY R K, KARTNIG F, et al. mTOR Senses Environmental Cues to Shape the Fibroblast-like Synoviocyte Response to Inflammation[J]. Cell Rep, 2018, 23: 2157-2167.
[142] CARAMÉS B, HASEGAWA A, TANIGUCHI N, et al. Autophagy activation by rapamycin reduces severity of experimental osteoarthritis[J]. Ann Rheum Dis, 2012, 71: 575-581.
[143] DUNWOODIE S L. The role of hypoxia in development of the Mammalian embryo[J]. Dev Cell, 2009, 17: 755-773.
[144] SEMENZA G L. Hypoxia-inducible factors in physiology and medicine[J]. Cell, 2012, 148: 399-408.
[145] PFANDER D, GELSE K. Hypoxia and osteoarthritis: how chondrocytes survive hypoxic environments[J]. Curr Opin Rheumatol, 2007, 19: 457-462.
[146] UMMARINO D. Osteoarthritis: Hypoxia protects against cartilage loss by regulating Wnt signalling[J]. Nat Rev Rheumatol, 2016, 12: 315.
[147] SCHIPANI E, RYAN H E, DIDRICKSON S, et al. Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival[J]. Genes Dev, 2001, 15: 2865-2876.
[148] YAO Q, KHAN M P, MERCERON C, et al. Suppressing Mitochondrial Respiration Is Critical for Hypoxia Tolerance in the Fetal Growth Plate[J]. Dev Cell, 2019, 49: 748-763.
[149] YAO Q, PARVEZ-KHAN M, SCHIPANI E. In vivo survival strategies for cellular adaptation to hypoxia: HIF1α-dependent suppression of mitochondrial oxygen consumption and decrease of intracellular hypoxia are critical for survival of hypoxic chondrocytes[J]. Bone, 2020, 140: 115572.
[150] SAITO T, FUKAI A, MABUCHI A, et al. Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development[J]. Nat Med, 2010, 16: 678-686.
[151] ARALDI E, KHATRI R, GIACCIA A J, et al. Lack of HIF-2α in limb bud mesenchyme causes a modest and transient delay of endochondral bone development[J]. Nat Med, 2011, 17: 25-26.
[152] BOUAZIZ W, SIGAUX J, MODROWSKI D, et al. Interaction of HIF1α and β-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage damage in mice[J]. Proc Natl Acad Sci U S A, 2016, 113: 5453-5458.
[153] QING L, LEI P, LIU H, et al. Expression of hypoxia-inducible factor-1α in synovial fluid and articular cartilage is associated with disease severity in knee osteoarthritis[J]. Exp Ther Med, 2017, 13: 63-68.
[154] HU S, ZHANG C, NI L, et al. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy[J]. Cell Death Dis, 2020, 11: 481.
[155] WENG T, XIE Y, YI L, et al. Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis[J]. Osteoarthritis Cartilage, 2014, 22: 1197-1205.
[156] YANG S, KIM J, RYU J H, et al. Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction[J]. Nat Med, 2010, 16: 687-693.
[157] RIUS J, GUMA M, SCHACHTRUP C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha[J]. Nature, 2008, 453: 807-811.
[158] SALAZAR V S, GAMER L W, ROSEN V. BMP signalling in skeletal development, disease and repair[J]. Nat Rev Endocrinol, 2016, 12: 203-221.
[159] ZHANG Y, QUE J. BMP Signaling in Development, Stem Cells, and Diseases of the Gastrointestinal Tract[J]. Annu Rev Physiol, 2020, 82: 251-273.
[160] HELDIN C H, MIYAZONO K, TEN DIJKE P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins[J]. Nature, 1997, 390: 465-471.
[161] WANG R N, GREEN J, WANG Z, et al. Bone Morphogenetic Protein (BMP) signaling in development and human diseases[J]. Genes Dis, 2014, 1: 87-105.
[162] LOWERY J W, ROSEN V. The BMP Pathway and Its Inhibitors in the Skeleton[J]. Physiol Rev, 2018, 98: 2431-2452.
[163] ASHRAF S, CHA B H, KIM J S, et al. Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration[J]. Osteoarthritis Cartilage, 2016, 24: 196-205.
[164] DENG Z H, LI Y S, GAO X, et al. Bone morphogenetic proteins for articular cartilage regeneration[J]. Osteoarthritis Cartilage, 2018, 26: 1153-1161.
[165] THIELEN N G M, VAN DER KRAAN P M, VAN CAAM A P M. TGFβ/BMP Signaling Pathway in Cartilage Homeostasis[J]. Cells, 2019, 8: 969.
[166] ZHONG L, HUANG X, KARPERIEN M, et al. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes[J]. Int J Mol Sci, 2015, 16: 19225-19247.
[167] BLANEY-DAVIDSON E N, VITTERS E L, VAN LENT P L, et al. Elevated extracellular matrix production and degradation upon bone morphogenetic protein-2 (BMP-2) stimulation point toward a role for BMP-2 in cartilage repair and remodeling[J]. Arthritis Res Ther, 2007, 9: R102.
[168] VAN-BEUNINGEN H M, GLANSBEEK H L, VAN-DER-KRAAN P M, et al. Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation[J]. Osteoarthritis Cartilage, 1998, 6: 306-317.
[169] FLECHTENMACHER J, HUCH K, THONAR E J, et al. Recombinant human osteogenic protein 1 is a potent stimulator of the synthesis of cartilage proteoglycans and collagens by human articular chondrocytes[J]. Arthritis Rheumatol, 1996, 39: 1896-1904.
[170] LUYTEN F P, CHEN P, PARALKAR V, et al. Recombinant bone morphogenetic protein-4, transforming growth factor-beta 1, and activin A enhance the cartilage phenotype of articular chondrocytes in vitro[J]. Exp Cell Res, 1994, 210: 224-229.
[171] BOBACZ K, GRUBER R, SOLEIMAN A, et al. Expression of bone morphogenetic protein 6 in healthy and osteoarthritic human articular chondrocytes and stimulation of matrix synthesis in vitro[J]. Arthritis Rheumatol, 2003, 48: 2501-2508.
[172] GAMER L W, PREGIZER S, GAMER J, et al. The Role of Bmp2 in the Maturation and Maintenance of the Murine Knee Joint[J]. J Bone Miner Res, 2018, 33: 1708-1717.
[173] ABULA K, MUNETA T, MIYATAKE K, et al. Elimination of BMP7 from the developing limb mesenchyme leads to articular cartilage degeneration and synovial inflammation with increased age[J]. FEBS Lett, 2015, 589: 1240-1248.
[174] PAPATHANASIOU I, MALIZOS K N, TSEZOU A. Bone morphogenetic protein-2-induced Wnt/β-catenin signaling pathway activation through enhanced low-density-lipoprotein receptor-related protein 5 catabolic activity contributes to hypertrophy in osteoarthritic chondrocytes[J]. Arthritis Res Ther, 2012, 14: R82.
[175] WANG W, CHUN H, BAEK J, et al. The TGFβ type I receptor TGFβRI functions as an inhibitor of BMP signaling in cartilage[J]. Proc Natl Acad Sci U S A, 2019, 116: 15570-15579.
[176] ZHAI G. Clinical relevance of biochemical and metabolic changes in osteoarthritis[J]. Adv Clin Chem, 2021, 101: 95-120.
[177] PÉREZ-LOZANO M L, SUDRE L, VAN EEGHER S, et al. Gremlin-1 and BMP-4 Overexpressed in Osteoarthritis Drive an Osteochondral-Remodeling Program in Osteoblasts and Hypertrophic Chondrocytes[J]. Int J Mol Sci, 2022, 23: 2084.
[178] CHIEN S Y, TSAI C H, LIU S C, et al. Noggin Inhibits IL-1β and BMP-2 Expression, and Attenuates Cartilage Degeneration and Subchondral Bone Destruction in Experimental Osteoarthritis[J]. Cells, 2020, 9: 927.
[179] IIJIMA H, ITO A, NAGAI M, et al. Physiological exercise loading suppresses post-traumatic osteoarthritis progression via an increase in bone morphogenetic proteins expression in an experimental rat knee model[J]. Osteoarthritis Cartilage, 2017, 25: 964-975.
[180] CARON M M J, RIPMEESTER E G J, VAN DEN AKKER G, et al. Discovery of bone morphogenetic protein 7-derived peptide sequences that attenuate the human osteoarthritic chondrocyte phenotype[J]. Mol Ther Methods Clin Dev, 2021, 21: 247-261.
[181] AKKIRAJU H, SRINIVASAN P P, XU X, et al. CK2.1, a bone morphogenetic protein receptor type Ia mimetic peptide, repairs cartilage in mice with destabilized medial meniscus[J]. Stem Cell Res Ther, 2017, 8: 82.
[182] TANIYAMA T, MASAOKA T, YAMADA T, et al. Repair of osteochondral defects in a rabbit model using a porous hydroxyapatite collagen composite impregnated with bone morphogenetic protein-2[J]. Artif Organs, 2015, 39: 529-535.
[183] JEONG C G, ZHANG H, HOLLISTER S J. Three-dimensional polycaprolactone scaffold-conjugated bone morphogenetic protein-2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification[J]. J Biomed Mater Res A, 2012, 100: 2088-2096.
[184] ZHANG Z, YANG W, CAO Y, et al. The Functions of BMP3 in Rabbit Articular Cartilage Repair[J]. Int J Mol Sci, 2015, 16: 25934-25946.
[185] LI H, LU A, TANG Y, et al. The superior regenerative potential of muscle-derived stem cells for articular cartilage repair is attributed to high cell survival and chondrogenic potential[J]. Mol Ther Methods Clin Dev, 2016, 3: 16065.
[186] SEKIYA I, TANG T, HAYASHI M, et al. Periodic knee injections of BMP-7 delay cartilage degeneration induced by excessive running in rats[J]. J Orthop Res, 2009, 27: 1088-1092.
[187] MENDES L F, TAM W L, CHAI Y C, et al. Combinatorial Analysis of Growth Factors Reveals the Contribution of Bone Morphogenetic Proteins to Chondrogenic Differentiation of Human Periosteal Cells[J]. Tissue Eng Part C Methods, 2016, 22: 473-486.
[188] CHOI S, CHO T J, KWON S K, et al. Chondrogenesis of periodontal ligament stem cells by transforming growth factor-β3 and bone morphogenetic protein-6 in a normal healthy impacted third molar[J]. Int J Oral Sci, 2013, 5: 7-13.
[189] REN X, WEISGERBER D W, BISCHOFF D, et al. Nanoparticulate Mineralized Collagen Scaffolds and BMP-9 Induce a Long-Term Bone Cartilage Construct in Human Mesenchymal Stem Cells[J]. Adv Healthc Mater, 2016, 5: 1821-1830.
[190] THISSE B, THISSE C. Functions and regulations of fibroblast growth factor signaling during embryonic development[J]. Dev Biol, 2005, 287: 390-402.
[191] BEENKEN A, MOHAMMADI M. The FGF family: biology, pathophysiology and therapy[J]. Nat Rev Drug Discov, 2009, 8: 235-253.
[192] ORNITZ D M, ITOH N. New developments in the biology of fibroblast growth factors[J]. WIREs Mech Dis, 2022, 14: e1549.
[193] ORNITZ D M, MARIE P J. Fibroblast growth factor signaling in skeletal development and disease[J]. Genes Dev, 2015, 29: 1463-1486.
[194] ORR-URTREGER A, GIVOL D, YAYON A, et al. Developmental expression of two murine fibroblast growth factor receptors, flg and bek[J]. Development, 1991, 113: 1419-1434.
[195] KISAND K, TAMM A E, LINTROP M, et al. New insights into the natural course of knee osteoarthritis: early regulation of cytokines and growth factors, with emphasis on sex-dependent angiogenesis and tissue remodeling. A pilot study[J]. Osteoarthritis Cartilage, 2018, 26: 1045-1054.
[196] EL-SEOUDI A, ABD EL KADER T, NISHIDA T, et al. Catabolic effects of FGF-1 on chondrocytes and its possible role in osteoarthritis[J]. J Cell Commun Signal, 2017, 11: 255-263.
[197] VINCENT T L, MCLEAN C J, FULL L E, et al. FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer[J]. Osteoarthritis Cartilage, 2007, 15: 752-763.
[198] IM H J, LI X, MUDDASANI P, et al. Basic fibroblast growth factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes[J]. J Cell Physiol, 2008, 215: 452-463.
[199] NUMMENMAA E, HÄMÄLÄINEN M, MOILANEN T, et al. Effects of FGF-2 and FGF receptor antagonists on MMP enzymes, aggrecan, and type II collagen in primary human OA chondrocytes[J]. Scand J Rheumatol, 2015, 44: 321-330.
[200] UCHII M, TAMURA T, SUDA T, et al. Role of fibroblast growth factor 8 (FGF8) in animal models of osteoarthritis[J]. Arthritis Res Ther, 2008, 10: R90.
[201] ZHOU S, WANG Z, TANG J, et al. Exogenous fibroblast growth factor 9 attenuates cartilage degradation and aggravates osteophyte formation in post-traumatic osteoarthritis[J]. Osteoarthritis Cartilage, 2016, 24: 2181-2192.
[202] ROCKEL J S, YU C, WHETSTONE H, et al. Hedgehog inhibits β-catenin activity in synovial joint development and osteoarthritis[J]. J Clin Invest, 2016, 126: 1649-1663.
[203] MORI Y, SAITO T, CHANG S H, et al. Identification of fibroblast growth factor-18 as a molecule to protect adult articular cartilage by gene expression profiling[J]. J Biol Chem, 2014, 289: 10192-10200.
[204] MELONI G R, FARRAN A, MOHANRAJ B, et al. Recombinant human FGF18 preserves depth-dependent mechanical inhomogeneity in articular cartilage[J]. Eur Cell Mater, 2019, 38: 23-34.
[205] LI R, WANG B, HE C Q, et al. Upregulation of fibroblast growth factor 1 in the synovial membranes of patients with late stage osteoarthritis[J]. Genet Mol Res, 2015, 14: 11191-11199.
[206] WENG T, YI L, HUANG J, et al. Genetic inhibition of fibroblast growth factor receptor 1 in knee cartilage attenuates the degeneration of articular cartilage in adult mice[J]. Arthritis Rheumatol, 2012, 64: 3982-3992.
[207] ZHOU S, XIE Y, LI W, et al. Conditional Deletion of Fgfr3 in Chondrocytes leads to Osteoarthritis-like Defects in Temporomandibular Joint of Adult Mice[J]. Scientific Reports, 2016, 6: 24039.
[208] HOCHBERG M C, GUERMAZI A, GUEHRING H, et al. Effect of Intra-Articular Sprifermin vs Placebo on Femorotibial Joint Cartilage Thickness in Patients With Osteoarthritis: The FORWARD Randomized Clinical Trial[J]. Jama, 2019, 322: 1360-1370.
[209] XIAO G, JIANG D, GOPALAKRISHNAN R, et al. Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2[J]. J Biol Chem, 2002, 277: 36181-36187.
[210] KOMORI T. Runx2, an inducer of osteoblast and chondrocyte differentiation[J]. Histochem Cell Biol, 2018, 149: 313-323.
[211] FRANCESCHI R T, XIAO G, JIANG D, et al. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation[J]. Connect Tissue Res, 2003, 44 Suppl 1: 109-116.
[212] XIAO G, JIANG D, GE C, et al. Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression[J]. J Biol Chem, 2005, 280: 30689-30696.
[213] ZHAO Z, ZHAO M, XIAO G, et al. Gene transfer of the Runx2 transcription factor enhances osteogenic activity of bone marrow stromal cells in vitro and in vivo[J]. Mol Ther, 2005, 12: 247-253.
[214] YU S, JIANG Y, GALSON D L, et al. General transcription factor IIA-gamma increases osteoblast-specific osteocalcin gene expression via activating transcription factor 4 and runt-related transcription factor 2[J]. J Biol Chem, 2008, 283: 5542-5553.
[215] ZHENG Q, ZHOU G, MORELLO R, et al. Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo[J]. J Cell Biol, 2003, 162: 833-842.
[216] ENOMOTO H, ENOMOTO-IWAMOTO M, IWAMOTO M, et al. Cbfa1 is a positive regulatory factor in chondrocyte maturation[J]. J Biol Chem, 2000, 275: 8695-8702.
[217] OTTO F, THORNELL A P, CROMPTON T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development[J]. Cell, 1997, 89: 765-771.
[218] TSUJI K, KOMORI T, NODA M. Aged mice require full transcription factor, Runx2/Cbfa1, gene dosage for cancellous bone regeneration after bone marrow ablation[J]. J Bone Miner Res, 2004, 19: 1481-1489.
[219] LIAO L, ZHANG S, GU J, et al. Deletion of Runx2 in Articular Chondrocytes Decelerates the Progression of DMM-Induced Osteoarthritis in Adult Mice[J]. Sci Rep, 2017, 7: 2371.
[220] LI F, LU Y, DING M, et al. Runx2 contributes to murine Col10a1 gene regulation through direct interaction with its cis-enhancer[J]. J Bone Miner Res, 2011, 26: 2899-2910.
[221] KIM M S, GERNAPUDI R, CHOI E Y, et al. Characterization of CADD522, a small molecule that inhibits RUNX2-DNA binding and exhibits antitumor activity[J]. Oncotarget, 2017, 8: 70916-70940.
[222] JI M L, JIANG H, WU F, et al. Precise targeting of miR-141/200c cluster in chondrocytes attenuates osteoarthritis development[J]. Ann Rheum Dis, 2021, 80: 356-366.
[223] ZHAO L, HUANG J, FAN Y, et al. Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis[J]. Ann Rheum Dis, 2019, 78: 676-682.
[224] LÜTTICKEN C, WEGENKA U M, YUAN J, et al. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130[J]. Science, 1994, 263: 89-92.
[225] STANDKE G J, MEIER V S, GRONER B. Mammary gland factor activated by prolactin on mammary epithelial cells and acute-phase response factor activated by interleukin-6 in liver cells share DNA binding and transactivation potential[J]. Mol Endocrinol, 1994, 8: 469-477.
[226] ZHONG Z, WEN Z, DARNELL J E, JR. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6[J]. Science, 1994, 264: 95-98.
[227] WEGENKA U M, LÜTTICKEN C, BUSCHMANN J, et al. The interleukin-6-activated acute-phase response factor is antigenically and functionally related to members of the signal transducer and activator of transcription (STAT) family[J]. Mol Cell Biol, 1994, 14: 3186-3196.
[228] RUFF-JAMISON S, ZHONG Z, WEN Z, et al. Epidermal growth factor and lipopolysaccharide activate Stat3 transcription factor in mouse liver[J]. J Biol Chem, 1994, 269: 21933-21935.
[229] TIAN S S, LAMB P, SEIDEL H M, et al. Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor[J]. Blood, 1994, 84: 1760-1764.
[230] YU C L, MEYER D J, CAMPBELL G S, et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein[J]. Science, 1995, 269: 81-83.
[231] BROMBERG J F, HORVATH C M, BESSER D, et al. Stat3 activation is required for cellular transformation by v-src[J]. Mol Cell Biol, 1998, 18: 2553-2558.
[232] RAM P T, HORVATH C M, IYENGAR R. Stat3-mediated transformation of NIH-3T3 cells by the constitutively active Q205L Galphao protein[J]. Science, 2000, 287: 142-144.
[233] HILLMER E J, ZHANG H, LI H S, et al. STAT3 signaling in immunity[J]. Cytokine Growth Factor Rev, 2016, 31: 1-15.
[234] SHEN Y, SCHLESSINGER K, ZHU X, et al. Essential role of STAT3 in postnatal survival and growth revealed by mice lacking STAT3 serine 727 phosphorylation[J]. Mol Cell Biol, 2004, 24: 407-419.
[235] YUAN Z L, GUAN Y J, CHATTERJEE D, et al. Stat3 dimerization regulated by reversible acetylation of a single lysine residue[J]. Science, 2005, 307: 269-273.
[236] YANG J, HUANG J, DASGUPTA M, et al. Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes[J]. Proc Natl Acad Sci U S A, 2010, 107: 21499-21504.
[237] LATOURTE A, CHERIFI C, MAILLET J, et al. Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis[J]. Ann Rheum Dis, 2017, 76: 748-755.
[238] PEI W, HUANG X, NI B, et al. Selective STAT3 Inhibitor Alantolactone Ameliorates Osteoarthritis via Regulating Chondrocyte Autophagy and Cartilage Homeostasis[J]. Front Pharmacol, 2021, 12: 730312.
[239] CULLIFORD D J, MASKELL J, KIRAN A, et al. The lifetime risk of total hip and knee arthroplasty: results from the UK general practice research database[J]. Osteoarthritis Cartilage, 2012, 20: 519-524.
[240] 张锐, 马继海, 柳海平, 等. 膝关节骨性关节炎的诊断及治疗[J]. 甘肃医药, 2023, 42: 11-14.
[241] MESSIER S P, MIHALKO S L, LEGAULT C, et al. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial[J]. JAMA, 2013, 310: 1263-1273.
[242] MESSIER S P, LOESER R F, MILLER G D, et al. Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: the Arthritis, Diet, and Activity Promotion Trial[J]. Arthritis Rheumatol, 2004, 50: 1501-1510.
[243] 丁杰, 王智斌, 陈根, 等. 电针穴位刺激对膝骨性关节炎患者的疗效观察[J]. 中国老年保健医学, 2022, 20: 67-70.
[244] 刘云峰. 中医辨证治疗老年性膝关节骨性关节炎的临床疗效[J]. 内蒙古中医药, 2022, 41: 35-37.
[245] 王秀萍, 张婧,王田田. 壮骨活血汤治疗骨性关节炎38例[J]. 安徽医药, 2022, 26: 1675-1678.
[246] BURRIDGE K. Focal adhesions: a personal perspective on a half century of progress[J]. FEBS J, 2017, 284: 3355-3361.
[247] BURRIDGE K, TURNER C E, ROMER L H. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly[J]. J Cell Biol, 1992, 119: 893-903.
[248] RIDLEY A J, HALL A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors[J]. Cell, 1992, 70: 389-399.
[249] ILIĆ D, FURUTA Y, KANAZAWA S, et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice[J]. Nature, 1995, 12: 539-544.
[250] WILSON L, CARRIER M J, KELLIE S. pp125FAK tyrosine kinase activity is not required for the assembly of F-actin stress fibres and focal adhesions in cultured mouse aortic smooth muscle cells[J]. J Cell Sci, 1995, 108: 2381-2391.
[251] CHONG L D, TRAYNOR-KAPLAN A, BOKOCH G M, et al. The small GTP-binding protein rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells[J]. Cell, 1994, 4: 507-513.
[252] GILMORE. A P, BURRIDGE. K. Molecular mechanisms for focal adhesion assembly through regulation of protein-protein interactions[J]. 1996, 15: 647-651.
[253] NOBES. C D, HALL. A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia[J]. Cell, 1995, 7: 53-62.
[254] HARTWIG. J H, BOKOCH. G M, CARPENTER. C L, et al. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets[J]. Cell, 1995, 25: 643-653.
[255] ROGNONI E, RUPPERT R, FASSLER R. The kindlin family: functions, signaling properties and implications for human disease[J]. J Cell Sci, 2016, 129: 17-27.
[256] AZORIN P, BONIN F, MOUKACHAR A, et al. Distinct expression profiles and functions of Kindlins in breast cancer[J]. J Exp Clin Cancer Res, 2018, 37: 281.
[257] 吴晓昊, 陶楚, 姚青, 等. 粘着斑相关蛋白Kindlin-1在血管内皮细胞的表达及功能研究[J]. 生物骨科材料与临床研究, 2021, 18: 18-23.
[258] USSAR S, WANG H V, LINDER S, et al. The Kindlins: subcellular localization and expression during murine development[J]. Exp Cell Res, 2006, 312: 3142-3151.
[259] STARICH M R, TJANDRA N. The Kindlin Outside Connection[J]. Structure, 2019, 27: 1615-1616.
[260] HERZ C, AUMAILLEY M, SCHULTE C, et al. Kindlin-1 is a phosphoprotein involved in regulation of polarity, proliferation, and motility of epidermal keratinocytes[J]. J Biol Chem, 2006, 281: 36082-36090.
[261] PATEL H, ZICH J, SERRELS B, et al. Kindlin-1 regulates mitotic spindle formation by interacting with integrins and Plk-1[J]. Nat Commun, 2013, 4: 2056.
[262] ZHAO Y, MALININ N L, MELLER J, et al. Regulation of cell adhesion and migration by Kindlin-3 cleavage by calpain[J]. J Biol Chem, 2012, 287: 40012-40020.
[263] SABINO F, HERMES O, EGLI F E, et al. In vivo assessment of protease dynamics in cutaneous wound healing by degradomics analysis of porcine wound exudates[J]. Mol Cell Proteomics, 2015, 14: 354-370.
[264] MONTANEZ E, USSAR S, SCHIFFERER M, et al. Kindlin-2 controls bidirectional signaling of integrins[J]. Genes Dev, 2008, 22: 1325-1330.
[265] WU C, JIAO H, LAI Y, et al. Kindlin-2 controls TGF-beta signalling and Sox9 expression to regulate chondrogenesis[J]. Nat Commun, 2015, 6: 7531.
[266] CAO H, YAN Q, WANG D, et al. Focal adhesion protein Kindlin-2 regulates bone homeostasis in mice[J]. Bone Res, 2020, 8: 2.
[267] FU X, ZHOU B, YAN Q, et al. Kindlin-2 regulates skeletal homeostasis by modulating PTH1R in mice[J]. Signal Transduct Target Ther, 2020, 5: 297.
[268] QIN L, FU X, MA J, et al. Kindlin-2 mediates mechanotransduction in bone by regulating expression of Sclerostin in osteocytes[J]. Commun Biol, 2021, 4: 402.
[269] ZHU K, LAI Y, CAO H, et al. Kindlin-2 modulates MafA and beta-catenin expression to regulate beta-cell function and mass in mice[J]. Nat Commun, 2020, 11: 484.
[270] GAO H, GUO Y, YAN Q, et al. Lipoatrophy and metabolic disturbance in mice with adipose-specific deletion of kindlin-2[J]. JCI Insight, 2019, 4: e128405.
[271] GAO H, ZHOU L, ZHONG Y, et al. Kindlin-2 haploinsufficiency protects against fatty liver by targeting Foxo1 in mice[J]. Nat Commun, 2022, 13: 1025.
[272] WU X, LAI Y, CHEN S, et al. Kindlin-2 preserves integrity of the articular cartilage to protect against osteoarthritis[J]. Nat Aging, 2022, 2: 332-347.
[273] HENRY S P, JANG C W, DENG J M, et al. Generation of aggrecan-CreERT2 knockin mice for inducible Cre activity in adult cartilage[J]. Genesis, 2009, 47: 805-814.
[274] KANEKO H, ISHIJIMA M, FUTAMI I, et al. Synovial perlecan is required for osteophyte formation in knee osteoarthritis[J]. Matrix Biol, 2013, 32: 178-187.
[275] KRENN V, MORAWIETZ L, HAUPL T, et al. Grading of chronic synovitis--a histopathological grading system for molecular and diagnostic pathology[J]. Pathol Res Pract, 2002, 198: 317-325.
[276] GUO L, CUI C, ZHANG K, et al. Kindlin-2 links mechano-environment to proline synthesis and tumor growth[J]. Nat Commun, 2019, 10: 845.
[277] VALLS-LACALLE L, BARBA I, MIRO-CASAS E, et al. Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition[J]. Cardiovasc Res, 2016, 109: 374-384.
[278] VAAMONDE-GARCIA C, LOUREIRO J, VALCARCEL-ARES M N, et al. The mitochondrial inhibitor oligomycin induces an inflammatory response in the rat knee joint[J]. BMC Musculoskelet Disord, 2017, 18: 254.
[279] LEI Y, FU X, LI P, et al. LIM domain proteins Pinch1/2 regulate chondrogenesis and bone mass in mice[J]. Bone Res, 2020, 8: 37.
[280] JANG S, LEE K, JU J H. Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee[J]. Int J Mol Sci, 2021, 22: 2619.
[281] LESPASIO M J, PIUZZI N S, HUSNI M E, et al. Knee Osteoarthritis: A Primer[J]. Perm J, 2017, 21: 16-183.
[282] RICHARDSON C, PLAAS A, BLOCK J A. Intra-articular Hyaluronan Therapy for Symptomatic Knee Osteoarthritis[J]. Rheum Dis Clin North Am, 2019, 45: 439-451.
[283] MILLER R L. Transgenic mice: beyond the knockout[J]. Am J Physiol Renal Physiol, 2011, 300: 291-300.
[284] HARUYAMA N, CHO A, KULKARNI A B. Overview: engineering transgenic constructs and mice[J]. Curr Protoc Cell Biol, 2009, 19: 10.
[285] WANG Z, HUANG J, ZHOU S, et al. Loss of Fgfr1 in chondrocytes inhibits osteoarthritis by promoting autophagic activity in temporomandibular joint[J]. J Biol Chem, 2018, 293: 8761-8774.
[286] BIANCHI J, DE OLIVEIRA RUELLAS A C, GONCALVES J R, et al. Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning[J]. Sci Rep, 2020, 10: 8012.
[287] DURHAM J, NEWTON-JOHN T R, ZAKRZEWSKA J M. Temporomandibular disorders[J]. BMJ, 2015, 350: h1154.
[288] LU K, MA F, YI D, et al. Molecular signaling in temporomandibular joint osteoarthritis[J]. J Orthop Translat, 2022, 32: 21-27.
[289] AHMAD M, SCHIFFMAN E L. Temporomandibular Joint Disorders and Orofacial Pain[J]. Dent Clin North Am, 2016, 60: 105-124.
[290] KALLADKA M, QUEK S, HEIR G, et al. Temporomandibular joint osteoarthritis: diagnosis and long-term conservative management: a topic review[J]. J Indian Prosthodont Soc, 2014, 14: 6-15.
[291] WANG X D, ZHANG J N, GAN Y H, et al. Current understanding of pathogenesis and treatment of TMJ osteoarthritis[J]. J Dent Res, 2015, 94: 666-673.
[292] ALZAREA B K. Temporomandibular Disorders (TMD) in Edentulous Patients: A Review and Proposed Classification (Dr. Bader's Classification)[J]. J Clin Diagn Res, 2015, 9: ZE06-9.
[293] ABRAHAMSSON A K, KRISTENSEN M, ARVIDSSON L Z, et al. Frequency of temporomandibular joint osteoarthritis and related symptoms in a hand osteoarthritis cohort[J]. Osteoarthritis Cartilage, 2017, 25: 654-657.
[294] SCHMITTER M, ESSIG M, SENEADZA V, et al. Prevalence of clinical and radiographic signs of osteoarthrosis of the temporomandibular joint in an older persons community[J]. Dentomaxillofac Radiol, 2010, 39: 231-234.
[295] ZHAO Y P, ZHANG Z Y, WU Y T, et al. Investigation of the clinical and radiographic features of osteoarthrosis of the temporomandibular joints in adolescents and young adults[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011, 111: e27-34.
[296] YANG H, WEN Y, ZHANG M, et al. MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint[J]. Autophagy, 2020, 16: 271-288.
[297] HUI T, ZHOU Y, WANG T, et al. Activation of beta-catenin signaling in aggrecan-expressing cells in temporomandibular joint causes osteoarthritis-like defects[J]. Int J Oral Sci, 2018, 10: 13.
[298] LAI Y, ZHENG W, QU M, et al. Kindlin-2 loss in condylar chondrocytes causes spontaneous osteoarthritic lesions in the temporomandibular joint in mice[J]. Int J Oral Sci, 2022, 14: 33.
[299] SONG H, LEE J Y, HUH K H, et al. Long-term Changes of Temporomandibular Joint Osteoarthritis on Computed Tomography[J]. Sci Rep, 2020, 10: 6731.
[300] LI B C, GUAN G Z, MEI L, et al. Pathological mechanism of chondrocytes and the surrounding environment during osteoarthritis of temporomandibular joint[J]. J Cell Mol Med, 2021, 25:4902-4911.
[301] JURIKOVA M, DANIHEL L, POLAK S, et al. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer[J]. Acta Histochem, 2016, 118: 544-552.
[302] CUYLEN S, BLAUKOPF C, POLITI A Z, et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes[J]. Nature, 2016, 535: 308-312.
[303] SUN X, KAUFMAN P D. Ki-67: more than a proliferation marker[J]. Chromosoma, 2018, 127: 175-186.
[304] MCILWAIN D R, BERGER T, MAK T W. Caspase functions in cell death and disease[J]. Cold Spring Harb Perspect Biol, 2013, 5: a008656.
[305] JULIEN O, WELLS J A. Caspases and their substrates[J]. Cell Death Differ, 2017, 24: 1380-1389.
[306] MURPHY M P. How mitochondria produce reactive oxygen species[J]. Biochem J, 2009, 417: 1-13.
[307] WEITZMAN M D, LINDEN R M. Adeno-associated virus biology[J]. Methods Mol Biol, 2011, 807: 1-23.
[308] LARGE E E, SILVERIA M A, ZANE G M, et al. Adeno-Associated Virus (AAV) Gene Delivery: Dissecting Molecular Interactions upon Cell Entry[J]. Viruses, 2021, 13: 1336.
[309] NAJAR M, OUHADDI Y, PARE F, et al. Role of Lipocalin-Type Prostaglandin D Synthase in Experimental Osteoarthritis[J]. Arthritis Rheumatol, 2020, 72: 1524-1533.
修改评论