[1] 邓起东, 张裕明, 许桂林, 等. 中国构造应力场特征及其与板块运动的关系[J]. 地震地质, 1979, 1(1): 11-22.
[2] 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学(D 辑: 地球科学), 2002, 32(12): 1020-1030.
[3] 谢富仁, 崔效锋, 赵建涛, 等. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报, 2004, 04: 654-662.
[4] GUTENBERG B, RICHTER C F. Frequency of Earthquakes in California[J]. Bulletin of the Seismological Society of America, 1944, 34(34): 185-188.
[5] UTSU T. A method for determing the value of b in a formula log n=a-bM showing the magnitude-frequency relation for earthquakes[J]. Geophysical Bullentin of Hokkaido University (in Japanese), 1965, 13: 99-103.
[6] MERZ H A, CORNELL C A. Seismic risk analysis based on a quadratic magnitude-frequency law[J/OL]. Bulletin of the Seismological Society of America, 1973, 63(6-1): 1999-2006. https: //doi.org/10.1785/BSSA0636-11999.
[7] WANG R, CHANG Y, MIAO M, et al. Assessing Earthquake Forecast Performance Based on b Value in Yunnan Province, China[J/OL]. Entropy, 2021, 23(6): 730. https://www.mdpi.com /1099-4300/23/6/730. DOI: 10.3390/e23060730.
[8] 史海霞, 孟令媛, 张雪梅, 等. 汶川地震前的𝑏 值变化[J]. 地球物理学报, 2018, 61(5): 1874- 1882.
[9] NANJO K Z, HIRATA N, OBARA K, et al. Decade-scale decrease in b value prior to the M9- class 2011 Tohoku and 2004 Sumatra quakes[J]. Geophysical Research Letters, 2012, 39(20):20304.
[10] NANJO K Z, IZUTSU J, ORIHARA Y, et al. Seismicity prior to the 2016 Kumamoto earthquakes[J/OL]. Earth, Planets and Space, 2016, 68(1): 187. DOI: 10.1186/s40623-016-0558-2.
[11] NANJO K Z, YOSHIDA A. Anomalous decrease in relatively large shocks and increase in the p and b values preceding the April 16, 2016, M 7.3 earthquake in Kumamoto, Japan[J/OL]. Earth Planets and Space, 2017, 69(1): 13. DOI: 10.1186/s40623-017-0598-2.
[12] NANJO K. Were changes in stress state responsible for the 2019 Ridgecrest, California, earthquakes?[ J/OL]. Nature communications, 2020, 11(1): 3082. DOI: 10.1038/s41467-020-16867 -5.
[13] LIPPIELLO E, MARZOCCHI W, De Arcangelis L, et al. Spatial organization of foreshocks as a tool to forecast large earthquakes[J/OL]. Scientific Reports 2012 2:1, 2012, 2(1): 1-6. DOI: 10.1038/srep00846.
[14] 陈棋福. 海城地震预报过程的回顾及地震预报发展的思考[J]. 国际地震动态, 2005, 0(5): 154-155.
[15] GULIA L, WIEMER S. Real-time discrimination of earthquake foreshocks and aftershocks [J/OL]. Nature, 2019, 574(7777): 193-199. DOI: 10.1038/s41586-019 1606-4.
[16] ZHUANG J. Next-day earthquake forecasts for the Japan region generated by the ETAS model [J/OL]. Earth, Planets and Space, 2011, 63(3): 207-216. http://link.springer.com/10.5047/eps. 2010.12.010.
[17] OGATA Y, ZHUANG J. Space–time ETAS models and an improved extension[J/O ]. Tectonophysics, 2006, 413(1-2): 13-23. DOI: 10.1016/J.TECTO.2005.10.016.
[18] KUMAZAWA T, OGATA Y. Nonstationary etas models for nonstandard earthquakes[J/OL]. Annals of Applied Statistics, 2014, 8(3): 1825-1852. DOI: 10.1214/14-AOAS759.
[19] KATTAMANCHI S, TIWARI R K, RAMESH D S. Non-stationary ETAS to model earthquake occurrences affected by episodic aseismic transients 4. Seismology[J/OL]. Earth, Planets and Space, 2017, 69(1): 1-14. DOI: 10.1186/S40623-017-0741-0/FIGURES/9.
[20] ZHUANG J. Long-term earthquake forecasts based on the Epidemic-Type Aftershock Sequence (ETAS) model for short-term clustering[J/OL]. Research in Geophysics, 2012, 2(1): 8. DOI: 10.4081/rg.2012.e8.
[21] LIU R F, WU Z L, YIN C M, et al. Development of China digital seismological observational systems[J/OL]. Acta Seismologica Sinica English Edition, 2003, 16(5): 568. DOI: 10.1007/bf 02893477.
[22] HAN P, HATTORI K, HIROKAWA M, et al. Statistical analysis of ULF seismomagnetic phenomena at Kakioka, Japan, during 2001-2010[J/OL]. Journal of Geophysical Research: Space Physics, 2014, 119(6): 4998-5011. http://doi.wiley.com/10.1002/2014JA019789.
[23] HAN P, ZHUANG J, HATTORI K, et al. Assessing the Potential Earthquake Precursory Information in ULF Magnetic Data Recorded in Kanto, Japan during 2000–2010: Distance and Magnitude Dependences[J/OL]. Entropy, 2020, 22(8): 859. https://www.mdpi.com/1099-430 0/22/8/859. DOI: 10.3390/e22080859.
[24] CHEN S, JIANG C, ZHUANG J. Statistical Evaluation of Efficiency and Possibility of Earthquake Predictions with Gravity Field Variation and its Analytic Signal in Western China[J/OL]. Pure and Applied Geophysics, 2016, 173(1): 305-319. https://link.springer.com/article/10.1007/s00024-015-1114-x. DOI: 10.1007/S00024-015-1114-X/FIGURES/9.
[25] WANG T, ZHUANG J, KATO T, et al. Assessing the potential improvement in short-term earthquake forecasts from incorporation of GPS data[J/OL]. Geophysical Research Letters, 2013, 40(11): 2631-2635. DOI: 10.1002/GRL.50554.
[26] 曹新来, 许向科, 孙佩卿, 等. 强地震前重现的地下水异常及其预报意义[J]. 地震, 2007 (111-116).
[27] 吴玮莹, 单新建, 屈春燕, 等. 联合空基与地基观测数据揭示2017 年新疆精河𝑀𝑊6.3 地震震前多参数时空关联及可能的物理机制[J]. 地球物理学报, 2022(3335-3350).
[28] NANJO K Z, YOSHIDA A. A b map implying the first eastern rupture of the Nankai Trough earthquakes[J]. Nature Communications, 2018, 9(1): 1117.
[29] TODA S, LIN J, MEGHRAOUI M, et al. 12 May 2008 M = 7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems[J/OL]. Geophysical Research Letters, 2008, 35(17). http://dx.doi.org/10.1029/2008GL034903.
[30] OGATA Y. Detection of anomalous seismicity as a stress change sensor[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B5): 1-14.
[31] STEVENS V L, AVOUAC J P. On the relationship between strain rate and seismicity in the India–Asia collision zone: implications for probabilistic seismic hazard[J/OL]. Geophysical Journal International, 2021, 226(1): 220-245. https://academic.oup.com/gji/article/226/1/220/6168368. DOI: 10.1093/GJI/GGAB098.
[32] KASHIWAGI H, NAKAJIMA J, YUKUTAKE Y, et al. Seismic Constraint on the Fluid-Bearing Systems Feeding Hakone Volcano, Central Japan[J/OL]. Journal of Geophysical Research: Solid Earth, 2020, 125(11). DOI: 10.1029/2020JB020341.
[33] SCHORLEMMER D, NERI G, WIEMER S, et al. Stability and significance tests for b-value anomalies: Example from the Tyrrhenian Sea[J/OL]. Geophysical Research Letters, 2003, 30(16). DOI: 10.1029/2003GL017335.
[34] Van Stiphout T, KISSLING E, WIEMER S, et al. Magmatic processes in the Alaska subduction zone by combined 3-D b value imaging and targeted seismic tomography[J/OL]. Journal of Geophysical Research: Solid Earth, 2009, 114(B11): 11302. DOI: 10.1029/2008JB005958.
[35] SHELLY D R, ELLSWORTH W L, HILL D P. Fluid-faulting evolution in high definition: Connecting fault structure and frequency-magnitude variations during the 2014 Long Valley Caldera, California, earthquake swarm[J/OL]. Journal of Geophysical Research: Solid Earth, 2016, 121(3): 1776-1795. DOI: 10.1002/2015JB012719.
[36] HAINZL S, OGATA Y. Detecting fluid signals in seismicity data through statistical earthquake modeling[J/OL]. Journal of Geophysical Research: Solid Earth, 2005, 110(B5): 1-10. DOI: 10.1029/2004JB003247.
[37] HAINZL S, KRAFT T, WASSERMANN J, et al. Evidence for rainfall-triggered earthquake activity[J/OL]. Geophysical Research Letters, 2006, 33(19). DOI: 10.1029/2006GL027642.
[38] SCHOLZ C H, TAN Y J, ALBINO F. The mechanism of tidal triggering of earthquakes at mid-ocean ridges[J/OL]. Nature Communications 2019 10:1, 2019, 10(1): 1-7. https://www. nature.com/articles/s41467-019-10605-2. DOI: 10.1038/s41467-019-10605-2.
[39] FOULGER G R, WILSON M P, GLUYAS J G, et al. Global review of human-induced earthquakes[J/OL]. Earth-Science Reviews, 2018, 178: 438-514. DOI: 10.1016/J.EARSCIREV.2017.07.008.
[40] VERDON J P, STORK A L. Carbon capture and storage, geomechanics and induced seismic activity[J/OL]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(6): 928-935. DOI: 10.1016/J.JRMGE.2016.06.004.
[41] ZHUANG J, MATSUURA M, HAN P. Critical zone of the branching crack model for earthquakes: Inherent randomness, earthquake predictability, and precursor modelling[J/OL]. European Physical Journal: Special Topics, 2021, 230(1): 409-424. DOI: 10.1140/epjst/e2020-000272-7.
[42] BAECHER G B, KEENEY R L. Statistical examination of reservoir-induced seismicity[J/OL]. Bulletin of the Seismological Society of America, 1982, 72(2): 553-569. DOI: 10.1785/BSSA 0720020553.
[43] GUPTA H K. The present status of reservoir induced seismicity investigations with special emphasis on Koyna earthquakes[J/OL]. Tectonophysics, 1985, 118(3-4): 257-279. DOI: 10.1016/0040-1951(85)90125-8.
[44] OHTAKE M. Seismicity change associated with the impounding of major artificial reservoirsin Japan[J/OL]. Physics of the Earth and Planetary Interiors, 1986, 44(2): 87-98. DOI: 10.1016/0031-9201(86)90035-X.
[45] TALWANI P. On the nature of reservoir-induced seismicity[J/OL]. Pure and Applied Geophysics,1997, 150(3-4): 473-492. https://link.springer.com/article/10.1007/s000240050089. DOI: 10.1007/S000240050089/METRICS.
[46] RAMASAMY S M, GUNASEKARAN S, RAJAGOPAL N, et al. Flood 2018 and the status of reservoir-induced seismicity in Kerala, India[J/OL]. Natural Hazards, 2019, 99(1): 307-319. https://link.springer.com/article/10.1007/s11069-019-03741-x. DOI: 10.1007/S11069-019-03741-X/TABLES/1.
[47] YAO Y S, WANG Q L, LIAO W L, et al. Influences of the Three Gorges Project on seismic activities in the reservoir area[J/OL]. Science Bulletin, 2017, 62(15): 1089-1098. https://www.sciencedirect.com/science/article/pii/S2095927317303845. DOI: https://doi.org/10.1016/j.scib.2017.07.014.
[48] KUANG J, HU X, LIU Z. Mechanism of reservoir-induced seismicity in the Xinfengjiang reservoir area, Guangdong, China[J/OL]. Natural Hazards, 2022, 111: 2059-2076. DOI: 10.1007/s11069-021-05129-2.
[49] ZHAO C, ZHAO C, LEI H, et al. Seismic activities before and after the impoundment of the Xiangjiaba and Xiluodu reservoirs in the lower Jinsha River[J/OL]. Earthquake Science, 2022, 35(5): 355-370. https://www.equsci.org.cn/en/article/doi/10.1016/j.eqs.2022.10.003. DOI: 10.1016/J.EQS.2022.10.003.
[50] UTSU T. Aftershocks and Earthquake Statistics(1) : Some Parameters Which Characterize an Aftershock Sequence and Their Interrelations[J]. Journal of the Faculty of Science, Hokkaido University. Series 7, Geophysics, 1970, 3(3): 129-195.
[51] UTSU T, OGATA Y, S R, et al. The Centenary of the Omori Formula for a Decay Law of Aftershock Activity[J/OL]. Journal of Physics of the Earth, 1995, 43(1): 1-33. DOI: 10.4294/JPE1952.43.1.
[52] HAWKES A G. Spectra of some self-exciting and mutually exciting point processes[J/OL]. Biometrika, 1971, 58(1): 83-90. https://doi.org/10.1093/biomet/58.1.83.
[53] OGATA Y. Statistical models for earthquake occurrences and residual analysis for point processes[J/OL]. Journal of the American Statistical Association, 1988, 83(401): 9-27. DOI: 10.1080/01621459.1988.10478560.
[54] OGATA Y. Space-Time Point-Process Models for Earthquake Occurrences[J/OL]. Annals of the Institute of Statistical Mathematics, 1998, 50(2): 379-402. https://econpapers.repec.org/RePEc:spr:aistmt:v:50:y:1998:i:2:p:379-402. DOI: 10.1023/A:1003403601725.
[55] GUO Y, ZHUANG J, ZHOU S. An improved space-time ETAS model for inverting the rupture geometry from seismicity triggering[J/OL]. Journal of Geophysical Research: Solid Earth, 2015, 120(5): 3309-3323. DOI: 10.1002/2015JB011979.
[56] GUO Y, ZHUANG J, OGATA Y. Modeling and Forecasting Aftershocks Can Be Improved by Incorporating Rupture Geometry in the ETAS Model[J/OL]. Geophysical Research Letters, 2019, 46(22): 12881-12889. DOI: 10.1029/2019GL084775.
[57] KUMAZAWA T, OGATA Y, KIMURA K, et al. Background rates of swarm earthquakes that are synchronized with volumetric strain changes[J/OL]. Earth and Planetary Science Letters, 2016, 442: 51-60. DOI: 10.1016/J.EPSL.2016.02.049.
[58] 龙锋, 杜方, 阮祥, 等. 用ETAS 模型分析自贡矿井注水触发地震[J/OL]. 中国地震, 2010 (2): 8. doi:1D.3969/j.issn.0253-4967.2019.01.004.
[59] 王秋良, 张丽芬, 廖武林, 等. 2014 年3 月湖北省秭归县𝑀4.2,𝑀4.5 地震成因分析[J]. 地震地质, 2016, 38(1): 10.
[60] 毕金孟, 蒋长胜, 马永. 2019 年6 月17 日四川长宁Ms6.0 地震早期序列参数分析及强余震概率预测[J]. 地震, 2020, 40(2): 15.
[61] 李帅, 潘黎黎, 严小敏, 等. 流体触发2013 年广西平果震群活动机理研究[J]. 地震研究, 2018.
[62] 蒋海昆, 宋金, 吴琼, 等. 基于ETAS 模型对三峡库区流体触发微震活动的定量检测[J]. 地 球物理学报, 2012, 55(7): 12.
[63] DIETERICH J H. Probability of earthquake recurrence with nonuniform stress rates and time dependent failure[J]. Pure and Applied Geophysics, 1988.
[64] DIETERICH J H. Earthquake nucleation on faults with rate-and state-dependent strength[J]. Tectonophysics, 1992, 211(1-4): 115-134.
[65] DIETERICH J. A constitutive law for rate of earthquake production and its application to earthquake clustering[J/OL]. Journal of Geophysical Research: Solid Earth, 1994, 99(B2): 2601-2618. DOI: 10.1029/93JB02581.
[66] DIETERICH J H, KILGORE B D. Direct observation of frictional contacts: New insights for state-dependent properties[J]. Pure and Applied Geophysics, 1994, 143(1): 283-302.
[67] DIETERICH J H. Earthquake simulation with time-dependent nucleation and long-range interactions[J]. Nonlinear Processes in Geophysics, 1995, 2(3/4).
[68] DIETERICH J H. Applications of Rate- and State-Dependent Friction to Models of Fault-Slip and Earthquake Occurrence[J/OL]. Treatise on Geophysics: Second Edition, 2007, 4: 93-110. DOI: 10.1016/B978-0-444-53802-4.00075-0.
[69] DIETERICH J, SMITH D E. Rate-State Modeling of Stress Relaxation in Geometrically Complex Fault Systems[J]. AGU Fall Meeting Abstracts, 2007.
[70] GILCHRIST J J, DIETERICH J H, RICHARDSDINGER K B, et al. Earthquake Clustering and Triggering of Large Events in Simulated Catalogs[C]//Agu Fall Meeting. 2013.
[71] 吴彦. 速率和状态摩擦准则下断层滑动特征的数值模拟研究[J]. 中国科学技术大学, 2014.
[72] DIETERICH J I I. Time-dependent friction in rocks[J/OL]. Journal of Geophysical Research, 1972, 77(20): 3690-3697. https://onlinelibrary.wiley.com/doi/full/10.1029/JB077i020p03690. DOI: 10.1029/JB077I020P03690.
[73] SCHOLZ C, MOLNAR P, JOHNSON T. Detailed studies of frictional sliding of granite and implications for the earthquake mechanism[J/OL]. Journal of Geophysical Research, 1972, 77(32): 6392-6406. https://onlinelibrary.wiley.com/doi/full/10.1029/JB077i032p06392. DOI: 10.1029/JB077I032P06392.
[74] SCHOLZ C H, ENGELDER J T. The role of asperity indentation and ploughing in rock friction—I: Asperity creep and stick-slip[J/OL]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1976, 13(5): 149-154. DOI: 10.1016/0148-9062(76)90819-6.
[75] DIETERICH J H. Time-Dependent Friction and the Mechanics of Stick-Slip[M/OL]. Basel: Birkha user Basel, 1978: 790-806. https://doi.org/10.1007/978-3-0348-7182-2_15.
[76] KOSLOFF D D, LIU H . Reformulation and discussion of mechanical behavior of the velocity-dependent friction law proposed by Dieterich[J/OL]. Geophysical Research Letters, 1980, 7(11): 913-916. https://onlinelibrary.wiley.com/doi/full/10.1029/GL007i011p00913. DOI: 10.1029/GL007I011P00913.
[77] RUINA A. Slip instability and state variable friction laws[J/OL]. Journal of Geophysical Research: Solid Earth, 1983, 88(B12): 10359-10370. https://onlinelibrary.wiley.com/doi/full/10.1029/JB088iB12p10359. DOI: 10.1029/JB088IB12P10359.
[78] TODA S, STEIN R S, RICHARDS-DINGER K, et al. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer[J/OL]. Journal of Geophysical Research: Solid Earth, 2005, 110(B5): 1-17. DOI: 10.1029/2004JB003415.
[79] JIA K. Modeling the Spatiotemporal Seismicity Patterns of the Longmen Shan Fault Zone Based on the Coulomb Rate and State Model[J/OL]. Seismological Research Letters, 2021, 92(1): 275-286. DOI: 10.1785/0220200088.
[80] JIA K, ZHOU S, ZHUANG J, et al. Nonstationary Background Seismicity Rate and Evolution of Stress Changes in the Changning Salt Mining and Shale‐Gas Hydraulic Fracturing Region, Sichuan Basin, China[J/OL]. Seismological Research Letters, 2020, 91(4): 2170-2181. DOI: 10.1785/0220200092.
[81] 仲秋, 史保平. 关于Coulomb 应力变化/扰动作用下的Dieterich 余震触发机制的广义解[J]. 地球物理学报, 2013, 56(5): 1526-1537.
[82] 尚园程, 史保平. 基于Dieterich 地震发生率模型分析前震成因的力学机制[J]. 地球物理学报, 2020, 63(9): 3355-3369.
[83] 刘精敏. 规划中的溪洛渡和向家坝水电站[J]. 中国电业, 1997(6): 2.
[84] 冯向东, 岳秀霞, 王曰风, 等. 由向家坝水库震源机制探讨诱发地震的成因[J]. 地震地质, 2015, 037(002): 565-575.
[85] 苏珊, 韩立波, 郭祥云. 溪洛渡水库近场区蓄水前后震源机制及应力场研究[J]. 地震研究, 2020, v.43;No.194(02): 198-207+214.
[86] 刁桂苓, 王曰风, 冯向东, 等. 溪洛渡库首区蓄水后震源机制分析[J]. 地震地质, 2014.
[87] 杨磊, 李保华, 常廷改. 水库地震震源深度校核方法研究与应用[J]. 大地测量与地球动力学, 2019, 39(11): 4.
[88] 段梦乔, 赵翠萍. 金沙江下游水库区地震震源机制特征[J]. 地震地质, 2019, 41(5): 17.
[89]王兴旺, 刘耀儒, 吕帅, 等. 高拱坝蓄水期库岸变形与水库诱发地震相关性研究[J]. 清华大学学报: 自然科学版, 2022, 62(8): 10.
[90] 罗建伟, 李勇, 叶建庆. 溪洛渡水库影响区地震活动性分析[J]. 地震研究, 2020, 43(1): 8.
[91] LI L, YAO X, YAO J, et al. Analysis of deformation characteristics for a reservoir landslide before and after impoundment by multiple D-InSAR observations at Jinshajiang River, China [J/OL]. Natural Hazards, 2019, 98(2): 719-733. https://link.springer.com/article/10.1007/s11069-019-03726-w. DOI: 10.1007/S11069-019-03726-W/FIGURES/7.
[92] 赵策. 金沙江下游地区水库地震活动特征研究[D]. 中国地震局地震预测研究所, 2020.
[93] 段梦乔. 金沙江下游水库区地震震源机制与应力场特征研究[D]. 中国地震局地震预测研究所, 2019.
[94] 郭伟. 金沙江下游白鹤滩水库蓄水后地震活动特征研究[D]. 中国地震局地震预测研究所, 2022.
[95] LEI H, WANG Q, ZHAO C, et al. Seismic analysis of the Xiluodu reservoir area and insights into the geometry of seismogenic faults[J/OL]. Earthquake Science, 2022, 35(5): 371-386. DOI: 10.1016/J.EQS.2022.10.005.
[96] ZHANG M, GE S, YANG Q, et al. Impoundment-Associated Hydro-Mechanical Changes and Regional Seismicity Near the Xiluodu Reservoir, Southwestern China[J/OL]. Journal of Geophysical Research: Solid Earth, 2021, 126(9). DOI: 10.1029/2020JB021590.
[97] CHANG T, LI B, ZENG X. Prediction and verification of earthquakes induced by the Xiluodu hydropower station reservoir[J/OL]. Earthquake Science, 2022, 35(5): 387-397. DOI: 10.1016/J.EQS.2022.10.006.
[98] 周双超. 金沙江下游水电开发进入关键阶段——溪洛渡、向家坝工程进展综述[J]. 四川水力发电, 2008(156-158).
[99] 韩鹏, 缪淼,王蕤. 基于流固耦合理论的库区应力响应及地震活动性分析[R]. 南方科技大 学, 2022.
[100] SURVEY U G. Shuttle Radar Topography Mission (SRTM)[R]. NASA, 2009.
[101] BIRAN A. Chapter 7 - Cubic Splines[M/OL]//BIRAN A. Geometry for Naval Architects. Butterworth-Heinemann, 2019: 305-324. https://www.sciencedirect.com/science/article/pii/ B9780081003282000183. DOI: https://doi.org/10.1016/B978-0-08-100328-2.00018-3.
[102] MIGNAN A, WOESSNER J. Estimating the magnitude of completeness for earthquake catalogs[J/OL]. Community Online Resource for Statistical Seismicity Analysis, 2012. DOI: 10.5078/CORSSA-00180805.
[103] HAFIEZ H E A. Estimating the magnitude of completeness for assessing the quality of earthquake catalogue of the ENSN, Egypt[J/OL]. Arabian Journal of Geosciences, 2015, 8(11): 9315-9323. http://link.springer.com/10.1007/s12517-015-1929-x.
[104] ZHOU Y, ZHOU S, ZHUANG J. A test on methods for MC estimation based on earthquake catalog[J/OL]. Article in Earth and Planetary Physics, 2018, 2: 150-162. http://doi.org/10.26464/epp2018015.
[105] WIEMER S. Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan[J/OL]. Bulletin of the Seismological Society of America, 2000, 90(4): 859-869. https://pubs.geoscienceworld.org/bssa/article/90/4/859-869/120531. DOI: 10.1785/0119990114.
[106] WOESSNER J, WIEMER S. Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty[J/OL]. Bulletin of the Seismological Society of America, 2005, 95(2): 684-698. DOI: 10.1785/0120040007.
[107] ZHUANG J, OGATA Y, WANG T. Data completeness of the Kumamoto earthquake sequence in the JMA catalog and its influence on the estimation of the ETAS parameters[J/OL]. Earth, Planets and Space, 2017, 69(1): 1-12. https://earth-planets-space.springeropen.com/articles/10.1186/s40623-017-0614-6. DOI: 10.1186/S40623-017-0614-6/FIGURES/6.
[108] 黄亦磊, 周仕勇, 庄建仓. 基于地震目录估计完备震级方法的数值实验[J/OL]. 地球物理学报, 2016, 59(4): 1350-1358. DOI: 10.6038/cjg20160416.
[109] TAN Y J, WALDHAUSER F, TOLSTOY M, et al. Axial Seamount: Periodic tidal loading reveals stress dependence of the earthquake size distribution (b value)[J/OL]. Earth and Planetary Science Letters, 2019, 512: 39-45. DOI: 10.1016/j.epsl.2019.01.047.
[110] SCHORLEMMER D, WIEMER S, WYSS M. Variations in earthquake-size distribution across different stress regimes[J/OL]. Nature, 2005, 437(7058): 539-542. https://www.ncbi.nlm.nih.gov/pubmed/16177788. DOI: 10.1038/nature04094.
[111] SCHORLEMMER D, WIEMER S, WYSS M, et al. Earthquake statistics at Parkfield: 2. Probabilistic forecasting and testing[J/OL]. Article in Journal of Geophysical Research Atmospheres, 2004, 109: 12308. https://www.researchgate.net/publication/258642182. DOI: 10.1029/2004JB003235.
[112] SCHORLEMMER D, WIEMER S. Earthquake statistics at Parkfield: 1. Stationarity of b values [J/OL]. Journal of Geophysical Research, 2004, 109(B12): B12307. http://doi.wiley.com/10.1029/2004JB003234.
[113] 吴忠良. 关于𝑏 值应用于地震趋势预测的讨论[J/OL]. 地震学报, 2001, 23(5): 548-551.DOI: 10.3321/j.issn:0253-3782.2001.05.012.
[114] MARZOCCHI W, SANDRI L. A review and new insights on the estimation of the b-value and its uncertainty[J/OL]. Annals of Geophysics, 2003, 46(6): 1271-1282. DOI: 10.4401/ag-3472.
[115] 刘雁冰, 裴顺平. 汶川地震前后𝑏 值的时空变化及构造意义[J/OL]. 地球物理学报, 2017,60(6): 2104-2112. DOI: 10.6038/cjg20170607.
[116] 解孟雨, 孟令媛. 川东南长宁地区地震活动及𝑏 值演化特征[J]. 中国地震, 2021, 37(494-507).
[117] SCHOLZ C. On the stress dependence of earthquake b value[J/OL]. Geophysical Research Letters, 2015, 42(5): 1399-1402. DOI: 10.1002/2014GL062863.
[118] WIEMER S, MCNUTT S R, WYSS M. Temporal and three-dimensional spatial analyses of the frequency-magnitude distribution near Long Valley Caldera, California[J/OL]. Geophysical Journal International, 1998, 134(2): 409-421. https://academic.oup.com/gji/article/134/2/409/662959. DOI: 10.1046/J.1365-246X.1998.00561.X/3/134-2-409-FIG008.JPEG.
[119] WIEMER S, BENOIT J. Mapping the b-value anomaly at 100 km depth in the Alaska and New Zealand subduction zones[J/OL]. Geophysical Research Letters, 1996, 23(13): 1557-1560. DOI: 10.1029/96GL01233.
[120] DEMPSEY D, SUCKALE J, HUANG Y. Collective properties of injection-induced earthquake sequences: 2. Spatiotemporal evolution and magnitude frequency distributions[J/OL]. Journal of Geophysical Research: Solid Earth, 2016, 121(5): 3638-3665. DOI: 10.1002/2015JB012551.
[121] AKI K. Maximum Likelihood Estimate of b in the Formula logN=a-bM and its Confidence Limits[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1965, 43: 237- 239.
[122] BENGOUBOU-VALERIUS M, GIBERT D. Bootstrap determination of the reliability of bvalues: an assessment of statistical estimators with synthetic magnitude series[J/OL]. Natural Hazards, 2013, 65(1): 443-459. http://link.springer.com/10.1007/s11069-012-0376-1.
[123] EL-ISA Z H, EATON D W. Spatiotemporal variations in the b-value of earthquake magnitude frequency distributions: Classification and causes[J/OL]. Tectonophysics, 2014, 615-616: 1-11. https://doi.org/10.1016/j.tecto.2013.12.001. DOI: 10.1016/J.TECTO.2013.12.001.
[124] KULHÁNEK O. Seminar on b-value[R/OL]. Uppsala, Sweden: Uppsala University, 2005. https://www.researchgate.net/publication/242598429.
[125] OGATA Y, KATSURA K, TANEMURA M, et al. Hierarchical Space-Time Point-Process Models (HIST-PPM): Software documentation[M/OL]. Tokyo, Japan: The Institute of Statistical Mathematic, 2020. http://bemlar.ism.ac.jp/ogata/HIST-PPM-V3/programs/.
[126] OGATA Y, IMOTO M, KATSURA K. 3‐D Spatial Variation of b‐Values of Magnitude‐Frequency Distribution Beneath the Kanto District, Japan[J/OL]. Geophysical Journal International, 1991, 104(1): 135-146. DOI: 10.1111/j.1365-246X.1991.tb02499.x.
[127] DELAUNAY B. Sur la sphere vide[J/OL]. Bulletin de lAcademie des Sciences de lURSS, 1934, 6: 793-800. https://www.mendeley.com/catalogue/c33ab22e-e461-3111-864d-65d5f29806c9/.
[128] ZHUANG J, OGATA Y, VERE-JONES D. Stochastic declustering of space-time earthquake occurrences[J]. Journal of the American Statistical Association, 2002, 97(458): 369-380.
[129] MIZRAHI L, NANDAN S, WIEMER S. The Effect of Declustering on the Size Distribution of Mainshocks[J/OL]. Seismological Research Letters, 2021, 92(4): 2333-2342. www.srl-online.org. DOI: 10.1785/0220200231.
[130] PENG Y, ZHOU S, ZHUANG J, et al. An approach to detect the abnormal seismicity increase in Southwestern China triggered co-seismically by 2004 Sumatra M w 9.2 earthquake[J/OL]. Geophysical Journal International, 2012, 189(3): 1734-1740. https://academic.oup.com/gji/article/189/3/1734/613897. DOI: 10.1111/J.1365-246X.2012.05456.X/2/M_189-3-1734-IEQ045.JPEG.
[131] NANDAN S, OUILLON G, SORNETTE D, et al. Forecasting the Rates of Future Aftershocks of All Generations Is Essential to Develop Better Earthquake Forecast Models[J/OL]. Journal of Geophysical Research: Solid Earth, 2019, 124(8): 8404-8425. DOI: 10.1029/2018JB016668.
[132] AKAIKE H. A new look at the statistical model identification[J/OL]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723. DOI: 10.1109/TAC.1974.1100705.
[133] AKAIKE H. Likelihood and Bayes procedure[M]//BERNARDO J, DEGROOT M, LINDLEYD, et al. Bayesian Statistics: volume 3. University press ed. Valencia, Spain: University Press,1980: 143-166.
[134] ARORA J S. Chapter 12 - Numerical Methods for Constrained Optimum Design[M/OL]//ARORA J S. Introduction to Optimum Design (Third Edition). Third edition ed. Boston:Academic Press, 2012: 491-531. https://www.sciencedirect.com/science/article/pii/B9780123813756000127. DOI: https://doi.org/10.1016/B978-0-12-381375-6.00012-7.
[135] 代少强. 贵州六百年地震灾害与社会救治研究[D]. 贵州大学, 2017.
[136] TALWANI P, CHEN L, GAHALAUT K. Seismogenic permeability, 𝑘𝑠[J/OL]. Journal of Geophysical Research: Solid Earth, 2007, 112(B7): 7309. https://onlinelibrary.wiley.com/doi/full/10.1029/2006JB004665.
[137] 徐晶, 邵志刚, 张浪平, 等. 断层面上库仑破裂应力变化的相关研究进展[J/OL]. 地球物理学进展, 2013, 28(1): 132-145. http://www.progeophys.cn//article/id/dqwlxjz_3743. DOI: 10.6038/pg20130114.
[138] SCHULTZ R, BEROZA G C, ELLSWORTH W L. A risk-based approach for managing hydraulic fracturing–induced seismicity[J/OL]. Science, 2021, 372(6541): 504-507. https: //www.sciencemag.org/lookup/doi/10.1126/science.abg5451.
[139] HE M, LI Q, LI X. Injection-Induced Seismic Risk Management Using Machine Learning Methodology –A Perspective Study[J/OL]. Frontiers in Earth Science, 2020, 8: 227. DOI: 10.3389/FEART.2020.00227/BIBTEX.
[140] ALGHANNAM M, JUANES R. Understanding rate effects in injection-induced earthquakes [J/OL]. Nature Communications 2020 11:1, 2020, 11(1): 1-6. https://www.nature.com/articles/s41467-020-16860-y. DOI: 10.1038/s41467-020-16860-y.
[141] BACHMANN C E, WIEMER S, GOERTZ-ALLMANN B P, et al. Influence of pore-pressure on the event-size distribution of induced earthquakes[J/OL]. Geophysical Research Letters, 2012, 39(9): 9302. https://onlinelibrary.wiley.com/doi/full/10.1029/2012GL051480.
[142] ELLSWORTH W L. Injection-induced earthquakes[J/OL]. Science, 2013, 341(6142). https: //www.science.org/doi/10.1126/science.1225942. DOI: 10.1126/SCIENCE.1225942/SUPPL_FILE/1225942.MP3.
[143] MAURER J, KANE D, NYST M, et al. Risk from Oklahoma’s Induced Earthquakes: The Cost of Declustering[J/OL]. Bulletin of the Seismological Society of America, 2020, 110(5): 2454-2465. DOI: 10.1785/0120190268.
[144] MIGNAN A, BROCCARDO M, WIEMER S, et al. Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections[J/OL]. Scientific Reports 2017 7:1, 2017, 7(1): 1-10. https://www.nature.com/articles/s41598-017-13585-9. DOI: 10.1038/s41598-017-13585-9.
[145] BREWER M J, BUTLER A, COOKSLEY S L. The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity[J/OL]. Methods in Ecology and Evolution, 2016, 7(6): 679-692. https://onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12541.
[146] CHAKRABARTI A, GHOSH J K. AIC, BIC and Recent Advances in Model Selection[J/OL]. Philosophy of Statistics, 2011: 583-605. DOI: 10.1016/B978-0-444-51862-0.50018-6.
[147] 姜丛. 时间序列𝑏 值计算的数据驱动算法研究[D]. 中国地震局地球物理研究所, 2022.
修改评论