中文版 | English
题名

晶相锂离子导体Li-O-H-X (X = Cl, Br) 的高温高压制备及电化学性能研究

其他题名
HIGH-TEMPERATURE HIGH-PRESSURE SYNTHESIS AND ELECTRO-CHEMICAL CHARACTERIZATION OF CRYSTALLINE LITHIUM-ION CONDUCTORS IN Li-O-H-X (X = Cl, Br)
姓名
姓名拼音
LIU Zi
学号
12032042
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
王李平
导师单位
前沿与交叉科学研究院
论文答辩日期
2023-05-24
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

能源是社会和经济发展的基础,近些年来,全球对传统化石能源的消耗不断增加,导致了一系列资源耗尽、环境污染和生态破坏等关系到社会持续发展和人 类生存的严重问题,因此我们需要最大程度地利用好地球上的可再生能源并且开 发新型绿色能源。然而,这些能源具有很大的不可控性,而且它们的高效储存也是一大挑战,所以开发新的储能技术迫在眉睫。在电化学储能技术中,固态锂离子电池是一类十分有应用前景的新型电池技术,具有十分可靠的安全性、较长的使用寿命以及优异的离子传输能力等优势。固态电池的性能主要取决于固态电解 质的性能,发展高性能固态电解质是当前固态电池领域亟待解决的问题。其中, 具有反钙钛矿结构的超离子导体Li3OX和Li2OHX(X = Cl, Br)被认为是一种极 具潜力的固态电解质,但是在合成制备、室温锂离子电导率等方面仍有较大的缺陷。本论文采用高温高压的方法制备Li3OBr和Li2OHCl(Br),并对Li2OHCl(Br)进行S元素和F元素的掺杂取代。结果表明,高压下仍然很难得到立方Li3OBr纯相, 并且在高温下会催生出Li-O-Br体系中的两种新型结构相Li4OBr2(四方相)和 Li5OBr3(六方相)。通过改变压力和温度会导致Li3OBr-Li4OBr2-Li5OBr3之间的相转变,进一步研究了不同温压条件对于Li-O-Br体系中化合物相平衡的影响。 Li2OHCl在高温下呈现立方相,但在27 ℃~37 ℃之间会存在立方相到正交相的转变,导致室温离子导率大幅度降低。而在高温高压和元素掺杂的作用下, Li2OHCl的相转变温度大大降低,在0 ℃仍然保持立方相结构,导致离子导率相比于文献中提升了4个数量级,活化能也有较大程度的改善。由于Li2OHBr室温不发生相转变,S元素掺杂后离子导率提升近1个量级,但迁移势垒都有改善。 在高温高压和元素掺杂的作用下,Li3OBr和Li2OHCl的结构均有所变化,由此对离子传输提供了良好的通道,促进锂离子扩散和迁移。

其他摘要

Energy powers social and economic development. In recent years, the global consumption of traditional fossil fuel has been rapidly increasing, leading to series of problems such as resource depletion, environmental pollution and ecological destruction. Therefore, it is imperative to harvest the renewable energy on earth and develop novel green energy. However, these energy sources are highly uncontrollable, and their efficient storage is also a major challenge, so the development of new energy storage technologies is much desired. In electrochemical energy storage technology, solid-state lithium-ion battery has become a promising new technology because of its high security and durability and excellent energy density. The overall performance of solid-state battery strongly depends on the properties of solid electrolytes, and there is an urgent need to develop solid-state electrolyte materials with excellent performance. Among them, Li3OX and Li2OHX (X = Cl, Br) with anti-perovskite structure are regarded as promising solid electrolytes, but their preparation procedure and room-temperature lithium-ion conductivity remain unsatisfactory. In this paper, crystalline phases Li3OX and Li2OHX (X = Cl, Br) were prepared by high-pressure synthesis method. In addition, the halogen elements in Li2OHX were partially replaced by sulfur and fluorine to improve their ionic conductivities. Results show that it is still difficult to obtain the pure phase of cubic Li3OX under high pressure and relatively low temperature. Raising temperature at high pressure led to the formation of two new crystalline phases Li4OBr2 (tetragonal structure) and Li5OBr3 (hexagonal structure) in Li-O-Br system. By changing pressure and temperature, the phase transitions among Li3OBr, Li4OBr2, and Li5OBr3 were examined. I further studied the influence of different P-T conditions on the thermodynamic equilibrium of various crystalline compounds in Li-O-Br system. It has been reported that Li2OHCl adopts a cubic structure (Pm3m) at high temperature and changes to an orthorhombic structure (Pmc2) between 27 ℃ and 37 ℃, leading to a large decrease in its room-temperature ionic conductivity. However, with high-pressure synthesis and elemental doping, the transition temperature of Li2OHCl is greatly reduced, and the cubic structure is maintained at 0 ℃. As a result, the ionic conductivity at room temperature is 4 orders of magnitude higher than the reported value for Li2OHCl with an orthorhombic structure, and the activation energy is also greatly improved. In contrast, though Li2OHBr does not undergo structural transformation at room temperature, the ionic conductivity is also significantly improved after doping with S, and so is the migration barrier. The cell parameters for both Li3OBr and Li2OHCl has undergone significant changes after S doping, thus providing good pathways for ion transport and facilitating the diffusion and migration of lithium ions.

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] CHEN H, LING M, HENCZ L, et al. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices[J]. Chem Rev, 2018, 118(18): 8936-8982.
[2] GOODENOUGH J B, KIM Y. Challenges for Rechargeable Li Batteries[J]. Chemistry of Materials, 2009, 22(3): 587-603.
[3] LIU Q, JIANG L, ZHENG P, et al. Recent Advances in Stability Issues of Inorganic Solid Electrolytes and Composite Solid Electrolytes for All-Solid-State Batteries[J]. Chem Rec, 2022, 22(10): e202200116.
[4] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[5] CHEN W, LIANG J, YANG Z, et al. A Review of Lithium-Ion Battery for Electric Vehicle Applications and Beyond[J]. Energy Procedia, 2019, 158: 4363-4368.
[6] HIMABINDU V, BHRAMARA P. Pollution control and energy advanced technologies[J]. Environ Sci Pollut Res Int, 2016, 23(10): 9249-9250.
[7] FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nat Mater, 2019, 18(12): 1278-1291.
[8] FAN E, LI L, WANG Z, et al. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects[J]. Chem Rev, 2020, 120(14): 7020-7063.
[9] KALHOFF J, ESHETU G G, BRESSER D, et al. Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives[J]. ChemSusChem, 2015, 8(13): 2154-2175.
[10] WANG Y, ZHANG H, ZHU J, et al. Antiperovskites with Exceptional Functionalities[J]. Adv Mater, 2020, 32(7): e1905007.
[11] ZHAO Q, STALIN S, ZHAO C-Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252.
[12] BRAUN P V, CHO J, PIKUL J H, et al. High power rechargeable batteries[J]. Current Opinion in Solid State and Materials Science, 2012, 16(4): 186-198.
[13] GOODENOUGH J B. Rechargeable batteries: challenges old and new[J]. Journal of Solid State Electrochemistry, 2012, 16(6): 2019-2029.
[14] LI M, WANG C, CHEN Z, et al. New Concepts in Electrolytes[J]. Chem Rev, 2020, 120(14): 6783-6819.
[15] TAKADA K. Progress and prospective of solid-state lithium batteries[J]. Acta Materialia, 2013, 61(3): 759-770.
[16] YUAN M, LIU K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 58-70.
[17] LI M, LU J, CHEN Z, et al. 30 Years of Lithium-Ion Batteries[J]. Adv Mater, 2018: e1800561.
[18] TAKADA K. Progress in solid electrolytes toward realizing solid-state lithium batteries[J]. Journal of Power Sources, 2018, 394: 74-85.
[19] TUBANDT C, LORENZ E. Molekularzustand und elektrisches Leitvermögen kristallisierter Salze[J]. Zeitschrift für Physikalische Chemie, 1914, 87U(1): 513-542.
[20] OWENS B B. Solid state electrolytes: overview of materials and applications during the last third of the Twentieth Century[J]. Journal of Power Sources, 2000, 90(1): 2-8.
[21] GREATBATCH W, LEE J H, MATHIAS W M, et al. The solid-state lithium battery: a new improved chemical power source for implantable cardiac pacemakers[J]. IEEE transactions on bio-medical engineering, 1971, 18 5: 317-323.
[22] ZHANG B, TAN R, YANG L, et al. Mechanisms and properties of ion-transport in inorganic solid electrolytes[J]. Energy Storage Materials, 2018, 10: 139-159.
[23] BUONSANTI R. A solid advance in electrolytes[J]. Nature Energy, 2019, 4(9): 728-729.
[24] LIU Q, JIANG L, ZHENG P, et al. Recent Advances in Stability Issues of Inorganic Solid Electrolytes and Composite Solid Electrolytes for All-Solid-State Batteries[J]. The Chemical Record, 2022, 22
[25] YEGANEH GHOTBI M. Solid state electrolytes for electrochemical energy devices[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(15): 13835-13854.
[26] PLACKE T, KLOEPSCH R, DüHNEN S, et al. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density[J]. Journal of Solid State Electrochemistry, 2017, 21(7): 1939-1964.
[27] XU K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4418.
[28] XIE J, LU Y-C. A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11(1): 2499.
[29] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4): 16103.
[30] LI C, WANG Z-Y, HE Z-J, et al. An advance review of solid-state battery: Challenges, progress and prospects[J]. Sustainable Materials and Technologies, 2021, 29: e00297.
[31] YAMADA Y, YAMADA A. Review—Superconcentrated Electrolytes for Lithium Batteries[J]. Journal of The Electrochemical Society, 2015, 162(14): A2406.
[32] PORZ L, SWAMY T N N, SHELDON B W, et al. Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes[J]. Advanced Energy Materials, 2017, 7
[33] LI J, MA C, CHI M, et al. Solid Electrolyte: The Key for High-Voltage Lithium Batteries[J]. Advanced Energy Materials, 2015, 5: 1401408.
[34] ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy, 2018, 3(1): 16-21.
[35] WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nat Mater, 2015, 14(10): 1026-1031.
[36] KNAUTH P. Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics, 2009, 180(14): 911-916.
[37] ZHANG Z, SHAO Y, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy & Environmental Science, 2018, 11(8): 1945-1976.
[38] BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction[J]. Chem Rev, 2016, 116(1): 140-162.
[39] HONG H Y P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12[J]. Materials Research Bulletin, 1976, 11(2): 173-182.
[40] SEBASTIAN L, GOPALAKRISHNAN J. Lithium ion mobility in metal oxides: A materials chemistry perspective[J]. Journal of Materials Chemistry, 2003, 13(3): 433-441.
[41] GOODENOUGH J, HONG H Y-P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11: 203-220.
[42] SUDREAU F, PETIT D, BOILOT J P. Dimorphism, phase transitions, and transport properties in LiZr2(PO4)3[J]. Journal of Solid State Chemistry, 1989, 83(1): 78-90.
[43] ECKERT H, MARTINS RODRIGUES A C. Ion-conducting glass-ceramics for energy-storage applications[J]. MRS Bulletin, 2017, 42(03): 206-212.
[44] FU J. Fast Li+ ion conduction in Li2O-Al2O3-TiO2-SiO2-P2O5 glass-ceramics[J]. Journal of the American Ceramic Society, 1997, 80(7): 1901-1903.
[45] ZHANG Z, ZHANG Q, SHI J-A, et al. A Self-Forming Composite Electrolyte for Solid-State Sodium Battery with Ultralong Cycle Life[J]. Advanced Energy Materials, 2017, 7
[46] VASUDEVAN S, DWIVEDI S, BALAYA P. Overview and perspectives of solid electrolytes for sodium batteries[J]. International Journal of Applied Ceramic Technology, 2022, 20(2): 563-584.
[47] LIU Q, ZHAO X, YANG Q, et al. The Progress in the Electrolytes for Solid State Sodium-Ion Battery[J]. Advanced Materials Technologies, 2023, 8(7): 2200822.
[48] VASUDEVAN S, DWIVEDI S, BALAYA P. Overview and Perspectives of Solid Electrolytes for Sodium Batteries[J]. International Journal of Applied Ceramic Technology, 2022, 20
[49] HONG H Y P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors[J]. Materials Research Bulletin, 1978, 13(2): 117-124.
[50] KUWANO J, WEST A R. New Li+ ion conductors in the system, Li4GeO4-Li3VO4[J]. Materials Research Bulletin, 1980, 15: 1661-1667.
[51] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686.
[52] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): 16030.
[53] THANGADURAI V, KAACK H, WEPPNER W D. Novel Fast Lithium Ion Conduction in Garnet-Type Li5La3M2O12 (M = Nb, Ta)[J]. Journal of the American Ceramic Society, 2003, 86: 437-440.
[54] THANGADURAI V, WEPPNER W. Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet-Like Oxides for Fast Lithium Ion Conduction[J]. Advanced Functional Materials, 2005, 15(1): 107-112.
[55] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li(7)La(3)Zr(2)O(12)[J]. Angew Chem Int Ed Engl, 2007, 46(41): 7778-7781.
[56] GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor[J]. Inorganic Chemistry, 2011, 50(3): 1089-1097.
[57] GAO D, WU R, CHEN P, et al. Microwave assisted reactive sintering for Al doped Li7La3Zr2O12 lithium ion solid state electrolyte[J]. Materials Research Express, 2019, 6(12): 125539.
[58] KOBI S, AMARDEEP, VYAS A, et al. Al and Mg Co-Doping Towards Development of AirStable and Li-Ion Conducting Li-La-Zirconate Based Solid Electrolyte Exhibiting Low Electrode/Electrolyte Interfacial Resistance[J]. Journal of The Electrochemical Society, 2020, 167(12): 120519.
[59] WANG C, FU K, KAMMAMPATA S P, et al. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries[J]. Chem Rev, 2020, 120(10): 4257-4300.
[60] INAGUMA Y, LIQUAN C, ITOH M, et al. High ionic conductivity in lithium lanthanum titanate[J]. Solid State Communications, 1993, 86(10): 689-693.
[61] CHUNG H-T, KIM J-G, KIM H-G. Dependence of the lithium ionic conductivity on the B-site ion substitution in (Li0.5La0.5)Ti1−xMxO3 (M=Sn, Zr, Mn, Ge)[J]. Solid State Ionics, 1998, 107(1): 153-160.
[62] STRAMARE S, THANGADURAI V, WEPPNER W D. Lithium Lanthanum Titanates: A Review[J]. Chemistry of Materials, 2003, 15: 3974-3990.
[63] ZHAO Y, DAEMEN L L. Superionic conductivity in lithium-rich anti-perovskites[J]. J Am Chem Soc, 2012, 134(36): 15042-15047.
[64] LU X, HOWARD J W, CHEN A, et al. Antiperovskite Li3OCl Superionic Conductor Films for Solid-State Li-Ion Batteries[J]. Adv Sci (Weinh), 2016, 3(3): 1500359.
[65] ZHANG J, WANG L, ZHU J, et al. Structural disorder, sublattice melting, and thermo-elastic properties of anti-perovskite Li3OBr under high pressure and temperature[J]. Applied Physics Letters, 2020, 117(8): 081904.
[66] CHEN R, XU Z, LIN Y, et al. Influence of Structural Distortion and Lattice Dynamics on Li-Ion Diffusion in Li3OCl1–xBrx Superionic Conductors[J]. ACS Applied Energy Materials, 2021, 4(3): 2107-2114.
[67] AHIAVI E, DAWSON J A, KUDU U, et al. Mechanochemical synthesis and ion transport properties of Na3OX (X = Cl, Br, I and BH4) antiperovskite solid electrolytes[J]. Journal of Power Sources, 2020, 471: 228489.
[68] DONDELINGER M, SWANSON J, NASYMOV G, et al. Electrochemical stability of lithium halide electrolyte with antiperovskite crystal structure[J]. Electrochimica Acta, 2019, 306: 498505.
[69] XU Z, LIU Y, SUN X, et al. Theoretical design of Na-rich anti-perovskite as solid electrolyte: The effect of cluster anion in stability and ionic conductivity[J]. Journal of Solid State Chemistry, 2022, 316: 123643.
[70] CLARKE M J, DAWSON J A, MAYS T J, et al. Atomistic Insights into the Effects of Doping and Vacancy Clustering on Li-Ion Conduction in the Li3OCl Antiperovskite Solid Electrolyte[J]. ACS Applied Energy Materials, 2021, 4(5): 5094-5100.
[71] EMLY A, KIOUPAKIS E, VAN DER VEN A. Phase Stability and Transport Mechanisms in Antiperovskite Li3OCl and Li3OBr Superionic Conductors[J]. Chemistry of Materials, 2013, 25(23): 4663-4670.
[72] LI Y, ZHOU W, XIN S, et al. Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries[J]. Angew Chem Int Ed Engl, 2016, 55(34): 9965-9968.
[73] XIAO Y, TURCHENIUK K, NARLA A, et al. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries[J]. Nature Materials, 2021, 20(7): 984-990.
[74] XIA W, ZHAO Y, ZHAO F, et al. Antiperovskite Electrolytes for Solid-State Batteries[J]. Chemical Reviews, 2022, 122(3): 3763-3819.
[75] LI S, ZHU J, WANG Y, et al. Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X= Cl, Br)[J]. Solid State Ionics, 2016, 284: 14-19.
[76] SUGUMAR M K, YAMAMOTO T, MOTOYAMA M, et al. Room temperature synthesis of antiperovskite structured Li2OHBr[J]. Solid State Ionics, 2020, 349: 115298.
[77] YOSHIKAWA K, YAMAMOTO T, SUGUMAR M K, et al. Room Temperature Operation and High Cycle Stability of an All-Solid-State Lithium Battery Fabricated by Cold Pressing Using Soft Li2OHBr Solid Electrolyte[J]. Energy & Fuels, 2021, 35(15): 12581-12587.
[78] YIN L, YUAN H, KONG L, et al. Engineering Frenkel defects of anti-perovskite solid-state electrolytes and their applications in all-solid-state lithium-ion batteries[J]. Chem Commun (Camb), 2020, 56(8): 1251-1254.
[79] LIU B, LIAO P, SHI X, et al. Theoretical insights into interfacial stability and ionic transport of Li2OHBr solid electrolyte for all-solid-state batteries[J]. RSC Adv, 2022, 12(53): 34627-34633.
[80] HOWARD J, HOLZWARTH N A W. First-principles estimation of partition functions representing disordered lattices such as the cubic phases of Li2OHCl and Li2OHBr [J]. Physical Review B, 2019, 99(1): 014109.
[81] FANG H, JENA P. Li-rich antiperovskite superionic conductors based on cluster ions[J]. Proc Natl Acad Sci U S A, 2017, 114(42): 11046-11051.
[82] ZEIDLER A, CRICHTON W A. Materials under pressure[J]. MRS Bulletin, 2017, 42(10): 710713.
[83] NAKA S, HORII K, TAKEDA Y, et al. Direct conversion of graphite to diamond under static pressure[J]. Nature, 1976, 259(5538): 38-39.
[84] FELSCHE J, KALDIS E. Thermal oxidation of Eu2SiO4 — a topotactic solid state reaction[J]. Journal of Solid State Chemistry, 1972, 5: 49-56.
[85] MIAO M-S. Caesium in high oxidation states and as a p-block element[J]. Nature Chemistry, 2013, 5(10): 846-852.
[86] MAO H-K, CHEN X-J, DING Y, et al. Solids, liquids, and gases under high pressure[J]. Reviews of Modern Physics, 2018, 90(1)
[87] LIEBERMANN R C. Multi-anvil, high pressure apparatus: a half-century of development and progress[J]. High Pressure Research, 2011, 31(4): 493-532.
[88] ZHU P, TAO Q, WANG L, et al. Function of large-volume high-pressure apparatus at SECUF[J]. Chinese Physics B, 2018, 27(7)
[89] JOHNS I B, MCELHILL E A, SMITH J O. Thermal Stability of Some Organic Compounds[J]. Journal of Chemical & Engineering Data, 1962, 7: 277-281.
[90] HOOD Z D, WANG H, SAMUTHIRA PANDIAN A, et al. Li2OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes[J]. J Am Chem Soc, 2016, 138(6): 1768-1771.
[91] KOEDTRUAD A, PATINO M A, ICHIKAWA N, et al. Crystal structures and ionic conductivity in Li2OHX (X = Cl, Br) antiperovskites[J]. Journal of Solid State Chemistry, 2020, 286: 121263.
[92] SCHWERING G, HONNERSCHEID A, VAN WULLEN L, et al. High lithium ionic conductivity in the lithium halide hydrates Li3-n(OHn)Cl (0.83 < or = n < or = 2) and Li3-n(OHn)Br (1 < or = n < or = 2) at ambient temperatures[J]. Chemphyschem, 2003, 4(4): 343-348.
[93] SONG A Y, XIAO Y, TURCHENIUK K, et al. Protons Enhance Conductivities in Lithium Halide Hydroxide/Lithium Oxyhalide Solid Electrolytes by Forming Rotating Hydroxy Groups[J]. Advanced Energy Materials, 2017, 8(3)
[94] SONG A Y, TURCHENIUK K, LEISEN J, et al. Understanding Li-Ion Dynamics in Lithium Hydroxychloride (Li2OHCl) Solid State Electrolyte via Addressing the Role of Protons[J]. Advanced Energy Materials, 2020, 10(8)
[95] DAWSON J A, ATTARI T S, CHEN H, et al. Elucidating lithium-ion and proton dynamics in anti-perovskite solid electrolytes[J]. Energy & Environmental Science, 2018, 11(10): 2993-3002.

所在学位评定分委会
物理学
国内图书分类号
O52
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544458
专题理学院_物理系
推荐引用方式
GB/T 7714
刘孜. 晶相锂离子导体Li-O-H-X (X = Cl, Br) 的高温高压制备及电化学性能研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032042-刘孜-物理系.pdf(7032KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘孜]的文章
百度学术
百度学术中相似的文章
[刘孜]的文章
必应学术
必应学术中相似的文章
[刘孜]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。