[1] CHEN H, LING M, HENCZ L, et al. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices[J]. Chem Rev, 2018, 118(18): 8936-8982.
[2] GOODENOUGH J B, KIM Y. Challenges for Rechargeable Li Batteries[J]. Chemistry of Materials, 2009, 22(3): 587-603.
[3] LIU Q, JIANG L, ZHENG P, et al. Recent Advances in Stability Issues of Inorganic Solid Electrolytes and Composite Solid Electrolytes for All-Solid-State Batteries[J]. Chem Rec, 2022, 22(10): e202200116.
[4] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[5] CHEN W, LIANG J, YANG Z, et al. A Review of Lithium-Ion Battery for Electric Vehicle Applications and Beyond[J]. Energy Procedia, 2019, 158: 4363-4368.
[6] HIMABINDU V, BHRAMARA P. Pollution control and energy advanced technologies[J]. Environ Sci Pollut Res Int, 2016, 23(10): 9249-9250.
[7] FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nat Mater, 2019, 18(12): 1278-1291.
[8] FAN E, LI L, WANG Z, et al. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects[J]. Chem Rev, 2020, 120(14): 7020-7063.
[9] KALHOFF J, ESHETU G G, BRESSER D, et al. Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives[J]. ChemSusChem, 2015, 8(13): 2154-2175.
[10] WANG Y, ZHANG H, ZHU J, et al. Antiperovskites with Exceptional Functionalities[J]. Adv Mater, 2020, 32(7): e1905007.
[11] ZHAO Q, STALIN S, ZHAO C-Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252.
[12] BRAUN P V, CHO J, PIKUL J H, et al. High power rechargeable batteries[J]. Current Opinion in Solid State and Materials Science, 2012, 16(4): 186-198.
[13] GOODENOUGH J B. Rechargeable batteries: challenges old and new[J]. Journal of Solid State Electrochemistry, 2012, 16(6): 2019-2029.
[14] LI M, WANG C, CHEN Z, et al. New Concepts in Electrolytes[J]. Chem Rev, 2020, 120(14): 6783-6819.
[15] TAKADA K. Progress and prospective of solid-state lithium batteries[J]. Acta Materialia, 2013, 61(3): 759-770.
[16] YUAN M, LIU K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 58-70.
[17] LI M, LU J, CHEN Z, et al. 30 Years of Lithium-Ion Batteries[J]. Adv Mater, 2018: e1800561.
[18] TAKADA K. Progress in solid electrolytes toward realizing solid-state lithium batteries[J]. Journal of Power Sources, 2018, 394: 74-85.
[19] TUBANDT C, LORENZ E. Molekularzustand und elektrisches Leitvermögen kristallisierter Salze[J]. Zeitschrift für Physikalische Chemie, 1914, 87U(1): 513-542.
[20] OWENS B B. Solid state electrolytes: overview of materials and applications during the last third of the Twentieth Century[J]. Journal of Power Sources, 2000, 90(1): 2-8.
[21] GREATBATCH W, LEE J H, MATHIAS W M, et al. The solid-state lithium battery: a new improved chemical power source for implantable cardiac pacemakers[J]. IEEE transactions on bio-medical engineering, 1971, 18 5: 317-323.
[22] ZHANG B, TAN R, YANG L, et al. Mechanisms and properties of ion-transport in inorganic solid electrolytes[J]. Energy Storage Materials, 2018, 10: 139-159.
[23] BUONSANTI R. A solid advance in electrolytes[J]. Nature Energy, 2019, 4(9): 728-729.
[24] LIU Q, JIANG L, ZHENG P, et al. Recent Advances in Stability Issues of Inorganic Solid Electrolytes and Composite Solid Electrolytes for All-Solid-State Batteries[J]. The Chemical Record, 2022, 22
[25] YEGANEH GHOTBI M. Solid state electrolytes for electrochemical energy devices[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(15): 13835-13854.
[26] PLACKE T, KLOEPSCH R, DüHNEN S, et al. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density[J]. Journal of Solid State Electrochemistry, 2017, 21(7): 1939-1964.
[27] XU K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4418.
[28] XIE J, LU Y-C. A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11(1): 2499.
[29] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4): 16103.
[30] LI C, WANG Z-Y, HE Z-J, et al. An advance review of solid-state battery: Challenges, progress and prospects[J]. Sustainable Materials and Technologies, 2021, 29: e00297.
[31] YAMADA Y, YAMADA A. Review—Superconcentrated Electrolytes for Lithium Batteries[J]. Journal of The Electrochemical Society, 2015, 162(14): A2406.
[32] PORZ L, SWAMY T N N, SHELDON B W, et al. Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes[J]. Advanced Energy Materials, 2017, 7
[33] LI J, MA C, CHI M, et al. Solid Electrolyte: The Key for High-Voltage Lithium Batteries[J]. Advanced Energy Materials, 2015, 5: 1401408.
[34] ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy, 2018, 3(1): 16-21.
[35] WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nat Mater, 2015, 14(10): 1026-1031.
[36] KNAUTH P. Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics, 2009, 180(14): 911-916.
[37] ZHANG Z, SHAO Y, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy & Environmental Science, 2018, 11(8): 1945-1976.
[38] BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction[J]. Chem Rev, 2016, 116(1): 140-162.
[39] HONG H Y P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12[J]. Materials Research Bulletin, 1976, 11(2): 173-182.
[40] SEBASTIAN L, GOPALAKRISHNAN J. Lithium ion mobility in metal oxides: A materials chemistry perspective[J]. Journal of Materials Chemistry, 2003, 13(3): 433-441.
[41] GOODENOUGH J, HONG H Y-P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11: 203-220.
[42] SUDREAU F, PETIT D, BOILOT J P. Dimorphism, phase transitions, and transport properties in LiZr2(PO4)3[J]. Journal of Solid State Chemistry, 1989, 83(1): 78-90.
[43] ECKERT H, MARTINS RODRIGUES A C. Ion-conducting glass-ceramics for energy-storage applications[J]. MRS Bulletin, 2017, 42(03): 206-212.
[44] FU J. Fast Li+ ion conduction in Li2O-Al2O3-TiO2-SiO2-P2O5 glass-ceramics[J]. Journal of the American Ceramic Society, 1997, 80(7): 1901-1903.
[45] ZHANG Z, ZHANG Q, SHI J-A, et al. A Self-Forming Composite Electrolyte for Solid-State Sodium Battery with Ultralong Cycle Life[J]. Advanced Energy Materials, 2017, 7
[46] VASUDEVAN S, DWIVEDI S, BALAYA P. Overview and perspectives of solid electrolytes for sodium batteries[J]. International Journal of Applied Ceramic Technology, 2022, 20(2): 563-584.
[47] LIU Q, ZHAO X, YANG Q, et al. The Progress in the Electrolytes for Solid State Sodium-Ion Battery[J]. Advanced Materials Technologies, 2023, 8(7): 2200822.
[48] VASUDEVAN S, DWIVEDI S, BALAYA P. Overview and Perspectives of Solid Electrolytes for Sodium Batteries[J]. International Journal of Applied Ceramic Technology, 2022, 20
[49] HONG H Y P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors[J]. Materials Research Bulletin, 1978, 13(2): 117-124.
[50] KUWANO J, WEST A R. New Li+ ion conductors in the system, Li4GeO4-Li3VO4[J]. Materials Research Bulletin, 1980, 15: 1661-1667.
[51] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686.
[52] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): 16030.
[53] THANGADURAI V, KAACK H, WEPPNER W D. Novel Fast Lithium Ion Conduction in Garnet-Type Li5La3M2O12 (M = Nb, Ta)[J]. Journal of the American Ceramic Society, 2003, 86: 437-440.
[54] THANGADURAI V, WEPPNER W. Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet-Like Oxides for Fast Lithium Ion Conduction[J]. Advanced Functional Materials, 2005, 15(1): 107-112.
[55] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li(7)La(3)Zr(2)O(12)[J]. Angew Chem Int Ed Engl, 2007, 46(41): 7778-7781.
[56] GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor[J]. Inorganic Chemistry, 2011, 50(3): 1089-1097.
[57] GAO D, WU R, CHEN P, et al. Microwave assisted reactive sintering for Al doped Li7La3Zr2O12 lithium ion solid state electrolyte[J]. Materials Research Express, 2019, 6(12): 125539.
[58] KOBI S, AMARDEEP, VYAS A, et al. Al and Mg Co-Doping Towards Development of AirStable and Li-Ion Conducting Li-La-Zirconate Based Solid Electrolyte Exhibiting Low Electrode/Electrolyte Interfacial Resistance[J]. Journal of The Electrochemical Society, 2020, 167(12): 120519.
[59] WANG C, FU K, KAMMAMPATA S P, et al. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries[J]. Chem Rev, 2020, 120(10): 4257-4300.
[60] INAGUMA Y, LIQUAN C, ITOH M, et al. High ionic conductivity in lithium lanthanum titanate[J]. Solid State Communications, 1993, 86(10): 689-693.
[61] CHUNG H-T, KIM J-G, KIM H-G. Dependence of the lithium ionic conductivity on the B-site ion substitution in (Li0.5La0.5)Ti1−xMxO3 (M=Sn, Zr, Mn, Ge)[J]. Solid State Ionics, 1998, 107(1): 153-160.
[62] STRAMARE S, THANGADURAI V, WEPPNER W D. Lithium Lanthanum Titanates: A Review[J]. Chemistry of Materials, 2003, 15: 3974-3990.
[63] ZHAO Y, DAEMEN L L. Superionic conductivity in lithium-rich anti-perovskites[J]. J Am Chem Soc, 2012, 134(36): 15042-15047.
[64] LU X, HOWARD J W, CHEN A, et al. Antiperovskite Li3OCl Superionic Conductor Films for Solid-State Li-Ion Batteries[J]. Adv Sci (Weinh), 2016, 3(3): 1500359.
[65] ZHANG J, WANG L, ZHU J, et al. Structural disorder, sublattice melting, and thermo-elastic properties of anti-perovskite Li3OBr under high pressure and temperature[J]. Applied Physics Letters, 2020, 117(8): 081904.
[66] CHEN R, XU Z, LIN Y, et al. Influence of Structural Distortion and Lattice Dynamics on Li-Ion Diffusion in Li3OCl1–xBrx Superionic Conductors[J]. ACS Applied Energy Materials, 2021, 4(3): 2107-2114.
[67] AHIAVI E, DAWSON J A, KUDU U, et al. Mechanochemical synthesis and ion transport properties of Na3OX (X = Cl, Br, I and BH4) antiperovskite solid electrolytes[J]. Journal of Power Sources, 2020, 471: 228489.
[68] DONDELINGER M, SWANSON J, NASYMOV G, et al. Electrochemical stability of lithium halide electrolyte with antiperovskite crystal structure[J]. Electrochimica Acta, 2019, 306: 498505.
[69] XU Z, LIU Y, SUN X, et al. Theoretical design of Na-rich anti-perovskite as solid electrolyte: The effect of cluster anion in stability and ionic conductivity[J]. Journal of Solid State Chemistry, 2022, 316: 123643.
[70] CLARKE M J, DAWSON J A, MAYS T J, et al. Atomistic Insights into the Effects of Doping and Vacancy Clustering on Li-Ion Conduction in the Li3OCl Antiperovskite Solid Electrolyte[J]. ACS Applied Energy Materials, 2021, 4(5): 5094-5100.
[71] EMLY A, KIOUPAKIS E, VAN DER VEN A. Phase Stability and Transport Mechanisms in Antiperovskite Li3OCl and Li3OBr Superionic Conductors[J]. Chemistry of Materials, 2013, 25(23): 4663-4670.
[72] LI Y, ZHOU W, XIN S, et al. Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries[J]. Angew Chem Int Ed Engl, 2016, 55(34): 9965-9968.
[73] XIAO Y, TURCHENIUK K, NARLA A, et al. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries[J]. Nature Materials, 2021, 20(7): 984-990.
[74] XIA W, ZHAO Y, ZHAO F, et al. Antiperovskite Electrolytes for Solid-State Batteries[J]. Chemical Reviews, 2022, 122(3): 3763-3819.
[75] LI S, ZHU J, WANG Y, et al. Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X= Cl, Br)[J]. Solid State Ionics, 2016, 284: 14-19.
[76] SUGUMAR M K, YAMAMOTO T, MOTOYAMA M, et al. Room temperature synthesis of antiperovskite structured Li2OHBr[J]. Solid State Ionics, 2020, 349: 115298.
[77] YOSHIKAWA K, YAMAMOTO T, SUGUMAR M K, et al. Room Temperature Operation and High Cycle Stability of an All-Solid-State Lithium Battery Fabricated by Cold Pressing Using Soft Li2OHBr Solid Electrolyte[J]. Energy & Fuels, 2021, 35(15): 12581-12587.
[78] YIN L, YUAN H, KONG L, et al. Engineering Frenkel defects of anti-perovskite solid-state electrolytes and their applications in all-solid-state lithium-ion batteries[J]. Chem Commun (Camb), 2020, 56(8): 1251-1254.
[79] LIU B, LIAO P, SHI X, et al. Theoretical insights into interfacial stability and ionic transport of Li2OHBr solid electrolyte for all-solid-state batteries[J]. RSC Adv, 2022, 12(53): 34627-34633.
[80] HOWARD J, HOLZWARTH N A W. First-principles estimation of partition functions representing disordered lattices such as the cubic phases of Li2OHCl and Li2OHBr [J]. Physical Review B, 2019, 99(1): 014109.
[81] FANG H, JENA P. Li-rich antiperovskite superionic conductors based on cluster ions[J]. Proc Natl Acad Sci U S A, 2017, 114(42): 11046-11051.
[82] ZEIDLER A, CRICHTON W A. Materials under pressure[J]. MRS Bulletin, 2017, 42(10): 710713.
[83] NAKA S, HORII K, TAKEDA Y, et al. Direct conversion of graphite to diamond under static pressure[J]. Nature, 1976, 259(5538): 38-39.
[84] FELSCHE J, KALDIS E. Thermal oxidation of Eu2SiO4 — a topotactic solid state reaction[J]. Journal of Solid State Chemistry, 1972, 5: 49-56.
[85] MIAO M-S. Caesium in high oxidation states and as a p-block element[J]. Nature Chemistry, 2013, 5(10): 846-852.
[86] MAO H-K, CHEN X-J, DING Y, et al. Solids, liquids, and gases under high pressure[J]. Reviews of Modern Physics, 2018, 90(1)
[87] LIEBERMANN R C. Multi-anvil, high pressure apparatus: a half-century of development and progress[J]. High Pressure Research, 2011, 31(4): 493-532.
[88] ZHU P, TAO Q, WANG L, et al. Function of large-volume high-pressure apparatus at SECUF[J]. Chinese Physics B, 2018, 27(7)
[89] JOHNS I B, MCELHILL E A, SMITH J O. Thermal Stability of Some Organic Compounds[J]. Journal of Chemical & Engineering Data, 1962, 7: 277-281.
[90] HOOD Z D, WANG H, SAMUTHIRA PANDIAN A, et al. Li2OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes[J]. J Am Chem Soc, 2016, 138(6): 1768-1771.
[91] KOEDTRUAD A, PATINO M A, ICHIKAWA N, et al. Crystal structures and ionic conductivity in Li2OHX (X = Cl, Br) antiperovskites[J]. Journal of Solid State Chemistry, 2020, 286: 121263.
[92] SCHWERING G, HONNERSCHEID A, VAN WULLEN L, et al. High lithium ionic conductivity in the lithium halide hydrates Li3-n(OHn)Cl (0.83 < or = n < or = 2) and Li3-n(OHn)Br (1 < or = n < or = 2) at ambient temperatures[J]. Chemphyschem, 2003, 4(4): 343-348.
[93] SONG A Y, XIAO Y, TURCHENIUK K, et al. Protons Enhance Conductivities in Lithium Halide Hydroxide/Lithium Oxyhalide Solid Electrolytes by Forming Rotating Hydroxy Groups[J]. Advanced Energy Materials, 2017, 8(3)
[94] SONG A Y, TURCHENIUK K, LEISEN J, et al. Understanding Li-Ion Dynamics in Lithium Hydroxychloride (Li2OHCl) Solid State Electrolyte via Addressing the Role of Protons[J]. Advanced Energy Materials, 2020, 10(8)
[95] DAWSON J A, ATTARI T S, CHEN H, et al. Elucidating lithium-ion and proton dynamics in anti-perovskite solid electrolytes[J]. Energy & Environmental Science, 2018, 11(10): 2993-3002.
修改评论