中文版 | English
题名

地面大功率瞬变电磁三维快速正反演方法及应用

其他题名
FAST THREE-DIMENSIONAL MODELING AND INVERSION OF SURFACE HIGH-POWER TRANSIENT ELECTROMAGNETIC DATA AND APPLICATIONS
姓名
姓名拼音
CHENG Ming
学号
11930868
学位类型
博士
学位专业
080102 固体力学
学科门类/专业学位类别
08 工学
导师
杨迪琨
导师单位
地球与空间科学系
外机构导师单位
南方科技大学
论文答辩日期
2023-05-16
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

瞬变电磁法(Transient Electromagnetic MethodTEM)因易实施、信噪比高、探测深度大以及高效性,已经在深部矿产勘查、工程勘探等领域广泛应用。

目前,瞬变电磁数据反演以一维和二维为主,或使用简单的三维块状建模来粗略拟合三维TEM的响应,但实际勘探中地电结构较为复杂,简单的数据处理方式很难解释复杂的模型,因此实现三维真实地质模型解释已经成为未来发展趋势。然而,由于计算效率低、内存消耗大等问题限制了三维正反演的发展。本文基于观测分解理论,在时间域提出多尺度并行时间步进概念实现任意波形模拟,并利用观测分解框架,将空间与时间尺度相互匹配,发射源依据时间道剖分成不同数目的偶极子,将全局问题分解为大量互不相关的电磁(ElectromagneticEM)子问题,实现三维快速正演。最终利用高斯牛顿法开展带地形的三维反演研究,利用热启动模式,结合理论和实际地质模型实现三维精准且高效反演。

在正反演理论方面,基于交错网格的有限体积和一阶后退欧拉研究了TEM三维正演空间域与时间域离散,利用算子思想给出了散度、旋度以及梯度算子的矩阵形式,并研究了任意复杂形式的回线源和接地长导线源的初始场计算方式,实现复杂形式激励源的三维正演;在此基础上,利用高斯牛顿法推导三维反演控制法方程,使用不精确的预条件共轭梯度算法求解法方程,最终形成一套稳定、高效、高精度且能计算复杂地形的时间域电磁法三维反演框架。

本文提出多尺度并行时间步进概念实现时间域电磁法三维任意波形响应求解。该方法利用阶跃波形响应在时间上的错位相减获得类冲激响应,与波形卷积获得带波形的电磁场响应;在时间通道上采用多尺度并行时间步进方式,利用层状模型研究了每个时间道对应的特征步长,计算每个时间道响应时仅需要求解一次大型稀疏矩阵;利用不同的层状模型研究了一种定量评价脉冲类波形、梯形on-time部分的有效脉宽方式,能够保证off-time响应精度的同时,极大减少了on-time波形采样的数目;模拟不同复杂程度的三维模型,与传统的三维算法相比,多尺度并行时间步进算法模拟任一时间道响应时使用同一特征步长仅需要一次矩阵分解,各时间道独立计算互不依赖,在满足计算精度的同时显著提升计算效率。

本文基于观测分解数值框架提出三维空间离散与时间尺度匹配概念,将大的全局问题快速分解为大量互不相关的子EM问题首先,TEM数据的每个时间通道通过时间步长独立求解,其特征时间步长与TEM感应的尺度相匹配,因此后期时间通道的数据不需要早期时间的解。第二,大型发射源被分成许多偶极子源,每个偶极子源可以在偶极子源-接收点的局部网格上单独求解,将全局问题分解为许多更小的子问题,这些子问题相互独立并行加速求解。第三,开发新型去中心化高性能并行计算模式:扫描模式与计算模式。扫描模式用于监听全局的“开始”和“结束”指令;计算模式开启子问题的计算,每个计算节点之间互不通讯,在执行过程中,根据每个节点的计算能力动态调整子问题的数目,能够很好解决传统大规模并行时计算机产生的稳定性不足、负载均衡以及可扩展性不足等问题,提升大量局部子EM问题并行计算效率。模拟多种三维经典模型,通过与传统方法的结果比较,此方法数值精度得到验证。最后,利用加拿大Tli Kwi Cho真实地电模型进行测试,在负载均衡的情况下有多达31200核同时运行,数值实验中观察到近乎线性的加速比,表明了此方法具有极佳的可扩展性。

高斯牛顿法反演属于局部最优化算法,反演时受初始模型的影响大。为了验证初始模型对于三维反演的重要性,本文首先选取简单地质模型反演,发现选取的初始模型均能够成功拟合数据,正确显示地质体信息,但选取接近于真实地质体地电参数信息的初始模型会显著提升三维反演的计算效率;其次选取复杂的地电结构三维反演,结果表明选取好的初始模型不仅仅能够提升计算效率更能精确反映地质目标体信息。之后,本文通过对中国广东省石嘴多金属矿区的大回线TEM数据进行预研究,利用多尺度并行时间步进和去中心化的观测分解理论算法实现三维快速建模,发现当激励源穿过一个导电性能截然不同的接触点且环绕一个良导体时,导电区域外的接收点可以观察到负的瞬变或符号反转现象,岩样电阻率数据证明此区域具有强烈的横向不均匀性,三维模型解释更为合理。然而,以均匀半空间作为初始和参考模型三维反演未能收敛,表明大回线TEM数据的三维反演更容易出现稳定性问题。利用快速正演建模过程中建立的概念性块状模型作为初始和参考模型来实现热启动反演,成功地捕捉到了两个地层之间垂直接触带的关键结构,获得了与已知地质和地球物理信息一致的三维导电性模型,并通过可控源音频大地电磁法(Controlled-Source Audio-frequency MagnetotelluricCSAMT)电阻率截面所验证;最后,研究广东省英德市竹子坑矿区接地长导线源的TEM实测数据,结合钻孔资料信息,成功证明了三维快速正演建模和热启动反演方法在高分辨率深部矿产勘探中的需求和能力。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] 毛景文, 杨宗喜, 谢桂青. 关键矿产: 国际动向与思考[J]. 矿床地质, 2019, 38(4): 689-698.
[2] 鞠建华, 张照华, 潘昭帅, 等. 我国战略性新兴产业矿产厘定与”十四五”需求分析[J]. 中国矿业, 2022, 31(9): 1-11.
[3] SMITH R J. Geophysics in Australian mineral exploration[J]. Geophysics, 1985, 50: 2637-2665.
[4] SABINS F F. Remote sensing for mineral exploration[J]. Ore Geol. Rev., 1999, 14: 157-183.
[5] HU X Y, PENG RH, WU G J, et al. Mineral exploration using CSAMT data: Application to Longmen region metallogenic belt, Guangdong Province, China[J]. Geophysics, 2013, 78: B111-B119.
[6] DENTITH M, YUAN H Y, JOHNSON S, et al. Piña-Varas, P. Application of deep-penetrating geophysical methods to mineral exploration: Examples from Western Australia[J]. Geophysics, 2018, 83: WC29-WC41.
[7] SHEARD S N, RITHIE T J, CHRISTOPHERSON K R, et al. Mining, environmental, petroleum, and engineering industry applications of electromagnetic techniques in geophysics[J]. Surv. Geophys., 2005, 26: 653-669.
[8] VALLEE M A, SMITH R S, KEATING P. Metalliferous mining geophysics—State of the art after a decade in the new millennium[J]. Geophysics, 2011, 76: W31-W50.
[9] SMITH R. Electromagnetic induction methods in mining geophysics from 2008 to 2012[J]. Surv. Geophys., 2014, 35: 123-156.
[10] GUOZ W, XUEG Q, LIU J X, et al. Electromagnetic methods for mineral exploration in China: A review[J]. Ore Geol. Rev., 2020, 118: 103357.
[11] ROZENBERG G, TYKAILO R, PESOWSKI M, et al. Combined mode transient electromagnetic survey for mineral exploration: A case history[C]. In SEG Technical Program Expanded Abstracts 1985; Society of Exploration Geophysicists: Washington, D.C., 1985: 257-258.
[12] SASAKI Y, CHO S J. 3D finite-difference modeling of time-domain electromagnetic data for mineral exploration[C]. In Proceedings of the 10th SEGJ International Symposium, Kyoto, Japan, 20–22 November 2011; Society of Exploration Geophysicists of Japan: Tokyo, Japan, 2011: 1-4.
[13] ASTEN M W, DUNCAN A C. The quantitative advantages of using B-field sensors in time-domain EM measurement for mineral exploration and unexploded ordnance search[J]. Geophysics, 2012, 77: WB137-WB148.
[14] ZENG S H, HU X Y, LI J H, et al. Effects of full transmitting-current waveforms on transient electromagnetics: Insights from modeling the Albany graphite deposit[J]. Geophysics, 2019, 84: E255-E268.
[15] 牛之琏. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007.
[16] CHEN T Y, HODGES G, MILES P. MULTIPULSE-high resolution and high power in one TDEM system[J]. Exploration Geophysics, 2015, 46(1): 49-57.
[17] 余翔. 时域瞬变电磁三维有限差分正演及广义逆矩阵反演研究[D]. 成都:成都理工大学地球探测与信息技术, 2017: 1-2.
[18] SWIDINSKY A, HOLZ S, JEGEN M. On mapping seafloor mineral deposits with central loop transient electromagnetics marine central loop TEM[J]. Geophysics, 2012, 77: E171-E184.
[19] FLORES C, PERALTA-ORTEGA S A. Induced polarization with in-loop transient electromagnetic soundings: A case study of mineral discrimination at El Arco porphyry copper, Mexico[J]. J. Appl. Geophys., 2009, 68: 423-436.
[20] LI D, SHAN X, WENG A. Applying three-dimensional inversion to the frequency-domain response converted from transient electromagnetic data for a rectangular fixed loop[J]. J. Appl. Geophys., 2022, 196: 104489.
[21] FRASER D C. Resistivity mapping with an airborne multi-coil electromagnetic system[J]. Geophysics, 1978, 43: 144-172.
[22] EATON P A. Application of an improved technique for interpreting transient electromagnetic data[J]. Explor. Geophys., 1998, 29: 175-183.
[23] YANG D K, OLDENBURG D W. Survey decomposition: A scalable framework for 3D controlled-source electromagnetic inversion[J]. Geophysics, 2016, 81: E69-E87.
[24] WANG T, HOHMANN G W. A finite-difference, time-domain solution for 3-dimensional electromagnetic modeling[J]. Geophysics, 1993, 58: 797-809.
[25] COMMER M, NEWMAN G A. parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources[J]. Geophysics, 2004, 69: 1192-1202.
[26] COMMER M, NEWMAN G A. An accelerated time domain finite difference simulation scheme for three-dimensional transient electromagnetic modeling using geometric multigrid concepts[J]. Radio Sci., 2006, 41: 1-15.
[27] LIU S B, CHEN C C, SUN H F. Fast 3D transient electromagnetic forward modeling using BEDS-FDTD algorithm and GPU parallelization[J]. Geophysics, 2022, 87: E359-E375.
[28] NEWMAN G A, COMMER M. New advances in three dimensional transient electromagnetic inversion[J]. Geophys. J. Int., 2005, 160: 5-32.
[29] HABER E, OLDENBURG D W, SHEKHTMAN R. Inversion of time domain three-dimensional electromagnetic data[J]. Geophys. J. Int., 2007, 171: 550-564.
[30] COX L H, WILSON G A, ZHDANOV M S. 3D inversion of airborne electromagnetic data using a moving footprint[J]. Explor. Geophys., 2010, 41: 250-259.
[31] OLDENBURG D W, HABER E, SHEKHTMAN R. Three dimensional inversion of multisource time domain electromagnetic data[J]. Geophysics, 2013, 78: E47-E57.
[32] WILSON G A, COX L H, ZHDANOV M S. Practical 3D inversion of entire airborne electromagnetic surveys[J]. Preview, 2010, 146: 29-33.
[33] ZASLAVSKY M, DRUSKIN V, KNIZHNERMAN L. Solution of 3D time-domain electromagnetic problems using optimal subspace projection[J]. Geophysics, 2011, 76: F339-F351.
[34] LIU Y H, YIN C C, QIU C K, et al. 3-D inversion of transient EM data with topography using unstructured tetrahedral grids[J]. Geophys. J. Int., 2019, 217: 301-318.
[35] YANG D K, FOURNIER D, KANG S G, et al. Recovery of compact conductors in 3D voxel inversion of time-domain EM data[C]. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Tulsa, OK, USA, 2018: 1873-1876.
[36] GALLAGHER P R, WARD S H, HOHMANN G W. A model study of a thin plate in free space for the EM37 transient electromagnetic system[J]. Geophysics, 1985, 50: 1002-1019.
[37] LIU G M. Effect of transmitter current waveform on airborne TEM response[J]. Exploration Geophysics, 1998, 29: 35-41.
[38] REID J, FITZPATRICK A, GODBER K. An overview of the SkyTEM airborne EM system with Australian examples[J]. Preview, 2010, 145: 26-37.
[39] YANG D K, OLDENBURG D W. Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit[J]. Geophysics, 2012b, 77(2): B23-B34.
[40] 殷长春, 任秀艳, 刘云鹤, 等. 航空瞬变电磁法对地下典型目标体的探测能力研究[J]. 地球物理学报, 2015, 58(9): 3370-3379.
[41] 殷长春, 黄威, 贲放. 时间域航空电磁系统瞬变全时响应正演模拟[J]. 地球物理学报,2013, 56(9): 3153-3162.
[42] DAVIS A, MACNAE J. Measuring AEM waveforms with a ground loop[J]. Geophysics, 2008, 73(6): F213-F222.
[43] 齐彦福, 殷长春, 刘云鹤, 等. 基于瞬时电流脉冲的三维时间域航空电磁全波形正演模拟[J]. 地球物理学报, 2017, 60(1): 369-382.
[44] 孙怀凤, 李貅, 李术才, 等. 考虑关断时间的回线源激发TEM三维时域有限差分正演[J]. 地球物理学报, 2013, 56(3): 1049-1064.
[45] REN X, YIN C, MACNAE J, et al. 3D time-domain airborne electromagnetic inversion based on secondary field finite volume method[J]. Geophysics, 2018, 3(4): E219-E228.
[46] ZENG S, HU X, LI J, et al. Effects of full transmitting-current waveforms on transient electromagnetics: Insights from modeling the Albany graphite deposit[J]. Geophysics, 2019, 84(4): E255-E268.
[47] XIN H, YIN C, COLIN G F, et al. Spectral-element method with arbitrary hexahedron meshes for time-domain 3D airborne electromagnetic forward modeling[J]. Geophysics, 2019, 84(1): E37-E46.
[48] BORNER R U, ERNST O G, GUTTEL S. Three-dimensional transient electromagnetic modelling using rational Krylov methods[J]. Geophys. J. Int., 2015, 202(3): 2025-2043.
[49] ZIMMERLING J, DRUSKIN V, ZASLAVSKY M, et al. Modelorder reduction of electromagnetic fields in open domains[J]. Geophysics, 2018, 83(2): WB61-WB70.
[50] QIU C, STEFAN G, REN X, et al. A block rational Krylov method for 3-D time-domain marine controlled-source electromagnetic modelling[J]. Geophys. J. Int., 2019, 208(1): 100-114.
[51] ZHOU J M, LIU W T, LI X, et al. 3-D Full-Time TEM Modeling Using Shift-and-Invert Krylov Subspace Method[J]. IEEE Trans. Geosci. Remote Sens., 2020, 58(10): 7096-7104.
[52] YEE K S. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[J]. IEEE Transactions On Antennas and Propagation, 1966, 14(3): 302-307.
[53] ORISTAGLIO M L, HOHMANN G W. Diffusion of electromagnetic fields into a two-dimensional earth: A finite-difference approach[J]. Geophysics. 1984, 49(7): 870-894.
[54] WANG T, HOHMANN G W. A finite-difference, time-domain solution for 3-dimensional electromagnetic modeling[J]. Geophysics, 1993, 58(6): 797-809.
[55] WANG T, TRIPP A C, HOHMANN G W. Studying the TEM response of a 3-D conductor at a geological contact using the FDTD method[J]. Geophysics, 1995, 60(4): 1265-1269.
[56] CHEN Y H, CHEW W C, ORISTAGLIO M L. Application of perfectly matched layers to the transient modeling of subsurface EM problems[J]. Geophysics, 1997, 62(6): 1730-1736.
[57] ENDO M, NOGUCHI K. Three-dimensional modeling considering the topography for the case of the time-domain electromagnetic method[J]. Three-Dimensional Electromagnetics Proceedings, 2002, 35: 85-107.
[58] 杨海燕, 岳建华. 巷道影响下三维全空间瞬变电磁法响应特征[J]. 吉林大学学报: 地球科学版, 2008, 38(1): 129-134.
[59] MAAO F A. Fast finite-difference time-domain modeling for marine-subsurface electromagnetic problems[J]. Geophysics, 2007, 72(2): A19-A23.
[60] 李展辉, 黄清华. 瞬变电磁正演之带激励源的三维曲线交错网格时域有限差分方法[C]. 中国地球物理学会第二十七届年会论文集, 2011.
[61] 毛玉蓉. 时间域电磁响应三维正演计算及GPU实现[D]. 武汉:长江大学, 2014.
[62] 李展辉, 黄清华. 复频率参数完全匹配层吸收边界在瞬变电磁法正演中的应用[J]. 地球物理学报, 2014, 57(04): 1292-1299.
[63] COMMER M, HOVERSTEN G M, UM E S. Transient-electromagnetic finite-difference time-domain earth modeling over steel infrastructure[J]. Geophysics, 2015, 80(2): E147-E162.
[64] 赵越, 李貅, 王祎鹏, 等. 三维起伏地形条件下航空瞬变电磁响应特征研究[J]. 地球物理学报, 2017, 60(01): 383-402.
[65] 余翔, 王绪本, 李新均, 等. 时域瞬变电磁法三维有限差分正演技术研究[J]. 地球物理学报, 2017, 60(02): 810-819.
[66] 孙怀凤, 程铭, 吴启龙, 等. 瞬变电磁三维FDTD正演多分辨网格方法[J]. 地球物理学报, 2018, 61(12): 5096-5104.
[67] SANFILIPO W A, HOHMANN G W. Integral equation solution for the transient electromagnetic response of a three-dimensional body in a conductive half-space[J]. Geophysics, 1985, 20(5): 798.
[68] NEWMAN G A, HOHMANN G W, ANDERSON W L. Transient electromagnetic response of a three-dimensional body in a layer earth[J]. Geophysics, 1986, 51(8): 1608-1627.
[69] XIONG Z H, LUO Y Z, WANG S, et al. Induced-polarization and electromagnetic modeling of a three-dimensional body buried in a two-layer anisotropic earth[J]. Geophysics, 1986, 51(12): 2235-2246.
[70] ZHDANOV M S, FANG S. Three-dimensional quasi-linear electromagnetic inversion[J]. Radio Sci., 1996, 31(4): 741-754.
[71] SHANKER B, ERGIN A A, MICHIELSSEN E. Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(3): 628-641.
[72] 王生水. 时域积分方程及其并行算法的研究与应用[D]. 长沙:国防科技大学, 2007.
[73] UEDA T, ZHDANOV M S. Fast numerical methods for marine controlled-source electromagnetic (EM) survey data based on multigrid quasi-linear approximation and iterative EM migration[J]. Exploration Geophysics, 2008, 39(1): 60-67.
[74] GRIBENKO A, GREEN A M, CUMA M, et al. Efficient 3D inversion of MT data using integral equations method and the receiver footprint approach: Application to the large-scale inversion of the Earthscope MT data[C]. 2010 SEG Annual Meeting, 2010.
[75] KRUGLYAKOV M, BLOSHANSKAYA L. High-performance parallel solver for integral equations of electromagnetics based on Galerkin method[J]. Mathematical Geosciences, 2017, 49: 751-776.
[76] 任政勇, 陈超健, 汤井田, 等. 一种新的三维大地电磁积分方程正演方法[J]. 地球物理学报, 2017, 60(11): 4506-4515.
[77] 汤井田, 周峰, 任政勇, 等. 复杂地下异常体的可控源电磁法积分方程正演[J]. 地球物理学报, 2018, 61(4): 1549-1562.
[78] SUGENG F. Modeling the 3D TDEM response using the 3D full-domain finite-element method based on the hexahedral edge-element technique[J]. Exploration Geophysics, 1998, 29(4): 615-619.
[79] NAM M J, KIM H J, SONG Y, et al. 3D magnetotelluric modelling including surface topography[J]. Geophysical Prospecting, 2007, 55(2): 277-287.
[80] UM E S, HARRIS J M, ALUMBAUGH D L. 3D time-domain simulation of electromagnetic diffusion phenomena: a finite-element electric-field approach[J]. Geophysics, 2010, 75(4): F115-F126.
[81] UM E S, HARRIS J M, ALUMBAUGH D L. An iterative finite element time-domain method for simulating three-dimensional electromagnetic diffusion in earth[J]. Geophys. J. Int., 2012, 190(2): 871-886.
[82] CHEN J, LIU Q H. Discontinuous Galerkin time-domain methods for multiscale electromagnetic simulations: A review[J]. Proceedings of the IEEE, 2012, 101(2): 242-254.
[83] FU H H, WANG Y Q, UM E S, et al. A parallel finite-element time-domain method for transient electromagnetic simulation[J]. Geophysics, 2015, 80(4): E213-E224.
[84] YIN C C, QI Y F, LIU Y H. 3D time-domain airborne EM modeling for an arbitrarily anisotropic earth[J]. Journal of Applied Geophysics, 2016, 131:163-178.
[85] CAI H Z, HU X Y, XIONG B, et al. Finite element time domain modeling of controlled-source electromagnetic data with a hybrid boundary condition[J]. J. Appl. Geophys., 2017, 145: 133-143.
[86] LI J H, LU X S, FARQUHARSON C G, et al. A finite-element time-domain forward solver for electromagnetic methods with complex-shaped loop sources[J]. Geophysics, 2018, 83(3): E117-E132.
[87] ZENG S H, HU X Y, LI J H, et al. Effects of full transmitting-current waveforms on transient electromagnetics: insights from modeling the albany graphite deposit[J]. Geophysics, 2019, 84(4): E255-E268.
[88] LI H, QI Z P, LI X, et al. Numerical modelling analysis of multi-source semi-airborne TEM systems using a TFEM[J]. Journal of Geophysics and Engineering, 2020, 17(3): 399-410.
[89] HABER E, ASCHER U M. Fast finite volume simulation of 3D electromagnetic problems with highly discontinuous coefficients[J]. SIAM Journal on Scientific Computing, 2001, 22(6): 1943-1961.
[90] HABER E, HELDMANN S. An octree multigrid method for quasi-static Maxwell’s equations with highly discontinuous coefficients[J]. Journal of Computational Physics, 2007, 223(2): 783-796.
[91] OLDENBURG D W, HABER E, SHEKHTMAN R. Three dimensional inversion of multisource time domain electromagnetic data[J]. Geophysics, 2013, 78: E47-E57.
[92] HABER E, RUTHOTTO L. A multiscale finite volume method for Maxwell's equations at low frequencies[J]. Geophys. J. Int., 2014, 199(2): 1268-1277.
[93] JAHANDARI H, FARQUHARSON C G. A finite-volume solution to the geophysical electromagnetic forward problem using unstructured grids[J]. Geophysics, 2014, 79(6): E287-E302.
[94] JAHANDARI H, FARQUHARSON C G. Finite-volume modelling of geophysical electromagnetic data on unstructured grids using potentials[J]. Geophys. J. Int., 2015, 202(3): 1859-1876.
[95] 刘亚军, 胡祥云, 彭荣华, 等. 回线源瞬变电磁法有限体积三维任意各向异性正演及分析[J]. 地球物理学报, 2019, 62(05): 1954-1968.
[96] LU X S, FARQUHARSON C G. 3D finite-volume time-domain modeling of geophysical electromagnetic data on unstructured grids using potentials[J]. Geophysics, 2020, 85(6): E221-E240.
[97] WANG T L, ORISTAGLIO M, TRIPP A, et al. Inversion of diffusive transient electromagnetic data by a conjugate-gradient method[J]. Radio Science, 1994, 29(4): 1143-1156.
[98] NEWMAN G A, ALUMBAUGH D L. Three-dimensional magnetotelluric inversion using non-linear conjugate gradients[J]. Geophys. J. Int., 2000, 140(2): 410-424.
[99] COMMER M. Three-dimensional inversion of transient-electromagnetic data: A comparative study[D]. Universität zu Köln, 2003.
[100] NEWMAN G A, BOGGS P T. Solution accelerators for large-scale three-dimensional electromagnetic inverse problems[J]. Inverse Problems, 2004, 20(6): S151.
[101] NEWMAN G A, COMMER M. New advances in three dimensional transient electromagnetic inversion[J]. Geophys. J. Int., 2005, 160(1): 5-32.
[102] 翁爱华. 初始背景模型对三维可控源反演的影响[C]. 第十届中国国际地球电磁学术讨论会, 2011.
[103] 刘晓. 瞬变电磁法三维正演及非线性共轭梯度反演研究[D]. 北京: 中国地质大学, 2016.
[104] 罗勇. 频率域海洋可控源电磁数据三维非线性共轭梯度反演[D]. 武汉:中国地质大学, 2017.
[105] 贲放. 海洋可控源电磁法三维正反演理论与各向异性影响机制研究[D]. 长春: 吉林大学, 2016.
[106] ZHANG B, ENGERBRETSEN K W, FIANDACA G, et al. 3D inversion of time-domain electromagnetic data using finite elements and a triple mesh formulation[J]. Geophysics, 2021, 86(3): E257-E267.
[107] 齐彦福, 智庆全, 李貅, 等. 考虑关断时间的地面瞬变电磁三维带地形反演[J]. 地球物理学报, 2021, 64(07): 2566-2577.
[108] HABER E, ASCHER U M, OLDENBURG D W. Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach[J]. Geophysics, 2004, 69(5): 1216-1228.
[109] YANG D K, OLDENBURG D W, HABER E. 3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings[J]. Geophys. J. Int., 2014, 196(3): 1492-1507.
[110] HABER E, SCHWARZBACH C. Parallel inversion of large-scale airborne time-domain electromagnetic data with multiple OcTree meshes[J]. Inverse Problems, 2014, 30(5).
[111] YANG D K, OLDENBURG D W. 3D inversion of total magnetic intensity data for time-domain EM at the Lalor massive sulphide deposit[J]. Explor. Geophys., 2017, 48: 110-123.
[112] LI Y, QI T, LEI B, et al. An iterative inversion method using transient electromagnetic data to predict water-filled caves during the excavation of a tunnel[J]. Geophysics, 2019, 84(2): E89-E103.
[113] XIAO L, FIANDACA G, ZHANG B, et al. Fast 2.5 D and 3D inversion of transient electromagnetic surveys using the octree-based finite-element method[J]. Geophysics, 2022, 87(4): E267-E277.
[114] HYMAN J M, SHASHKOV M. Mimetic discretizations for Maxwell's equations[J]. Journal of Computational Physics, 1999, 151(2): 881-909.
[115] VAN BLADEL J G. Electromagnetic fields[M]. John Wiley&Sons, 2007.
[116] TIKHONOV A N, ARSENIN V Y. Solution of ill-posed problem[M]. New York, Wiley, 1977.
[117] CONSTABLE S C, PARKER R L, CONSTABLE C G. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 1987, 52(3): 289-300.
[118] KONG F N. Hankel transform filters for dipole antenna radiation in a conductive medium[J]. Geophysical Prospecting. 2007, 55: 83-89.
[119] KONG F N. Evaluation of Fourier cosine/sine transforms using exponentially positioned samples[J]. J. Appl. Geophys, 2012, 79(8): 46-54.
[120] OLDENBURG D W, MCGILLIVRAY P R, ELLIS R G. Generalized subspace methods for large-scale inverse problems[J]. Geophys. J. Int., 1993, 114(1): 12-20.
[121] OLDENBURG D W, LI Y. Inversion of induced polarization data[J]. Geophysics, 1994a, 59(9): 1327-1341.
[122] OLDENBURG D W, LI Y. Subspace linear inverse method[J]. Inverse Problems, 1994b, 10(4): 915.
[123] COMMER M, NEWMAN G A, CARAZZONE J J, et al. Massively parallel electrical-conductivity imaging of hydrocarbons using the IBM Blue Gene/L supercomputer[J]. IBM Journal of Research and Development, 2008, 52(1.2): 93-103.
[124] LI J, FARQUHARSON C, HU X. 3D vector finite-element electromagnetic forward modeling for large loop sources using a total-field algorithm and unstructured tetrahedral grids[J]. Geophysics, 2017, 82(1): E1-E16.
[125] 周建美, 刘文韬, 李貅, 等. 双轴各向异性介质中回线源瞬变电磁三维拟态有限体积正演算法[J]. 地球物理学报, 2018, 61(01): 368-378.
[126] LIU W T, FARQUHARSON C G, ZHOU J M, et al. A rational krylov subspace method for 3D modeling of grounded electrical source airborne time-domain electromagnetic data[J]. Journal of Geophysics and Engineering, 2019, 16(2): 451-462.
[127] FOURNIER D, KANG S, MCMILLAN M S, et al. Inversion of airborne geophysics over the DO-27/DO-18 kimberlites—Part 2: Electromagnetics[J]. Interpretation, 2017, 5(3): T313-T325.
[128] MARCHANT D, HABER E, OLDENBURG D W. Three-dimensional modeling of IP effects in time-domain electromagnetic data[J]. Geophysics, 2014, 79: E303-E314.
[129] DEGROOT-HEDLIN C, CONSTABLE S. Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data[J]. Geophysics, 1990, 55(12): 1613-1624.
[130] MACKIE R L, MADDEN T R. Three-dimensional magnetotelluric inversion using conjugate gradients[J]. Geophys. J. Int., 1993, 115(1): 215-229.
[131] RODI W, MACKIE R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics, 2001, 66(1): 174-187.
[132] LI Y, OLDENBURG D W. 3-D inversion of magnetic data[J]. Geophysics, 1996, 61(2): 394-408.

所在学位评定分委会
力学
国内图书分类号
O343.7
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544460
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
程铭. 地面大功率瞬变电磁三维快速正反演方法及应用[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930868-程铭-地球与空间科学系(10082KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[程铭]的文章
百度学术
百度学术中相似的文章
[程铭]的文章
必应学术
必应学术中相似的文章
[程铭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。