中文版 | English
题名

基于动态迭代近似反卷积模型的可压缩湍流大涡模拟研究

其他题名
DYNAMIC ITERATIVE APPROXIMATE DECONVOLUTION MODEL FOR LARGE-EDDY SIMULATION OF COMPRESSIBLE TURBULENCE
姓名
姓名拼音
ZHANG Chao
学号
12032411
学位类型
硕士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
王建春
导师单位
力学与航空航天工程系
外机构导师单位
南方科技大学
论文答辩日期
2023-05-10
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

可压缩湍流的大涡模拟研究对于航空航天等领域的发展非常重要。目前针对
密度不加权大涡模拟的研究相对较少,只有少部分从事相关亚格子(subgrid-scale,SGS)未闭项的建模分析。稠密气体因其特殊的物理性质受到了科研工作者们广泛的关注,针对稠密气体开展大涡模拟的研究具有很高的科研价值和实际意义,但是稠密气体复杂的状态方程会给大涡模拟的建模带来困难。本文使用袁泽龙等人提出的动态迭代近似反卷积模型(dynamic iterative approximate deconvolution,DIAD)开展可压缩各向同性湍流的大涡模拟研究,通过与其他传统亚格子湍流模型的结果进行对比详细评估DIAD 模型的表现和性能。本文的主要的研究内容如下:

(1)分别研究了初始湍流马赫数为0.4 和0.8 两种情况下的可压缩各向同性
衰减湍流密度不加权大涡模拟的亚格子封闭问题。与密度加权大涡模拟相比,使
用密度不加权滤波得到的控制方程中拥有更多的亚格子未封闭项。研究中使用不
同的亚格子模型对未封闭项进行重构,包括梯度模型(gradient model,GM),近似反卷积模型(approximate deconvolution model,ADM),动态Smagorinsky 模型(dynamic Smagorinsky model,DSM),动态混合模型(dynamic mixed model,DMM),以及DIAD 模型。此次研究是在(2𝜋)3 的计算域中使用1283 的均匀网格开展大涡模拟计算。研究中推导出了适合于密度不加权方法的GM、DSM 和DMM 模型的具体公式。此外,本文还首次将DIAD 模型应用到可压缩湍流的研究中。在先验检验中,GM、ADM 和DIAD 模型的相关系数均大于0.9。其中,DIAD 模型的相关系数大于0.98,相对误差小于0.2,优于其他亚格子模型。在密度不加权大涡模拟的后验检验中,DIAD 模型能够很好的预测湍流的各种统计量和流动结构,包括速度的能谱、亚格子通量的概率密度函数以及亚格子热通量、亚格子动能通量和涡量的瞬时空间结构。

(2)开展了初始湍流马赫数为0.4 和0.8 时稠密气体可压缩衰减各向同性湍
流的大涡模拟。DIAD 模型被用来对稠密气体控制方程中的亚格子未封闭项进行研
究,这种模型采用近似反卷积的方法可以方便的对稠密气体中的热力学相关项进
行建模。此次研究在(2𝜋)3 的计算域中使用643 的均匀网格进行大涡模拟的计算。在先验检验中,除亚格子内能通量外,DIAD 模型所重构的其他亚格子项的相关系数均大于0.98,相对误差均小于0.2。DIAD 模型在后验检验中可以很好地预测热力学量相关亚格子项的概率密度函数。此外,研究中还使用DIAD 模型和DSM 模型进行了不对热力学相关亚格子未封闭项进行建模的分析,结果显示热力学相关亚格子未封闭项对湍流场的影响较小。DIAD 模型在预测稠密气体可压缩湍流的各种统计量和结构比DSM 模型更有优势,包括速度和热力学变量的能谱,归一化亚格子动能通量、亚格子应力偏差和应变率张量的概率密度函数以及涡量的瞬时空间结构。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] REYNOLDS O. XXIX. An experimental investigation of the circumstances which determinewhether the motion of water shall be direct or sinuous, and of the law of resistance in parallelchannels[J]. Philosophical Transactions of the Royal society of London, 1883(174): 935-982.
[2] RICHARDSON L F. Weather prediction by numerical process[M]. University Press, 1922.
[3] TAYLOR G I. Statistical theory of turbulence-II[J]. Proceedings of the Royal Society of London.Series A-Mathematical and Physical Sciences, 1935, 151(873): 444-454.
[4] KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid forvery large Reynolds number[C]//Dokl. Akad. Nauk. SSSR: volume 30. 1941: 301-303.
[5] KOLMOGOROV A N. A refinement of previous hypotheses concerning the local structureof turbulence in a viscous incompressible fluid at high Reynolds number[J]. Journal of FluidMechanics, 1962, 13(1): 82-85.
[6] POPE S B, POPE S B. Turbulent flows[M]. Cambridge university press, 2000.
[7] GARNIER E, ADAMS N, SAGAUT P. Large eddy simulation for compressible flows[M].Springer Science Business Media, 2009.
[8] SAGAUT P. Large eddy simulation for incompressible flows[M]. Springer Science & BusinessMedia, 2006.
[9] 张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论和应用[M]. 北京: 清华大学出版社,2008.
[10] 傅德薰, 马延文, 李新亮, 等. 可压缩湍流直接数值模拟[M]. 北京: 科学出版社, 2010.
[11] WANG J, SHI Y, WANG L P, et al. Effect of compressibility on the small-scale structures in isotropic turbulence[J]. Journal of Fluid Mechanics, 2012, 713: 588-631.
[12] BURGERS J M. A mathematical model illustrating the theory of turbulence[J]. Advances in applied mechanics, 1948, 1: 171-199.
[13] MEECHAM W C, SIEGEL A. Wiener-Hermite expansion in model turbulence at large Reynolds numbers[J]. Physics of Fluids, 1964, 7(8): 1178-1190.
[14] CHEKHLOV A, YAKHOT V. Kolmogorov turbulence in a random-force-driven Burgers equation: anomalous scaling and probability density functions[J]. Physical Review E, 1995, 52(5):5681.
[15] YAKHOT V, CHEKHLOV A. Algebraic tails of probability density functions in the randomforce-driven Burgers turbulence[J]. Physical Review Letters, 1996, 77(15): 3118.
[16] GOTOH T, KRAICHNAN R H. Steady-state Burgers turbulence with large-scale forcing[J]. Physics of Fluids, 1998, 10(11): 2859-2866.
[17] WEINAN E, EIJNDEN E V. Asymptotic theory for the probability density functions in Burgers turbulence[J]. Physical Review Letters, 1999, 83(13): 2572.
[18] BEC J. Universality of velocity gradients in forced Burgers turbulence[J]. Physical Review Letters, 2001, 87(10): 104501.
[19] FEIEREISEN W J. Numerical simulation of a compressible, homogeneous, turbulent shear flow[M]. Stanford University, 1981.
[20] PASSOT T, POUQUET A. Numerical simulation of compressible homogeneous flows in the turbulent regime[J]. Journal of Fluid Mechanics, 1987, 181: 441-466.
[21] ERLEBACHER G, HUSSAINI M Y, KREISS H O, et al. The analysis and simulation of compressible turbulence[J]. Theoretical and Computational Fluid Dynamics, 1990, 2: 73-95.
[22] SARKAR S, ERLEBACHER G, HUSSAINI M Y, et al. The analysis and modelling of dilatational terms in compressible turbulence[J]. Journal of Fluid Mechanics, 1991, 227: 473-493.
[23] HALPERN B. Large eddy simulation of complex engineering and geophysical flows[M]. Cambridge University Press, 1993.
[24] CHAI X, MAHESH K. Dynamic-equation model for large-eddy simulation of compressible flows[J]. Journal of Fluid Mechanics, 2012, 699: 385-413.
[25] GRINSTEIN F, PEREIRA F S. Impact of numerical hydrodynamics in turbulent mixing transition simulations[J]. Physics of Fluids, 2021, 33(3): 035126.
[26] SMAGORINSKY J. General circulation experiments with the primitive equations: I. The basic experiment[J]. Monthly weather review, 1963, 91(3): 99-164.
[27] LILLY D K. The representation of small-scale turbulence in numerical simulation experiments [J]. in Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, IBM,1967: 195-210.
[28] DEARDORFF J W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics, 1970, 41(2): 453-480.
[29] ROGALLO R S, MOIN P. Numerical simulation of turbulent flows[J]. Annual Review of Fluid Mechanics, 1984, 16(1): 99-137.
[30] BARDINA J, FERZIGER J, REYNOLDS W. Improved subgrid-scale models for large-eddy simulation[C]//13th fluid and plasmadynamics conference. 1980: 1357.
[31] LIU S, MENEVEAU C, KATZ J. On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet[J]. Journal of Fluid Mechanics, 1994, 275: 83-119.
[32] STALLCUP E W, KSHITIJ A, DAHM W J. Adaptive Scale-Similar Closure for Large Eddy Simulations. Part 1: Subgrid Stress Closure[C]//AIAA SCITECH 2022 Forum. 2022: 0595.
[33] STALLCUP E W, DAHM W J. Adaptive Scale-Similar Closure for Large Eddy Simulations. Part 2: Subgrid Scalar Flux Closure[C]//AIAA SCITECH 2022 Forum. 2022: 0596.
[34] CLARK R A, FERZIGER J H, REYNOLDS W C. Evaluation of subgrid-scale models using an accurately simulated turbulent flow[J]. Journal of Fluid Mechanics, 1979, 91(1): 1-16.
[35] WANG Y, YUAN Z, XIE C, et al. A dynamic spatial gradient model for the subgrid closure in large-eddy simulation of turbulence[J]. Physics of Fluids, 2021, 33(7): 075119.
[36] WANG Y, YUAN Z, WANG X, et al. Constant-coefficient spatial gradient models for the subgrid scale closure in large-eddy simulation of turbulence[J]. Physics of Fluids, 2022, 34(9):095108.
[37] STOLZ S, ADAMS N A. An approximate deconvolution procedure for large-eddy simulation [J]. Physics of Fluids, 1999, 11(7): 1699-1701.
[38] STOLZ S, ADAMS N A, KLEISER L. The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction[J]. Physics of Fluids, 2001, 13(10): 2985-3001.
[39] STOLZ S, ADAMS N A, KLEISER L. An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows[J]. Physics of Fluids, 2001,13(4): 997-1015.
[40] YUAN Z, XIE C, WANG J. Deconvolutional artificial neural network models for large eddy simulation of turbulence[J]. Physics of Fluids, 2020, 32(11): 115106.
[41] LAYTON W J, REBHOLZ L G. Approximate deconvolution models of turbulence: analysis, phenomenology and numerical analysis: volume 2042[M]. Springer Science & Business Media,2012.
[42] GERMANO M, PIOMELLI U, MOIN P, et al. A dynamic subgrid-scale eddy viscosity model [J]. Physics of Fluids A, 1991, 3(7): 1760-1765.
[43] LILLY D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids A, 1992, 4(3): 633-635.
[44] ZANG T, DAHLBURG R, DAHLBURG J. Direct and large-eddy simulations of threedimensional compressible Navier–Stokes turbulence[J]. Physics of Fluids A, 1992, 4(1): 127-140.
[45] VREMAN B, GEURTS B, KUERTEN H. On the formulation of the dynamic mixed subgridscale model[J]. Physics of Fluids, 1994, 6(12): 4057-4059.
[46] HABISREUTINGER M A, BOUFFANAIS R, LERICHE E, et al. A coupled approximate deconvolution and dynamic mixed scale model for large-eddy simulation[J]. Journal of Computational Physics, 2007, 224(1): 241-266.
[47] SPEZIALE C G, ERLEBACHER G, ZANG T, et al. The subgrid-scale modeling of compressible turbulence[J]. Physics of Fluids, 1988, 31(4): 940-942.
[48] BORIS J P, GRINSTEIN F F, ORAN E S, et al. New insights into large eddy simulation[J]. Fluid dynamics research, 1992, 10(4-6): 199.
[49] GARNIER E, MOSSI M, SAGAUT P, et al. On the use of shock-capturing schemes for largeeddy simulation[J]. Journal of Computational Physics, 1999, 153(2): 273-311.
[50] VISBAL M, MORGAN P, RIZZETTA D. An implicit LES approach based on high-order compact differencing and filtering schemes[C]//16th AIAA Computational Fluid Dynamics Conference.2003: 4098.
[51] ADAMS N A, HICKEL S, FRANZ S. Implicit subgrid-scale modeling by adaptive deconvolution[J]. Journal of Computational Physics, 2004, 200(2): 412-431.
[52] YUAN Z, WANG Y, XIE C, et al. Dynamic iterative approximate deconvolution models for large-eddy simulation of turbulence[J]. Physics of Fluids, 2021, 33(8): 085125.
[53] ABBOTT L F, DESER S. Stability of gravity with a cosmological constant[J]. Nuclear Physics B, 1982, 195(1): 76-96.
[54] SARGHINI F, DE FELICE G, SANTINI S. Neural networks based subgrid scale modeling in large eddy simulations[J]. Computers & fluids, 2003, 32(1): 97-108.
[55] GAMAHARA M, HATTORI Y. Searching for turbulence models by artificial neural network [J]. Physical Review Fluids, 2016, 2(5).
[56] VOLLANT A, BALARAC G, CORRE C. Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedures[J]. Journal of Turbulence, 2017, 18(9):854-878.
[57] MAULIK R, SAN O. A neural network approach for the blind deconvolution of turbulent flows [J/OL]. Journal of Fluid Mechanics, 2017, 831: 151–181. DOI: 10.1017/jfm.2017.637.
[58] WANG Z, LUO K, LI D, et al. Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation[J]. Physics of Fluids, 2018, 30(12).
[59] ZHOU Z, HE G, WANG S, et al. Subgrid-scale model for large-eddy simulation of isotropic turbulent flows using an artificial neural network[J]. Computers & fluids, 2019, 195: 104319.
[60] BECK A, FLAD D, MUNZ C D. Deep neural networks for data-driven LES closure models[J]. Journal of Computational Physics, 2019, 398: 108910.
[61] PARK J, CHOI H. Toward neural-network-based large eddy simulation: application to turbulent channel flow[J]. Journal of Fluid Mechanics, 2021, 914.
[62] LI H, ZHAO Y, WANG J, et al. Data-driven model development for large-eddy simulation of turbulence using gene-expression programing[J]. Physics of Fluids, 2021, 33(12): 125127.
[63] GUAN Y, CHATTOPADHYAY A, SUBEL A, et al. Stable a posteriori LES of 2D turbulence using convolutional neural networks: Backscattering analysis and generalization to higher Re via transfer learning[J]. Journal of Computational Physics, 2022, 458: 111090.
[64] PRAKASH A, JANSEN K E, EVANS J A. Invariant data-driven subgrid stress modeling in the strain-rate eigenframe for large eddy simulation[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 399: 115457.
[65] XIE C, WANG J, LI H, et al. Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence[J]. AIP Advances, 2020, 10(1): 015044.
[66] XIE C, WANG J, LI H, et al. Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence[J]. Physics of Fluids, 2019, 31(8): 085112.
[67] XIE C, WANG J, LI K, et al. Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence[J]. Physical Review E, 2019, 99(5): 053113.
[68] YUAN Z, WANG Y, XIE C, et al. Deconvolutional artificial-neural-network framework for subfilter-scale models of compressible turbulence[J]. Acta Mechanica Sinica, 2021, 37(12):1773-1785.
[69] GATSKI T B, BONNET J P. Compressibility, turbulence and high speed flow[M]. Academic Press, 2013.
[70] SUN X B, LU X Y. A large eddy simulation approach of compressible turbulent flow without density weighting[J]. Physics of Fluids, 2006, 18(11): 118101.
[71] YANG V. Modeling of supercritical vaporization, mixing, and combustion processes in liquidfueled propulsion systems[J]. Proceedings of the Combustion Institute, 2000, 28(1): 925-942.
[72] HAMINH, VANDROMME. Compressibility effects on turbulence in high speed flows[J]. In: Summer Workshop, Theory and Modeling of Turbulent Flow, Ecole centrale de Lyon, Lyon,1989.
[73] BOERSMA B, LELE S. Large eddy simulation of compressible turbulent jets[J]. Center for Turbulence Research, Annual Research Briefs, 1999(365-377).
[74] SMITS A J, DUSSAUGE J P. Turbulent shear layers in supersonic flow[M]. Springer Science & Business Media, 2006.
[75] OWEN F, HORSTMAN C. On the structure of hypersonic turbulent boundary layers[J]. Journal of Fluid Mechanics, 1972, 53(4): 611-636.
[76] GERMANO M, ABBÀ A, ARINA R, et al. On the extension of the eddy viscosity model to compressible flows[J]. Physics of Fluids, 2014, 26(4): 041702.
[77] BASSI C, ABBA A, BONAVENTURA L, et al. A priori tests of a novel LES approach to compressible variable density turbulence[A]. 2018.
[78] DUPUY D, TOUTANT A, BATAILLE F. Study of the large-eddy simulation subgrid terms of a low mach number anisothermal channel flow[J]. International Journal of Thermal Sciences, 2019, 135: 221-234.
[79] GS S, KARTHA A, CANDLER G V. Filtered velocity based LES of mixing in high speed recirculating shear flow[C]//46th AIAA Fluid Dynamics Conference. 2016: 3184.
[80] GS S, CANDLER G V. Large eddy simulations of reacting shock-bubble interaction[J]. Sonderforschungsbereich/Transregio, 2015: 14.
[81] SIDHARTH G, CANDLER G V. Subgrid-scale effects in compressible variable-density decaying turbulence[J]. Journal of Fluid Mechanics, 2018, 846: 428-459.
[82] GS S, RISTORCELLI J R. Effect of anisotropic eddy-diffusivity in LES of reactive turbulent mixing[C]//AIAA Aviation 2020 Forum. 2020: 3034.
[83] FAVRE A. The equations of compressible turbulent gases[R]. AIX-MARSEILLE UNIV (FRANCE) INST DE MECANIQUE STATISTIQUE DE LA TURBULENCE, 1965.
[84] SCIACOVELLI L, CINNELLA P, GRASSO F. Small-scale dynamics of dense gas compressible homogeneous isotropic turbulence[J]. Journal of Fluid Mechanics, 2017, 825: 515-549.
[85] SCIACOVELLI L, CINNELLA P, GLOERFELT X. A priori tests of RANS models for turbulent channel flows of a dense gas[J]. Flow, Turbulence and Combustion, 2018, 101(2): 295-315.
[86] VADROT A, GIAUQUE A, CORRE C. Analysis of turbulence characteristics in a temporal dense gas compressible mixing layer using direct numerical simulation[J]. Journal of Fluid Mechanics, 2020, 893.
[87] TOSTO F, LETTIERI C, PINI M, et al. Dense-vapor effects in compressible internal flows[J]. Physics of Fluids, 2021, 33(8): 086110.
[88] BODENSCHATZ E, BEWLEY G P, NOBACH H, et al. Variable density turbulence tunnel facility[J]. Review of Scientific Instruments, 2014, 85(9): 093908.
[89] ANDERSON W K. Numerical study on using sulfur hexafluoride as a wind tunnel test gas[J]. AIAA journal, 1991, 29(12): 2179-2180.
[90] BROWN B P, ARGROW B M. Application of Bethe-Zel’dovich-Thompson fluids in organic Rankine cycle engines[J]. Journal of Propulsion and Power, 2000, 16(6): 1118-1124.
[91] ZAMFIRESCU C, DINCER I. Performance investigation of high-temperature heat pumps with various BZT working fluids[J]. Thermochimica Acta, 2009, 488(1-2): 66-77.
[92] Klein M J. The historical origins of the Van der Waals equation[J]. Physica, 1974, 73(1): 28-47.
[93] REDLICH O, KWONG J. On the thermodynamics of solutions; an equation of state; fugacities of gaseous solutions.[J]. Chemical reviews, 1949, 44 1: 233-44.
[94] MARTIN J J, HOU Y C. Development of an equation of state for gases[J]. AIChE Journal,1955, 1: 142-151.
[95] GUARDONE A. Nonclassical gasdynamics: thermodynamic modeling and numerical simulation of multidimensional flows of BZT fluids[D]. Politecnico di Milano Milan, Italy, 2001.
[96] THOMPSON P A. A fundamental derivative in gasdynamics[J]. Physics of Fluids, 1971, 14 (9): 1843-1849.
[97] BETHE H A. On the theory of shock waves for an arbitrary equation of state[M]//Classic papers in shock compression science. Springer, 1998: 421-495.
[98] ZEL’DOVICH. 14. On the Possibility of Rarefaction Shock Waves[M]. Princeton: Princeton University Press, 1992: 152-154.
[99] ZEL’DOVICH Y B, RAIZER Y P. Physics of shock waves and high-temperature hydrodynamic phenomena[M]. Courier Corporation, 2002.
[100] CRAMER M S, KLUWICK A. On the propagation of waves exhibiting both positive and negative nonlinearity[J]. Journal of Fluid Mechanics, 1984, 142: 9–37.
[101] THOMPSON P A, LAMBRAKIS K C. Negative shock waves[J]. Journal of Fluid Mechanics, 1973, 60(1): 187–208.
[102] CRAMER M. Nonclassical dynamics of classical gases[M]//Nonlinear waves in real fluids. Springer, 1991: 91-145.
[103] CRAMER M. Negative nonlinearity in selected fluorocarbons[J]. Physics of Fluids A, 1989, 1(11): 1894-1897.
[104] GUARDONE A, VIMERCATI D. Exact solutions to non-classical steady nozzle flows of Bethe–Zel’dovich–Thompson fluids[J]. Journal of Fluid Mechanics, 2016, 800: 278-306.
[105] SCIACOVELLI L, CINNELLA P, CONTENT C, et al. Dense gas effects in inviscid homogeneous isotropic turbulence[J]. Journal of Fluid Mechanics, 2016, 800: 140-179.
[106] GIAUQUE A, CORRE C, VADROT A. Direct numerical simulations of forced homogeneous isotropic turbulence in a dense gas[J]. Journal of Turbulence, 2020, 21(3): 186-208.
[107] GLOERFELT X, ROBINET J C, SCIACOVELLI L, et al. Dense-gas effects on compressible boundary-layer stability[J]. Journal of Fluid Mechanics, 2020, 893.
[108] DUAN L, ZHENG Q, JIANG Z, et al. Dense gas effect on small-scale structures of compressible isotropic turbulence[J]. Physics of Fluids, 2021, 33(11): 115113.
[109] SCIACOVELLI L, GLOERFELT X, PASSIATORE D, et al. Numerical investigation of highspeed turbulent boundary layers of dense gases[J]. Flow, Turbulence and Combustion, 2020,105: 555-579.
[110] SCIACOVELLI L, CINNELLA P, GLOERFELT X, et al. DNS of turbulent flows of dense gases [C]//Journal of Physics: Conference Series: volume 821. IOP Publishing, 2017: 012018.
[111] HARINCK J, TURUNEN-SAARESTI T, COLONNA P, et al. Computational study of a highexpansionratio radial organic Rankine cycle turbine stator[J]. Journal of Engineering for GasTurbines and Power, 2010, 132(5).
[112] WHEELER A P, ONG J. The role of dense gas dynamics on organic Rankine cycle turbine performance[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(10).
[113] SCIACOVELLI L, CINNELLA P. Numerical study of multistage transcritical organic Rankine cycle axial turbines[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(8).
[114] DURÁ GALIANA F J, WHEELER A P, ONG J. A study of trailing-edge losses in organic rankine cycle turbines[J]. Journal of Turbomachinery, 2016, 138(12): 121003.
[115] GALIANA F D, WHEELER A, ONG J, et al. The effect of dense gas dynamics on loss in ORC transonic turbines[C]//Journal of Physics: Conference Series: volume 821. IOP Publishing, 2017: 012021.
[116] HOARAU J C, CINNELLA P, GLOERFELT X. Large Eddy Simulation of dense gas flow around a turbine cascade[C]//AIAA Aviation 2019 Forum. 2019: 2843.
[117] HOARAU J C, CINNELLA P, GLOERFELT X. Large eddy simulations of strongly non-ideal compressible flows through a transonic cascade[J]. Energies, 2021, 14(3): 772.
[118] GIAUQUE A, VADROT A, ERRANTE P, et al. A priori analysis of subgrid-scale terms in compressible transcritical real gas flows[J]. Physics of Fluids, 2021, 33(8): 085126.
[119] SELLE L C, OKONG’O N A, BELLAN J, et al. Modelling of subgrid-scale phenomena in supercritical transitional mixing layers: an a priori study[J]. Journal of Fluid Mechanics, 2007, 593: 57-91.
[120] SCHMITT T, MÉRY Y, BOILEAU M, et al. Large-eddy simulation of oxygen/methane flames under transcritical conditions[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1383-1390.
[121] TAŞKINOĞLU E S, BELLAN J. Subgrid-scale models and large-eddy simulation of oxygen stream disintegration and mixing with a hydrogen or helium stream at supercritical pressure[J]. Journal of Fluid Mechanics, 2011, 679: 156-193.
[122] UNNIKRISHNAN U, HUO H, WANG X, et al. Subgrid scale modeling considerations for large eddy simulation of supercritical turbulent mixing and combustion[J]. Physics of Fluids, 2021, 33(7): 075112.
[123] LAGARZA-CORTÉS C, RAMÍREZ-CRUZ J, SALINAS-VÁZQUEZ M, et al. Large-eddy simulation of transcritical and supercritical jets immersed in a quiescent environment[J]. Physics of Fluids, 2019, 31(2): 025104.
[124] LI F, PEI B, BAI B. Scaling laws of statistics of wall-bounded turbulence at supercritical pressure: Evaluation and mechanism[J]. Physics of Fluids, 2022, 34(8): 085104.
[125] GUO B. Spectral methods and their applications[M]. World Scientific, 1998.
[126] LELE S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103(1): 16-42.
[127] BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405-452.
[128] WANG J, WANG L P, XIAO Z, et al. A hybrid numerical simulation of isotropic compressible turbulence[J]. Journal of Computational Physics, 2010, 229(13): 5257-5279.
[129] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212.
[130] GOTTLIEB S, SHU C W. Total variation diminishing Runge-Kutta schemes[J]. Mathematics of computation, 1998, 67(221): 73-85.
[131] LARSSON J, GUSTAFSSON B. Stability criteria for hybrid difference methods[J]. Journal of Computational Physics, 2008, 227(5): 2886-2898.
[132] SAMTANEY R, PULLIN D I, KOSOVIĆ B. Direct numerical simulation of decaying compressible turbulence and shocklet statistics[J]. Physics of Fluids, 2001, 13(5): 1415-1430.
[133] WANG J, SHI Y, WANG L P, et al. Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence[J]. Physics of Fluids, 2011, 23(12): 125103.
[134] WANG J, YANG Y, SHI Y, et al. Cascade of kinetic energy in three-dimensional compressible turbulence[J]. Physical Review Letters, 2013, 110(21): 214505.
[135] WANG J, GOTOH T, WATANABE T. Shocklet statistics in compressible isotropic turbulence [J]. Physical Review Fluids, 2017, 2(2): 023401.
[136] WANG J, WAN M, CHEN S, et al. Kinetic energy transfer in compressible isotropic turbulence [J]. Journal of Fluid Mechanics, 2018, 841: 581-613.
[137] 王建春. 可压缩各向同性湍流的数值模拟和分析[D]. 北京: 北京大学, 2012.
[138] CHEN S, DOOLEN G D, KRAICHNAN R H, et al. On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(2): 458-463.
[139] PASSOT T, VÁZQUEZ-SEMADENI E, POUQUET A. A turbulent model for the interstellar medium. II. Magnetic fields and rotation[A]. 1996.
[140] VREMAN B, GEURTS B, KUERTEN H. Subgrid-modelling in LES of compressible flow[J]. Applied scientific research, 1995, 54: 191-203.
[141] MARTIN M P, PIOMELLI U, CANDLER G V. Subgrid-scale models for compressible largeeddy simulations[J]. Theoretical and Computational Fluid Dynamics, 2000, 13(5): 361-376.
[142] XIE C, WANG J, LI H, et al. A modified optimal LES model for highly compressible isotropic turbulence[J]. Physics of Fluids, 2018, 30(6): 065108.
[143] WANG J, WAN M, CHEN S, et al. Effect of flow topology on the kinetic energy flux in compressible isotropic turbulence[J]. Journal of Fluid Mechanics, 2020, 883.
[144] VREMAN B, GEURTS B, KUERTEN H. Large-eddy simulation of the turbulent mixing layer [J]. Journal of Fluid Mechanics, 1997, 339: 357-390.
[145] SCHNEIDERBAUER S, SAEEDIPOUR M. Approximate deconvolution model for the simulation of turbulent gas-solid flows: An a priori analysis[J]. Physics of Fluids, 2018, 30(2):023301.
[146] ZHOU Z, WANG S, JIN G. A structural subgrid-scale model for relative dispersion in largeeddy simulation of isotropic turbulent flows by coupling kinematic simulation with approximate deconvolution method[J]. Physics of Fluids, 2018, 30(10): 105110.
[147] GHOSAL S. An analysis of numerical errors in large-eddy simulations of turbulence[J]. Journal of Computational Physics, 1996, 125(1): 187-206.
[148] MEYERS J, GEURTS B J, BAELMANS M. Database analysis of errors in large-eddy simulation[J]. Physics of Fluids, 2003, 15(9): 2740-2755.
[149] CHOW F K, MOIN P. A further study of numerical errors in large-eddy simulations[J]. Journal of Computational Physics, 2003, 184(2): 366-380.
[150] XIE C, WANG J, WEINAN E. Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence[J]. Physical Review Fluids, 2020, 5(5): 054606.
[151] SCIACOVELLI L, CINNELLA P, GLOERFELT X. Direct numerical simulations of supersonic turbulent channel flows of dense gases[J]. Journal of Fluid Mechanics, 2017, 821: 153-199.
[152] CHUNG T H, AJLAN M, LEE L L, et al. Generalized multiparameter correlation for nonpolar and polar fluid transport properties[J]. Industrial & engineering chemistry research, 1988, 27 (4): 671-679.
[153] MOIN P, SQUIRES K, CABOT W, et al. A dynamic subgrid-scale model for compressible turbulence and scalar transport[J]. Physics of Fluids A, 1991, 3(11): 2746-2757.
[154] SHI Y, XIAO Z, CHEN S. Constrained subgrid-scale stress model for large eddy simulation[J]. Physics of Fluids, 2008, 20(1): 011701.

所在学位评定分委会
力学
国内图书分类号
O357.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544462
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
张超. 基于动态迭代近似反卷积模型的可压缩湍流大涡模拟研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032411-张超-力学与航空航天工(15660KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张超]的文章
百度学术
百度学术中相似的文章
[张超]的文章
必应学术
必应学术中相似的文章
[张超]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。