[1] 国家统计局. 国家数据查询[EB/OL]. 2021
[2021-01-18]. https://www.mnr.gov.cn/dt/ywbb/2 02101/t20210118_2598832.html.
[2] 邵芸, 张茗, 谢酬. 地质灾害遥感综合监测现状与展望[J]. 地质与资源, 2022, 31(3): 381- 394.
[3] 中华人民共和国应急管理部. 应急管理部公布 2019 年全国十大自然灾害[EB/OL]. 2020
[2020-01-12]. https://www.mem.gov.cn/xw/bndt/202001/t20200112_343410.shtml.
[4] XIAO L, WANG J, ZHU Y, et al. Quantitative risk analysis of a rainfall-induced complex landslide in wanzhou county, three gorges reservoir, China[J]. International Journal of Disaster Risk Science, 2020, 11: 347-363.
[5] XU C, JIANG Y, LIU C, et al. Preface to the Special Issue on Earthquake-Induced Landslides [J]. Earthquake Research in China, 2020.
[6] 肖诗荣, 刘德富, 胡志宇. 世界三大典型水库型顺层岩质滑坡工程地质比较研究[J]. 工程 地质学报, 2010.
[7] HU W, SCARINGI G, XU Q, et al. Suction and rate-dependent behaviour of a shear-zone soil from a landslide in a gently-inclined mudstone-sandstone sequence in the Sichuan basin, China [J]. Engineering Geology, 2018, 237: 1-11.
[8] MERZDORF J. Climate Change Could Trigger More Landslides in High Mountain Asia [EB/OL]. 2020
[2020-02-11]. https://climate.nasa.gov/news/2951/climate-change-could-trigg er-more-landslides-in-high-mountain-asia/.
[9] LAIMER H J. Anthropogenically induced landslides–A challenge for railway infrastructure in mountainous regions[J]. Engineering Geology, 2017, 222: 92-101.
[10] 王念秦, 刘顺华. 滑坡宏观迹象综合分析预报方法研究[J]. 甘肃科学学报, 1999, 11(1): 34-38.
[11] 潘懋, 李铁锋. 灾害地质学[M]. 灾害地质学, 2002.
[12] 蒋兴超. 滑坡地质灾害监测方法概述[J]. 长江大学学报自然科学版: 理工卷, 2010(3):345-347.
[13] SHEN N, CHEN L, WANG L, et al. Short-Term Landslide Displacement Detection Based on GNSS Real-Time Kinematic Positioning[J]. IEEE Transactions on Instrumentation and Mea- surement, 2021, 70: 1-14.
[14] CINA A, PIRAS M. Performance of low-cost GNSS receiver for landslides monitoring: Test and results[J]. Geomatics, Natural Hazards and Risk, 2015, 6(5-7): 497-514.
[15] ŠEGINA E, PETERNEL T, URBANČIČ T, et al. Monitoring surface displacement of a deep- seated landslide by a low-cost and near real-time GNSS system[J]. Remote sensing, 2020, 12 (20): 3375.
[16] LU P, LALAM N, BADAR M, et al. Distributed optical fiber sensing: Review and perspective [J]. Applied Physics Reviews, 2019, 6(4): 041302.
[17] WU H, GUO Y, XIONG L, et al. Optical fiber-based sensing, measuring, and implementation methods for slope deformation monitoring: a review[J]. IEEE Sensors Journal, 2019, 19(8): 2786-2800.
[18] 董文文, 朱鸿鹄, 孙义杰, 等. 边坡变形监测技术现状及新进展[J]. 工程地质学报, 2016, 24 (6): 1088-1095.
[19] ZHU Z W, LIU D Y, YUAN Q Y, et al. A novel distributed optic fiber transduser for landslides monitoring[J]. Optics and Lasers in Engineering, 2011, 49(7): 1019-1024.
[20] MASSONNET D, FEIGL K L. Radar interferometry and its application to changes in the Earth’s surface[J]. Reviews of geophysics, 1998, 36(4): 441-500.
[21] BÜRGMANN R, ROSEN P A, FIELDING E J. Synthetic aperture radar interferometry to mea- sure Earth’s surface topography and its deformation[J]. Annual review of earth and planetary sciences, 2000, 28(1): 169-209.
[22] JIANJUN Z, ZHIWEI L, JUN H. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717.
[23] KANG Y, ZHAO C, ZHANG Q, et al. Application of InSAR techniques to an analysis of the Guanling landslide[J]. Remote sensing, 2017, 9(10): 1046.
[24] HERRERA G, TOMÁS R, LÓPEZ-SÁNCHEZ J M, et al. Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain)[J]. Engineering Geology, 2007, 90 (3-4): 148-159.
[25] CASCINI L, FORNARO G, PEDUTO D. Advanced low-and full-resolution DInSAR map gen- eration for slow-moving landslide analysis at different scales[J]. Engineering geology, 2010, 112(1-4): 29-42.
[26] HERRERA G, GUTIÉRREZ F, GARCÍA-DAVALILLO J, et al. Multi-sensor advanced DIn- SAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees) [J]. Remote Sensing of Environment, 2013, 128: 31-43.
[27] HUANG J, XIE M, FAROOQ A, et al. DInSAR technique for slow-moving landslide monitoring based on slope units[J]. Survey review, 2019, 51(364): 70-77.
[28] 郭健, 张鹏, 张全, 等. 基于多光谱遥感影像的巫峡滑坡灾害识别技术研究[J]. 华南地质与 矿产, 2020, 36(1): 38-45.
[29] 李小来, 李海涛, 杨世强, 等. 基于高光谱数据和雷达融合的滑坡信息取[J]. 长江科学院 院报, 2023, 40(1): 184.
[30] YE C, LI Y, CUI P, et al. Landslide detection of hyperspectral remote sensing data based on deep learning with constrains[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12): 5047-5060.
[31] 李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报-信息科学版, 2019, 44(7): 967-979.
[32] GHUFFAR S, SZÉKELY B, RONCAT A, et al. Landslide displacement monitoring using 3D range flow on airborne and terrestrial LiDAR data[J]. Remote Sensing, 2013, 5(6): 2720-2745.
[33] GLENN N F, STREUTKER D R, CHADWICK D J, et al. Analysis of LiDAR-derived topo- graphic information for characterizing and differentiating landslide morphology and activity[J]. Geomorphology, 2006, 73(1-2): 131-148.
[34] ZHANG C, ZHA D, ZHOU S, et al. 3D Visualization of Landslide Based on Close-Range Photogrammetry.[J]. Instrumentation, Mesures, Métrologies, 2019, 18(5).
[35] MOKHTAR M R M, WAHAB S N A, HUSAIN M N, et al. Landslide monitoring using close range Photogrammetry[J]. Planning Malaysia, 2021, 19.
[36] 张敏. 近景摄影技术在露天矿山边坡变形监测中的应用初探[J]. 科技创新与应用, 2020.
[37] CARVAJAL F, AGÜERA F, PÉREZ M. Surveying a landslide in a road embankment using un- manned aerial vehicle photogrammetry[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, 38: 201-206.
[38] PAJALIĆ S, PERANIĆ J, MAKSIMOVIĆ S, et al. Monitoring and data analysis in small-scale landslide physical model[J]. Applied Sciences, 2021, 11(11): 5040.
[39] FENG T, MI H, SCAIONI M, et al. Measurement of surface changes in a scaled-down landslide model using high-speed stereo image sequences[J]. Photogrammetric Engineering & Remote Sensing, 2016, 82(7): 547-557.
[40] ROMEO S, DI MATTEO L, KIEFFER D S, et al. The use of gigapixel photogrammetry for the understanding of landslide processes in alpine terrain[J]. Geosciences, 2019, 9(2): 99.
[41] CHUDỲ F, SLÁMOVÁ M, TOMAŠTÍK J, et al. Identification of micro-scale landforms of landslides using precise digital elevation models[J]. Geosciences, 2019, 9(3): 117.
[42] WU H, ZHENG D F, ZHANG Y J, et al. A photogrammetric method for laboratory-scale investigation on 3D landslide dam topography[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(9): 4717-4732.
[43] KARANTANELLIS E, MARINOS V, VASSILAKIS E. Landslide and Rockfall failures Char- acterization with Object-Based 3D Analysis[C]//EGU General Assembly Conference Abstracts. 2020: 21880.
[44] 唐英杰. 基于图像处理的滑坡监测系统的研究与实现[D]. 暨南大学, 2020.
[45] 张末. 基于近景摄影测量的边坡位移监测技术研究[D]. 南京理工大学, 2020.
[46] AGGARWAL S, MISHRA P K, SUMAKAR K, et al. Landslide monitoring system imple- menting IOT using video camera[C]//2018 3rd International Conference for Convergence in Technology (I2CT). IEEE, 2018: 1-4.
[47] LUHMANN T, ROBSON S, KYLE S, et al. Close-range photogrammetry and 3D imaging[M]// Close-Range Photogrammetry and 3D Imaging. de Gruyter, 2019.
[48] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on pattern analysis and machine intelligence, 2000, 22(11): 1330-1334.
[49] MORÉ J J. The Levenberg-Marquardt algorithm: implementation and theory[C]//Numerical Analysis: Proceedings of the Biennial Conference Held at Dundee, June 28–July 1, 1977. Springer, 2006: 105-116.
[50] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
[51] SHAPIRO R. Direct linear transformation method for three-dimensional cinematography[J]. Research Quarterly. American Alliance for Health, Physical Education and Recreation, 1978, 49(2): 197-205.
[52] QI W, LI F, ZHENZHONG L. Review on camera calibration[C]//2010 Chinese control and decision conference. IEEE, 2010: 3354-3358.
[53] GAO X S, HOU X R, TANG J, et al. Complete solution classification for the perspective-three- point problem[J]. IEEE transactions on pattern analysis and machine intelligence, 2003, 25(8): 930-943.
[54] LEPETIT V, MORENO-NOGUER F, FUA P. EPnP: An accurate O(n) solution to the PnP problem[J]. International journal of computer vision, 2009, 81: 155-166mimi,.
[55] ILLINGWORTH J, KITTLER J. A survey of the Hough transform[J]. Computer vision, graph- ics, and image processing, 1988, 44(1): 87-116.
[56] HARRIS C, STEPHENS M, et al. A combined corner and edge detector[C]//Alvey vision con- ference: volume 15. Citeseer, 1988: 10-5244.
[57] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the sev- enth IEEE international conference on computer vision: volume 2. Ieee, 1999: 1150-1157.
[58] GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern recognition, 2018, 77: 354-377.
[59] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[60] GIRSHICK R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448.
[61] HARTIGAN J A, WONG M A. Algorithm AS 136: A k-means clustering algorithm[J]. Journal of the royal statistical society. series c (applied statistics), 1979, 28(1): 100-108.
[62] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recog- nition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[63] OLIVER M A, WEBSTER R. Kriging: a method of interpolation for geographical information systems[J]. International Journal of Geographical Information System, 1990, 4(3): 313-332.
[64] LEE D T, SCHACHTER B J. Two algorithms for constructing a Delaunay triangulation[J]. International Journal of Computer & Information Sciences, 1980, 9(3): 219-242.
修改评论