中文版 | English
题名

基于近景摄影测量的滑坡表面形变监测研究

其他题名
RESEARCH ON LANDSLIDE SURFACE DEFORMATION MONITORING BASED ON CLOSE-RANGE PHOTOGRAMMETRY
姓名
姓名拼音
LU Tianxin
学号
12032831
学位类型
硕士
学位专业
070801 固体地球物理学
学科门类/专业学位类别
07 理学
导师
韩鹏
导师单位
地球与空间科学系
论文答辩日期
2023-05-17
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

地质灾害是自然界发生频率最高、破坏性最大、分布最广的灾害之一。其中,滑坡作为最主要的地质灾害,在我国造成了较多人员伤亡和重大经济损失。滑坡监测是预防滑坡灾害的重要手段。在诸多监测物理量中,表面形变作为判断坡体滑移的直接证据,在边坡稳定性分析评价中不可或缺。已有表面形变监测方法如基于 GPS 或北斗系统的高精度定位监测成本高,难以实现高密度布设,获取的滑坡表面位移空间分辨率不足。因此,本文拟发展近景摄影测量算法,开发高时空分辨率、高精度的滑坡表面形变监测技术。

近景摄影测量法相比于其他的表面形变监测方法,具有成本低廉,布设简易、信息量大、可自动化等优势。然而,由于软硬件的限制,该方法在滑坡监测上的应用研究相对较少。近年来随着相机分辨率的不断提高和图像处理算法的快速发展,基于计算机视觉技术的近景摄影测量法在滑坡表面形变监测任务上具有了前所未有的应用前景和巨大的应用价值。

本研究设计并实现了基于近景摄影测量的滑坡表面形变监测系统,该系统在地面固定点架设高分辨率光学相机,并在坡面上设置多个醒目标志物。相机周期性地自动拍摄坡面图片,通过图像处理与机器学习相结合的方法提取标志物的特征进行目标检测,随后根据摄影测量方法计算标志物的真实坐标,从而在一连串的时序图像中捕捉标志物的微小位移,得到边坡表面形变。

该系统成功应用于室内滑坡实验,实现了坡面位移场和面应变的监测,表面位移监测精度达到毫米级水平。实际测量测试验证了监测系统的稳定性和准确性。通过多次室内模拟降雨滑坡实验,本文探究了不同模型下滑坡变形破坏特征以及相应的表面形变差异。实验结果表明,在边坡最终破坏前会出现 5 毫米到 10 毫米的缓慢前兆性滑移。所开发的近景摄影测量系统能有效地捕捉到滑坡早期出现的微小形变,可为滑坡预防和预警提供可靠的表面形变证据。目前,该系统已部署于野外滑坡监测试验场,未来拟开展滑坡监测预警实际应用研究。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] 国家统计局. 国家数据查询[EB/OL]. 2021
[2021-01-18]. https://www.mnr.gov.cn/dt/ywbb/2 02101/t20210118_2598832.html.
[2] 邵芸, 张茗, 谢酬. 地质灾害遥感综合监测现状与展望[J]. 地质与资源, 2022, 31(3): 381- 394.
[3] 中华人民共和国应急管理部. 应急管理部公布 2019 年全国十大自然灾害[EB/OL]. 2020
[2020-01-12]. https://www.mem.gov.cn/xw/bndt/202001/t20200112_343410.shtml.
[4] XIAO L, WANG J, ZHU Y, et al. Quantitative risk analysis of a rainfall-induced complex landslide in wanzhou county, three gorges reservoir, China[J]. International Journal of Disaster Risk Science, 2020, 11: 347-363.
[5] XU C, JIANG Y, LIU C, et al. Preface to the Special Issue on Earthquake-Induced Landslides [J]. Earthquake Research in China, 2020.
[6] 肖诗荣, 刘德富, 胡志宇. 世界三大典型水库型顺层岩质滑坡工程地质比较研究[J]. 工程 地质学报, 2010.
[7] HU W, SCARINGI G, XU Q, et al. Suction and rate-dependent behaviour of a shear-zone soil from a landslide in a gently-inclined mudstone-sandstone sequence in the Sichuan basin, China [J]. Engineering Geology, 2018, 237: 1-11.
[8] MERZDORF J. Climate Change Could Trigger More Landslides in High Mountain Asia [EB/OL]. 2020
[2020-02-11]. https://climate.nasa.gov/news/2951/climate-change-could-trigg er-more-landslides-in-high-mountain-asia/.
[9] LAIMER H J. Anthropogenically induced landslides–A challenge for railway infrastructure in mountainous regions[J]. Engineering Geology, 2017, 222: 92-101.
[10] 王念秦, 刘顺华. 滑坡宏观迹象综合分析预报方法研究[J]. 甘肃科学学报, 1999, 11(1): 34-38.
[11] 潘懋, 李铁锋. 灾害地质学[M]. 灾害地质学, 2002.
[12] 蒋兴超. 滑坡地质灾害监测方法概述[J]. 长江大学学报自然科学版: 理工卷, 2010(3):345-347.
[13] SHEN N, CHEN L, WANG L, et al. Short-Term Landslide Displacement Detection Based on GNSS Real-Time Kinematic Positioning[J]. IEEE Transactions on Instrumentation and Mea- surement, 2021, 70: 1-14.
[14] CINA A, PIRAS M. Performance of low-cost GNSS receiver for landslides monitoring: Test and results[J]. Geomatics, Natural Hazards and Risk, 2015, 6(5-7): 497-514.
[15] ŠEGINA E, PETERNEL T, URBANČIČ T, et al. Monitoring surface displacement of a deep- seated landslide by a low-cost and near real-time GNSS system[J]. Remote sensing, 2020, 12 (20): 3375.
[16] LU P, LALAM N, BADAR M, et al. Distributed optical fiber sensing: Review and perspective [J]. Applied Physics Reviews, 2019, 6(4): 041302.
[17] WU H, GUO Y, XIONG L, et al. Optical fiber-based sensing, measuring, and implementation methods for slope deformation monitoring: a review[J]. IEEE Sensors Journal, 2019, 19(8): 2786-2800.
[18] 董文文, 朱鸿鹄, 孙义杰, 等. 边坡变形监测技术现状及新进展[J]. 工程地质学报, 2016, 24 (6): 1088-1095.
[19] ZHU Z W, LIU D Y, YUAN Q Y, et al. A novel distributed optic fiber transduser for landslides monitoring[J]. Optics and Lasers in Engineering, 2011, 49(7): 1019-1024.
[20] MASSONNET D, FEIGL K L. Radar interferometry and its application to changes in the Earth’s surface[J]. Reviews of geophysics, 1998, 36(4): 441-500.
[21] BÜRGMANN R, ROSEN P A, FIELDING E J. Synthetic aperture radar interferometry to mea- sure Earth’s surface topography and its deformation[J]. Annual review of earth and planetary sciences, 2000, 28(1): 169-209.
[22] JIANJUN Z, ZHIWEI L, JUN H. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717.
[23] KANG Y, ZHAO C, ZHANG Q, et al. Application of InSAR techniques to an analysis of the Guanling landslide[J]. Remote sensing, 2017, 9(10): 1046.
[24] HERRERA G, TOMÁS R, LÓPEZ-SÁNCHEZ J M, et al. Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain)[J]. Engineering Geology, 2007, 90 (3-4): 148-159.
[25] CASCINI L, FORNARO G, PEDUTO D. Advanced low-and full-resolution DInSAR map gen- eration for slow-moving landslide analysis at different scales[J]. Engineering geology, 2010, 112(1-4): 29-42.
[26] HERRERA G, GUTIÉRREZ F, GARCÍA-DAVALILLO J, et al. Multi-sensor advanced DIn- SAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees) [J]. Remote Sensing of Environment, 2013, 128: 31-43.
[27] HUANG J, XIE M, FAROOQ A, et al. DInSAR technique for slow-moving landslide monitoring based on slope units[J]. Survey review, 2019, 51(364): 70-77.
[28] 郭健, 张鹏, 张全, 等. 基于多光谱遥感影像的巫峡滑坡灾害识别技术研究[J]. 华南地质与 矿产, 2020, 36(1): 38-45.
[29] 李小来, 李海涛, 杨世强, 等. 基于高光谱数据和雷达融合的滑坡信息􏰀取[J]. 长江科学院 院报, 2023, 40(1): 184.
[30] YE C, LI Y, CUI P, et al. Landslide detection of hyperspectral remote sensing data based on deep learning with constrains[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12): 5047-5060.
[31] 李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报-信息科学版, 2019, 44(7): 967-979.
[32] GHUFFAR S, SZÉKELY B, RONCAT A, et al. Landslide displacement monitoring using 3D range flow on airborne and terrestrial LiDAR data[J]. Remote Sensing, 2013, 5(6): 2720-2745.
[33] GLENN N F, STREUTKER D R, CHADWICK D J, et al. Analysis of LiDAR-derived topo- graphic information for characterizing and differentiating landslide morphology and activity[J]. Geomorphology, 2006, 73(1-2): 131-148.
[34] ZHANG C, ZHA D, ZHOU S, et al. 3D Visualization of Landslide Based on Close-Range Photogrammetry.[J]. Instrumentation, Mesures, Métrologies, 2019, 18(5).
[35] MOKHTAR M R M, WAHAB S N A, HUSAIN M N, et al. Landslide monitoring using close range Photogrammetry[J]. Planning Malaysia, 2021, 19.
[36] 张敏. 近景摄影技术在露天矿山边坡变形监测中的应用初探[J]. 科技创新与应用, 2020.
[37] CARVAJAL F, AGÜERA F, PÉREZ M. Surveying a landslide in a road embankment using un- manned aerial vehicle photogrammetry[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, 38: 201-206.
[38] PAJALIĆ S, PERANIĆ J, MAKSIMOVIĆ S, et al. Monitoring and data analysis in small-scale landslide physical model[J]. Applied Sciences, 2021, 11(11): 5040.
[39] FENG T, MI H, SCAIONI M, et al. Measurement of surface changes in a scaled-down landslide model using high-speed stereo image sequences[J]. Photogrammetric Engineering & Remote Sensing, 2016, 82(7): 547-557.
[40] ROMEO S, DI MATTEO L, KIEFFER D S, et al. The use of gigapixel photogrammetry for the understanding of landslide processes in alpine terrain[J]. Geosciences, 2019, 9(2): 99.
[41] CHUDỲ F, SLÁMOVÁ M, TOMAŠTÍK J, et al. Identification of micro-scale landforms of landslides using precise digital elevation models[J]. Geosciences, 2019, 9(3): 117.
[42] WU H, ZHENG D F, ZHANG Y J, et al. A photogrammetric method for laboratory-scale investigation on 3D landslide dam topography[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(9): 4717-4732.
[43] KARANTANELLIS E, MARINOS V, VASSILAKIS E. Landslide and Rockfall failures Char- acterization with Object-Based 3D Analysis[C]//EGU General Assembly Conference Abstracts. 2020: 21880.
[44] 唐英杰. 基于图像处理的滑坡监测系统的研究与实现[D]. 暨南大学, 2020.
[45] 张末. 基于近景摄影测量的边坡位移监测技术研究[D]. 南京理工大学, 2020.
[46] AGGARWAL S, MISHRA P K, SUMAKAR K, et al. Landslide monitoring system imple- menting IOT using video camera[C]//2018 3rd International Conference for Convergence in Technology (I2CT). IEEE, 2018: 1-4.
[47] LUHMANN T, ROBSON S, KYLE S, et al. Close-range photogrammetry and 3D imaging[M]// Close-Range Photogrammetry and 3D Imaging. de Gruyter, 2019.
[48] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on pattern analysis and machine intelligence, 2000, 22(11): 1330-1334.
[49] MORÉ J J. The Levenberg-Marquardt algorithm: implementation and theory[C]//Numerical Analysis: Proceedings of the Biennial Conference Held at Dundee, June 28–July 1, 1977. Springer, 2006: 105-116.
[50] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
[51] SHAPIRO R. Direct linear transformation method for three-dimensional cinematography[J]. Research Quarterly. American Alliance for Health, Physical Education and Recreation, 1978, 49(2): 197-205.
[52] QI W, LI F, ZHENZHONG L. Review on camera calibration[C]//2010 Chinese control and decision conference. IEEE, 2010: 3354-3358.
[53] GAO X S, HOU X R, TANG J, et al. Complete solution classification for the perspective-three- point problem[J]. IEEE transactions on pattern analysis and machine intelligence, 2003, 25(8): 930-943.
[54] LEPETIT V, MORENO-NOGUER F, FUA P. EPnP: An accurate O(n) solution to the PnP problem[J]. International journal of computer vision, 2009, 81: 155-166mimi,.
[55] ILLINGWORTH J, KITTLER J. A survey of the Hough transform[J]. Computer vision, graph- ics, and image processing, 1988, 44(1): 87-116.
[56] HARRIS C, STEPHENS M, et al. A combined corner and edge detector[C]//Alvey vision con- ference: volume 15. Citeseer, 1988: 10-5244.
[57] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the sev- enth IEEE international conference on computer vision: volume 2. Ieee, 1999: 1150-1157.
[58] GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern recognition, 2018, 77: 354-377.
[59] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[60] GIRSHICK R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448.
[61] HARTIGAN J A, WONG M A. Algorithm AS 136: A k-means clustering algorithm[J]. Journal of the royal statistical society. series c (applied statistics), 1979, 28(1): 100-108.
[62] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recog- nition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[63] OLIVER M A, WEBSTER R. Kriging: a method of interpolation for geographical information systems[J]. International Journal of Geographical Information System, 1990, 4(3): 313-332.
[64] LEE D T, SCHACHTER B J. Two algorithms for constructing a Delaunay triangulation[J]. International Journal of Computer & Information Sciences, 1980, 9(3): 219-242.

所在学位评定分委会
物理学
国内图书分类号
P642.22
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544465
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
陆天鑫. 基于近景摄影测量的滑坡表面形变监测研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032831-陆天鑫-地球与空间科学(33974KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陆天鑫]的文章
百度学术
百度学术中相似的文章
[陆天鑫]的文章
必应学术
必应学术中相似的文章
[陆天鑫]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。