中文版 | English
题名

适应蜂窝移动网络的拥塞控制机制研究

其他题名
STUDY OF CONGESTION CONTROL MECHANISM ADAPTED TO CELLULAR MOBILE NETWORKS
姓名
姓名拼音
LI Lili
学号
12032188
学位类型
硕士
学位专业
080902 电路与系统
学科门类/专业学位类别
08 工学
导师
周建二
导师单位
未来网络研究院
论文答辩日期
2023-05-12
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
5G 作为新一代蜂窝网络技术,可提供更低时延和更高吞吐的通信能力。5G 采用密集的小基站覆盖通信范围,而且在部署初期采用非独立部署,和 4G 网络共同组网,这些因素导致用户移动时在不同基站间频繁切换,增加时延。对于拥塞控制机制,时延的增加代表网络拥塞,而 5G 网络中的切换时延并不是拥塞导致的,严重影响拥塞控制机制对网络拥塞情况的判断,进而影响传输性能。为解决上述 5G 网络切换导致的问题,本文针对目前拥塞控制机制的不足,提出了一种适应蜂窝移动网络的基于切换识别的端到端解决方案。主要研究如下:首先,深入分析蜂窝网络框架与应用技术,并对现有拥塞控制算法进行分类总结,归纳出在蜂窝网络中拥塞控制性能下降的原因。然后,提出一种基于跨层信息的用户侧的切换识别算法,识别精度能够保证在 95%。然后基于切换识别能力,研究把切换的相关 信息传递到发送方,并设计切换后及时感知新链路带宽变化的机制。基于切换信 息和链路带宽变化感知,在 BBR 的基础上,设计并实现了适应蜂窝网络切换的拥塞控制机制 BBRHO。通过实验验证,在蜂窝网络中,本文提出的 BBRHO 算法相比于 BBR 算法,RTT 降低 5.1%,吞吐提升 9.55%
关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] 中国互联网络信息中心发布第 50 次中国互联网络发展状况统计报告[J]. 国家图书馆学刊, 2022.
[2] XU D, ZHOU A, ZHANG X, et al. Understanding operational 5G: A first measurement study on its coverage, performance and energy consumption[C]//Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies,architectures, and protocols for computer communication. 2020: 479-494.
[3] CARDWELL N, CHENG Y, GUNN C S, et al. BBR: congestion-based congestion control[J].Communications of the ACM, 2017, 60: 58-66.
[4] ZHANG M, POLESE M, MEZZAVILLA M, et al. Will TCP work in mmWave 5G cellularnetworks?[J]. IEEE Communications Magazine, 2019, 57: 65-71.
[5] PATRA R K, KUMAR M H, SRINIVAS K, et al. User-segregation based channel estimation in the MIMO system[J]. Physical Communication, 2023, 56: 101971.
[6] 邓闯, 郭文明. 移动通信传输网络建设策略探讨[J]. 电子通信与计算机科学, 2023, 5: 117-119.
[7] YILMAZ O N, TEYEB O, ORSINO A. Overview of LTE-NR dual connectivity[J]. IEEECommunications Magazine, 2019, 57: 138-144.
[8] 龙彪, 陈卓怡, 张钰滢. 5G 接入与移动性管理策略增强的应用探索[J]. 移动通信, 2022.
[9] WANG J, ZHENG Y, NI Y, et al. An active-passive measurement study of tcp performance over lte on high-speed rails[C]//Proceedings of the 25th Annual International Conference on Mobile Computing and Networking. 2019: 1-16.
[10] 高羽, 马云飞. 5G 与 LTE 联合组网与 5G 独立组网方式的对比分析[J]. 面向 5G 的 LTE网络创新研讨会 (2017) 论文集, 2017: 33-37.
[11] PAN Y, LI R, XU C. The first 5G-LTE comparative study in extreme mobility[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2022, 6: 1-22.
[12] XU Z, ZHANG Y, SHEN A, et al. Initial Analysis of the Cell Selection Progress in SA of 5GNR[C]. 2019: 495-504.
[13] JACOBSON V. Congestion avoidance and control[J]. ACM SIGCOMM computer communi cation review, 1988, 18: 314-329.
[14] JACOBSON V. Modified TCP congestion avoidance algorithm[J]. Technical report, 1990.
[15] HA S, RHEE I, XU L. CUBIC: a new TCP-friendly high-speed TCP variant[J]. ACM SIGOPSoperating systems review, 2008, 42: 64-74.
[16] ABADLEH A, TAREEF A, BTOUSH A, et al. Comparative Analysis of TCP Congestion Con trol Methods[C]//Proceedings of the 13th International Conference on Information and Com munication Systems. 2022: 474-478.
[17] BRAKMO L S, O’MALLEY S W, PETERSON L L. TCP Vegas: New techniques for congestion detection and avoidance[C]//Proceedings of the conference on Communications architectures, protocols and applications. 1994: 24-35.
[18] JIN C, WEI D X, LOW S H. FAST TCP: motivation, architecture, algorithms, performance[C]//Proceedings of the 2004 IEEE International Conference on Computer Communications. 2004:2490-2501.
[19] LIU S, BASAR T, SRIKANT R. TCP-Illinois: A loss and delay-based congestion control algorithm for high-speed networks[C]//Proceedings of the 1st international conference on Per formance evaluation methodolgies and tools. 2006: 55-es.
[20] TAN K, SONG J, ZHANG Q, et al. A compound TCP approach for high-speed and long distance networks[C]//Proceedings of the 2006 IEEE Conference on Computer Communications. 2006.
[21] KING R, BARANIUK R, RIEDI R. TCP-Africa: An adaptive and fair rapid increase rule for scalable TCP[C]//Proceedings of the IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.: volume 3. 2005: 1838-1848.
[22] ARUN V, ALIZADEH M, BALAKRISHNAN H. Starvation in end-to-end congestion control[C]//Proceedings of the ACM SIGCOMM 2022 Conference. 2022: 177-192.
[23] KATABI D, HANDLEY M, ROHRS C. Congestion control for high bandwidth-delay product networks[C]//Proceedings of the 2002 conference on Applications, technologies, architectures,and protocols for computer communications. 2002: 89-102.
[24] DUKKIPATI N, MCKEOWN N, FRASER A G. RCP-AC: Congestion control to make flows complete quickly in any environment[C]//Proceedings of the 25th IEEE International Confer ence on Computer Communications. 2006: 1-5.
[25] XIA Y, SUBRAMANIAN L, STOICA I, et al. One more bit is enough[C]//Proceedings of the 2005 conference on Applications, technologies, architectures, and protocols for computer communications. 2005: 37-48.
[26] ALIZADEH M, GREENBERG A, MALTZ D A, et al. Data center tcp (dctcp)[C]//Proceedings of the ACM Special Interest Group on Data Communication 2010 Conference. 2010: 63-74.
[27] VAMANAN B, HASAN J, VIJAYKUMAR T. Deadline-aware datacenter tcp (d2tcp)[J]. ACM SIGCOMM Computer Communication Review, 2012, 42: 115-126.
[28] LI Y, MIAO R, LIU H H, et al. HPCC: High precision congestion control[C]//Proceedings of the ACM Special Interest Group on Data Communication. 2019: 44-58.
[29] WINSTEIN K, BALAKRISHNAN H. Tcp ex machina: Computer-generated congestion control[J]. ACM SIGCOMM Computer Communication Review, 2013, 43: 123-134.
[30] DONG M, LI Q, ZARCHY D, et al. PCC: Re-architecting congestion control for consistent high performance[C]//Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation. 2015: 395-408.
[31] DONG M, MENG T, ZARCHY D, et al. PCC vivace: Online-learning congestion control[C]//Proceedings of the 15th USENIX Symposium on Networked Systems Design and Implementa tion. 2018: 343-356.
[32] YAN F Y, MA J, HILL G D, et al. Pantheon: the training ground for Internet congestion control research[C]//Proceedings of the 2018 USENIX AProceedings of the nnual Technical Conference. 2018: 731-743.
[33] JAY N, ROTMAN N, GODFREY B, et al. A deep reinforcement learning perspective on internet congestion control[C]//Proceedings of the International Conference on Machine Learning.2019: 3050-3059.
[34] ABBASLOO S, YEN C Y, CHAO H J. Classic meets modern: A pragmatic learning-based congestion control for the internet[C]//Proceedings of the Annual conference of the ACM Spe cial Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication. 2020: 632-647.
[35] GANJI S, KIM J, KUMAR P. Terra: blockage resilience in outdoor mm-wave networks[C]//Proceedings of the ACM SIGCOMM 2022 Conference Poster and Demo Sessions. 2022: 55-57.
[36] LEE J, LEE H, PARK J. Fair rate control in 5g cellular networks: User equipment-agnostic approach[C]//Proceedings of the 2017 IEEE Global Communications Conference. 2017: 1-7.
[37] LEONG W K, WANG Z, LEONG B. TCP congestion control beyond bandwidth-delay product for mobile cellular networks[C]//Proceedings of the 13th International Conference on emerging Networking EXperiments and Technologies. 2017: 167-179.
[38] GOYAL P, AGARWAL A, NETRAVALI R, et al. ABC: A simple explicit congestion controller for wireless networks[C]//Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation. 2020: 353-372.
[39] IWAI T, NAKAO A. Sliceable Congestion Control for Latency-Aware Bandwidth Allocation in Network Slicing[C]//Proceedings of the International Conference on Communications. 2021:1-6.
[40] SACCO A, FLOCCO M, ESPOSITO F, et al. Owl: Congestion control with partially invisible networks via reinforcement learning[C]//Proceedings of the 2021 IEEE Conference on Com puter Communications. 2021: 1-10.
[41] KIM J, IM Y, LEE K. ECLAT: An ECN Marking System for Latency Guarantee in Cellular Networks[C]//Proceedings of the 2021 IEEE Conference on Computer Communications. 2021:1-10.
[42] BAI J, ZHANG T, XIE G. MACC: Cross-Layer Multi-Agent Congestion Control with Deep Reinforcement Learning[A]. 2022.
[43] LU F, DU H, JAIN A, et al. CQIC: Revisiting cross-layer congestion control for cellular networks[C]//Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications. 2015: 45-50.
[44] LIU X, REN F, SHU R, et al. Mitigating bufferbloat with receiver-based TCP flow control mechanism in cellular networks[M]//Advances in Computer Communications and Networks From Green, Mobile, Pervasive Networking to Big Data Computing. 2022: 65-90.
[45] ZHANG M, MEZZAVILLA M, ZHU J, et al. The bufferbloat problem over intermittent multi Gbps mmwave links[A]. 2016.
[46] AZZINO T, DRAGO M, POLESE M, et al. X-TCP: A cross layer approach for TCP uplinkflows in mmWave networks[C]//Proceedings of the 2017 16th Annual Mediterranean Ad HocNetworking Workshop. 2017: 1-6.
[47] NA W, BAE B, CHO S, et al. DL-TCP: Deep learning-based transmission control protocol fordisaster 5G mmWave networks[J]. IEEE Access, 2019, 7: 145134-145144.
[48] XIE Y, YI F, JAMIESON K. PBE-CC: Congestion control via endpoint-centric, physical-layer bandwidth measurements[C]//Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication. 2020: 451-464.
[49] KHAN S, HUSSAIN A, NAZIR S, et al. Efficient and reliable hybrid deep learning-enabled model for congestion control in 5G/6G networks[J]. Computer Communications, 2022, 182:31-40.
[50] JIANG H, WANG Y, LEE K, et al. Tackling bufferbloat in 3G/4G networks[C]//Proceedings of the 2012 Internet Measurement Conference. 2012: 329-342.
[51] WINSTEIN K, SIVARAMAN A, BALAKRISHNAN H, et al. Stochastic forecasts achieve high throughput and low delay over cellular networks[C]//Proceedings of the 10th USENIX Conference on Networked Systems Design and Implementation. 2013: 2-3.
[52] LEONG W K, XU Y, LEONG B, et al. Mitigating egregious ACK delays in cellular data networks by eliminating TCP ACK clocking[M]//2013 21st IEEE International Conference on Network Protocols. 2013: 1-10.
[53] ZHONG Z, HAMCHAOUI I, FERRIEUX A, et al. CDBE: A cooperative way to improve end-to-end congestion control in mobile network[C]//Proceedings of the 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications. 2018: 216-223.
[54] PARK S, LEE J, KIM J, et al. ExLL: An extremely low-latency congestion control for mobile cellular networks[C]//Proceedings of the 14th International Conference on emerging Networking EXperiments and Technologies. 2018: 307-319.
[55] HAILE H, GRINNEMO K J, HURTIG P, et al. RBBR: a receiver-driven BBR in quic for lowlatency in cellular networks[J]. IEEE Access, 2022, 10: 18707-18719.
[56] ZAKI Y, POTSCH T, CHEN J, et al. Adaptive congestion control for unpredictable cellular networks[M]//Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. 2015: 509-522.
[57] ABBASLOO S, XU Y, CHAO H J. C2TCP: A Flexible Cellular TCP to Meet Stringent Delay Requirements[J]. IEEE Journal on Selected Areas in Communications, 2019, 37: 918-932.
[58] LI W, ZHOU F, CHOWDHURY K R, et al. QTCP: Adaptive Congestion Control with Reinforcement Learning[J]. IEEE Transactions on Network Science and Engineering, 2019, 6:445-458.
[59] HUANG W, LU B, LI H, et al. Configurable Low Delay Congestion Control Scheme for Cellular Networks[C]//Proceedings of the 2021 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. 2021: 1-6.
[60] ABBASLOO S, YEN C Y, CHAO H J. Wanna Make Your TCP Scheme Great for Cellular Networks? Let Machines Do It for You![J]. IEEE Journal on Selected Areas in Communications,2021, 39: 265-279.
[61] ABDULLAH S M, FARAG M S, ABDUL-KADER H, et al. Improving the TCP NewrenoCongestion Avoidance Algorithm on 5G Networks[J]. Journal of Communications, 2023, 18.
[62] BRUHN P, KüHLEWIND M, MUEHLEISEN M. Performance and improvements of TCP CUBIC in low-delay cellular networks[J]. Computer Networks, 2023, 224: 109609.
[63] ARDWELL N, CHENG Y, GUNN C S, et al. BBRv2: A model-based congestion control[J].Proceedings of the Internet Engineering Task Force 102th Meeting, 2018: 1-36.
[64] KIM G H, CHO Y Z. Delay-Aware BBR Congestion Control Algorithm for RTT Fairness Improvement[J]. IEEE Access, 2020, 8: 4099-4109.

所在学位评定分委会
电子科学与技术
国内图书分类号
TP393.0
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544470
专题未来网络研究院
推荐引用方式
GB/T 7714
李莉莉. 适应蜂窝移动网络的拥塞控制机制研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032188-李莉莉-未来网络研究院(4244KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李莉莉]的文章
百度学术
百度学术中相似的文章
[李莉莉]的文章
必应学术
必应学术中相似的文章
[李莉莉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。