[1] COGGON J H, Morrison H E. Electromagnetic investigation of the sea floor[J]. Geophysics. 2007, 35: 476-489.
[2] COX C S, CONSTABLE S C, CHAVE A D, et al. Controlled-source electromagnetic sounding of the oceanic lithosphere[J]. Nature, 1986, 320(6057): 52-54.
[3] CONSTABLE S C, COX C S, CHAVE A D. Offshore electromagnetic surveying techniques[M]//SEG Technical Program Expanded Abstracts 1986. Society of Exploration Geophysicists, 1986: 81-82.
[4] COX C S. Electromagnetic induction in the oceans and inferences on the constitution of the earth[J]. Geophysical Surveys. 1980, 4(1-2): 137-156.
[5] COX C S. On the electrical conductivity of the oceanic lithosphere [J]. Physical Earth Planetary international, 1981, 25(3): 196-201.
[6] CHAVE A D, COX C S. Controlled electromagnetic sources for measuring electrical conductivity beneath the oceans: 1. Forward problem and model study[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B7).
[7] SINHA M C, PATEL P D, UNSWORTH M J, et al. An active source electromagnetic sounding system for marine use[J]. Marine Geophysical Researches, 1990, 12(1 -2).
[8] EIDESMO T, ELLINGSRUD S, MACGREGOR L M, et al. Sea bed logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deep water areas[J]. First Break, 2002, V20: 144-152.
[9] CONSTABLE S, SRNKA L J. An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration[J]. Geophysics, 2007, 72(2): WA3-WA12.
[10] HE Z X, STRACK K, YU G, et al. On reservoir boundary detection with marine CSEM [J]. Applied Geophysics, 2008(03): 181-188+245.
[11] YUAN J, EDWARDS R N. The Assessment of Marine Gas Hydrates Through Electrical Remote Sounding: Hydrate Without a BSR[J]. Geophysical Research Letters, 2000, 27(16).
[12] 沈金松, 陈小宏. 海洋油气勘探中可控源电磁探测法(CSEM)的发展与启示[J]. 石油地球物理勘探, 2009, 44(01): 119-127+130+11.
[13] WEISS C J, CONSTABLE S C. Mapping thin resistors and hydrocarbons with marine EM methods, Part II: Modeling and analysis in 3D[J]. Geophysics, 2006, 71(6): G321- G332.
[14] 何展翔, 余刚. 海洋电磁勘探技术及新进展[J]. 勘探地球物理进展, 2008(01): 2- 9+1.
[15] 何展翔, 杨国世, 陈思琪等. 时频电磁(TFEM)技术: 数据采集参数设计[J]. 石油地球物理勘探, 2019, 54(04): 908-914+727.
[16] 殷长春, 贲放, 刘云鹤, 黄威, 蔡晶. 三维任意各向异性介质中海洋可控源电磁法正演研究[J]. 地球物理学报, 2014, 57(12): 4110-4122.
[17] SASAKI Y, MEJU M A. Useful characteristics of shallow and deep marine CSEM response inferred from 3D finite difference modeling[J]. Geophysics, 2009, 74(5): F67-F76.
[18] 刘长胜, MARK E E, 林君, 等. 海底电性源频率域 CSEM 勘探建模及水深影响分析[J]. 地球物理学报, 2010, 53(08): 1940-1952.
[19] 殷长春, 刘云鹤, 翁爱华, 等. 海洋可控源电磁法空气波研究现状及展望[J]. 吉林大学学报(地球科学版), 2012, 42(05): 1506-1520.
[20] 高妍, 马超, 张向宇. 可燃冰与油气双储层模型的海洋可控源电磁响应特征模拟分析[J]. 石油地球物理勘探, 2022, 57(04): 950-962.
[21] 姜奋勇. 基于非结构有限元的多场源三维海洋可控源电磁并行正演研究[D]. 东华理工大学, 2022.
[22] 刘勇, 李文彬, 邓方顺, 等. 海洋可控源电磁法深海油藏开采监测仿真[J]. 石油地球物理勘探, 2022, 57(01): 237-244.
[23] 董兴朋. 储层厚度和电阻率对海洋可控源电磁法的影响分析[J]. 科学技术与工程, 2012, 12(01): 145-148.
[24] 史增园. 海洋可控源电磁法正演研究与实现[D]. 中国石油大学, 2010.
[25] GUO Z W, DONG H F, LIU J X. Comparison of marine controlled-source electromagnetic data acquisition systems by a reservoir sensitivity index: analyzing the effect of water depths[J]. Acta Oceanologica Sinica, 2016, 35(11): 11.
[26] CONSTABLE S, Ten years of marine CSEM for hydrocarbon exploration, Geophysics 2010, 75 (5): 67–81.
[27] 王猛, 邓明, 余平, 等. 深水拖曳式大功率时频发射与多链缆多分量电磁探测系统[J]. 地球物理学报, 2022, 65(09): 3664-3673.
[28] KONG, F. N. et al. Seabed logging: A possible direct hydrocarbon indicator for deepsea prospects using EM energy [J]. Oil & Gas Journal, 2002 (100): 30-38.
[29] 陈聪, 周 骏, 龚沈光. 海水中电磁波传播特性的研究[J]. 海军工程大学学报, 2004(02): 61-64.
[30] 卓贤军, 张佳炜. 极低频电磁波在海水中的传播特性[J]. 舰船科学技术, 2011, 33(06): 117-120.
[31] LOSETH, LARS, AMUNDSEN, et al. On the signal propagation in marine CSEM[J]. 2007, 10.3997/2214-4609.201401566.
[32] CONSTABLE S, COX C S. Marine controlled-source electromagnetic sounding: 2. The PEGASUS experiment[J]. Journal of Geophysical Research, 1996.
[33] COX C S et al. Controlled source electromagnetic sounding of the oceanic lithosphere[J]. Nature, 1986, 320, 52~ 54.
[34] STREICH R, BECKEN M. Sensitivity of controlled source electromagnetic fields in planarly layered media[J]. Geophysical Journal International, 2011, 187(2).
[35] ATTIAS E, EVANS R L, NAIF S, et al. Conductivity structure of the lithosphere asthenosphere boundary beneath the eastern North American margin[J]. Geochem Geophys Geosyst, 2017, 18, 676-696.
[36] PAN W Y, LI K. Propagation of SLF/ELF Electromagnetic Waves[M]. Berlin, Germany: Springer-Verlag, 2014.
[37] ZENG H R, HE T, LI K. Mode Theory and Propagation of ELF Radio Wave in a Multi layered Oceanic Lithosphere Waveguide[J]. IEEE Transactions on Antennas and Propagation, 2021, PP(99):1-1.
[38] 杨静, 陈小斌, 赵国泽. 人工源极低频电磁波场空间分布的计算[J]. 地震地质, 2022, 44(03): 771-785.
[39] 李肃义, 张熠, 张继昆, 等. 海洋可控源电磁信号噪声压制综述[J]. 石油地球物理勘探, 2020, 55(06): 1383-1394.
[40] 景建恩, 伍忠良, 邓明等. 南海天然气水合物远景区海洋可控源电磁探测试验[J]. 地球物理学报, 2016, 59(07): 2564-2572.
[41] 杜向东. 中国海上地震勘探技术新进展[J]. 石油物探, 2018, 57(03): 321-331.
[42] 底青云, 朱日祥, 薛国强, 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019, 62(06): 2128-2138.
[43] JONNY H, MIKHAIL B. The offshore EM challenge[J]. First Break, 2005, V23: 112- 117.
[44] 胡文宝. 海洋地球物理中的电磁法[J]. 地球物理学进展, 1991(01): 1-8.
[45] 李福元,高妍. 首条横跨南海古扩张脊超深水电磁测量成功完成[J], 科学通报, 2021, 66(Z1): 405-406.
[46] 邓明, 魏文博, 谭捍东, 等. 海底大地电磁信号采集的技术难点[J]. 现代地质, 2002(01): 94-99.
[47] 吕俊军, 陈凯, 苏建业, 等. 海洋中的电磁场及其应用[M]. 上海科学技术出版社, 2020.
[48] 何展翔. 电磁勘探技术的机遇与挑战及发展方向[J]. 物探化探计算技术, 2019, 41(04): 433-447.
[49] 徐凯军, 石双虎, 周家惠. 三维大地电磁激电效应特征研究[J]. 西北地震学报, 2009, 31(01): 31-34.
[50] 朱占升, 谭捍东. 考虑激电效应的二维大地电磁正演[J]. 工程地球物理学报, 2011, 8(04): 433-437.
[51] Pan W, Li K. Propagation of SLF/ELF Electromagnetic Waves[M]. Zhejiang University Press, 2014.
[52] 何继善. 海洋电磁法原理[M]. 高等教育出版社, 2012.
修改评论