[1] MOORE G E. Cramming more components onto integrated circuits[Z]. McGraw-Hill New York. 1965,38: 114–117.
[2] MOORE G E. Progress in digital integrated electronics; proceedings of the Electron devices meeting, F, 1975, pp. 11–13 [C]. Washington, DC.
[3] DENNARD R H, GAENSSLEN F H, YU H N, et al. Design of ion-implanted MOSFET's with very small physical dimensions[J]. IEEE Journal of Solid-State Circuits, 1974, 9(5): 256-268.
[4] SALAHUDDIN S, NI K, DATTA S. The era of hyper-scaling in electronics[J]. Nature Electronics, 2018, 1(8): 442-450.
[5] HU C. Modern semiconductor devices for integrated circuits[M]. Prentice Hall Upper Saddle River, NJ, 2010.
[6] HISAMOTO D, LEE W C, KEDZIERSKI J, et al. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm[J]. IEEE Transactions on Electron Devices, 2000, 47(12): 2320-2325.
[7] INSTRUMENTS T. CMOS power consumption and cpd calculation[J]. SCAA035B June, 1997
[8] SALAHUDDIN S, DATTA S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices[J]. Nano Letters, 2008, 8(2): 405-410.
[9] SEABAUGH A C, ZHANG Q. Low-voltage tunnel transistors for beyond CMOS logic[J]. Proceedings of the IEEE, 2010, 98(12): 2095-2110.
[10] BERNSTEIN K, CAVIN R K, POROD W, et al. Device and architecture outlook for beyond CMOS switches[J]. Proceedings of the IEEE, 2010, 98(12): 2169-2184.
[11] IONESCU A M. Negative capacitance gives a positive boost[J]. Nature Nanotechnology, 2018, 13(1): 7-8.
[12] BöSCKE T, MüLLER J, BRäUHAUS D, et al. Ferroelectricity in hafnium oxide thin films[J]. Applied Physics Letters, 2011, 99(10): 102903.
[13] MüLLER J, SCHRöDER U, BöSCKE T, et al. Ferroelectricity in yttrium-doped hafnium oxide[J]. Journal of Applied Physics, 2011, 110(11): 114113.
[14] SCOTT J. Ferroelectrics go bananas[J]. Journal of Physics: Condensed Matter, 2007, 20(2): 021001.
[15] FOUSEK J. Joseph Valasek and the discovery of ferroelectricity ; proceedings of the Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics, F, 1994 [C]. IEEE.
[16] FUJIMOTO K, KAWANO T, ONOE A, et al. 1 Tbit/inch 2 very high-density recording in 60polycrystalline PZT/SRO/SiO2/Si thin film; Proceedings of the 2008 17th IEEE International Symposium on the Applications of Ferroelectrics, F, 2008 [C]. IEEE.
[17] PANOMSUWAN G, TAKAI O, SAITO N. Enhanced memory window of Au/BaTiO3/SrTiO3/Si (001) MFIS structure with high c-axis orientation for non-volatile memory applications[J]. Applied Physics A, 2012, 108: 337-342.
[18] LI B, LI S, WANG H, et al. An electronic synapse based on 2D ferroelectric CuInP2S6[J]. Advanced Electronic Materials, 2020, 6(12): 2000760.
[19] XU Y. Ferroelectric materials and their applications[M]. Elsevier, 2013.
[20] SCHROEDER U, PARK M H, MIKOLAJICK T, et al. The fundamentals and applications of ferroelectric HfO2[J]. Nature Reviews Materials, 2022, 7(8): 653-669.
[21] GUAN S H, ZHANG X J, LIU Z P. Energy landscape of zirconia phase transitions[J]. Journal of the American Chemical Society, 2015, 137(25): 8010-8013.
[22] KERSCH A, FALKOWSKI M. New Low‐Energy Crystal Structures in ZrO2 and HfO2[J]. Physica Status Solidi (RRL)–Rapid Research Letters, 2021, 15(5): 2100074.
[23] HUAN T D, SHARMA V, ROSSETTI JR G A, et al. Pathways towards ferroelectricity in hafnia[J]. Physical Review B, 2014, 90(6): 064111.
[24] WEI Y, NUKALA P, SALVERDA M, et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films[J]. Nature Materials, 2018, 17(12): 1095-1100.
[25] MATERLIK R, KüNNETH C, KERSCH A. The origin of ferroelectricity in Hf1−xZrxO2: A computational investigation and a surface energy model[J]. Journal of Applied Physics, 2015, 117(13): 134109.
[26] OHTAKA O, FUKUI H, KUNISADA T, et al. Phase relations and volume changes of hafnia under high pressure and high temperature[J]. Journal of the American Ceramic Society, 2001, 84(6): 1369-1373.
[27] OHTAKA O, FUKUI H, KUNISADA T, et al. Phase relations and equations of state of ZrO2 under high temperature and high pressure[J]. Physical Review B, 2001, 63(17): 174108.
[28] CLIMA S, WOUTERS D, ADELMANN C, et al. Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: A first principles insight[J]. Applied Physics Letters, 2014, 104(9): 092906.
[29] SANG X, GRIMLEY E D, SCHENK T, et al. On the structural origins of ferroelectricity in HfO2 thin films[J]. Applied Physics Letters, 2015, 106(16): 162905.
[30] LUO Q, CHENG Y, YANG J, et al. A highly CMOS compatible hafnia-based ferroelectric diode[J]. Nature Communications, 2020, 11(1): 1391.
[31] MATERANO M, LOMENZO P D, KERSCH A, et al. Interplay between oxygen defects and dopants: effect on structure and performance of HfO2-based ferroelectrics[J]. Inorganic Chemistry Frontiers, 2021, 8(10): 2650-2672.
[32] PARK M H, LEE Y H, HWANG C S. Understanding ferroelectric phase formation in doped HfO2 thin films based on classical nucleation theory[J]. Nanoscale, 2019, 11(41): 19477-6119487.
[33] PARK M H, LEE Y H, MIKOLAJICK T, et al. Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides[J]. Advanced Electronic Materials, 2019, 5(3): 1800522.
[34] LI T, DONG J, ZHANG N, et al. Interface control of tetragonal ferroelectric phase in ultrathin Si-doped HfO2 epitaxial films[J]. Acta Materialia, 2021, 207: 116696.
[35] SCHROEDER U, YURCHUK E, MüLLER J, et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide[J]. Japanese Journal of Applied Physics, 2014, 53(8S1): 08LE02.
[36] MULLER J, BOSCKE T S, SCHRODER U, et al. Ferroelectricity in simple binary ZrO2 and HfO2[J]. Nano letters, 2012, 12(8): 4318-4323.
[37] CAI Y, ZHANG Q, ZHANG Z, et al. Influence of Applied Stress on the Ferroelectricity of Thin Zr-Doped HfO2 Films[J]. Applied Sciences, 2021, 11(9): 4295.
[38] MUELLER S, ADELMANN C, SINGH A, et al. Ferroelectricity in Gd-doped HfO2 thin films[J]. ECS Journal of Solid State Science and Technology, 2012, 1(6): N123.
[39] PARK M H, CHUNG C C, SCHENK T, et al. Effect of Annealing Ferroelectric HfO2 Thin Films: In Situ, High Temperature X‐Ray Diffraction[J]. Advanced Electronic Materials, 2018, 4(7): 1800091.
[40] LIU S, HANRAHAN B M. Effects of growth orientations and epitaxial strains on phase stability of HfO2 thin films[J]. Physical Review Materials, 2019, 3(5): 054404.
[41] MIMURA T, SHIMIZU T, KIGUCHI T, et al. Effects of heat treatment and in situ high-temperature X-ray diffraction study on the formation of ferroelectric epitaxial Y-doped HfO2film[J]. Japanese Journal of Applied Physics, 2019, 58(SB): SBBB09.
[42] ESTANDIA S, DIX N, GAZQUEZ J, et al. Engineering ferroelectric Hf0.5Zr0.5O2 thin films by epitaxial stress[J]. ACS Applied Electronic Materials, 2019, 1(8): 1449-1457.
[43] ESTANDíA S, DIX N, CHISHOLM M F, et al. Domain-matching epitaxy of ferroelectric Hf0.5Zr0.5O2(111)on La2/3Sr1/3MnO3(001)[J].Crystal Growth & Design, 2020, 20(6): 3801-3806.
[44] LIU K, JIN F, ZHANG X, et al. Anisotropic Strain‐Mediated Symmetry Engineering and Enhancement of Ferroelectricity in Hf0.5Zr0.5O2/La0.67Sr0.33MnO3 Heterostructures[J].Advanced Functional Materials, 2022, 33(9)
[45] NUKALA P, WEI Y, DE HAAS V, et al. Guidelines for the stabilization of a polar rhombohedral phase in epitaxial Hf0.5Zr0.5O2 thin films[J]. Ferroelectrics, 2020, 569(1): 148-163.
[46] Stabilization of the epitaxial rhombohedral ferroelectric phase in ZrO2 by surface energy[J]. Physical Review Materials ,2022, 6(7): 074406
[47] SILVA J P B, NEGREA R F, ISTRATE M C, et al. Wake-up Free Ferroelectric Rhombohedral Phase in Epitaxially Strained ZrO2 Thin Films[J]. ACS Appl Mater Interfaces, 2021, 13(43): 51383-51392.
[48] NUKALA P, ANTOJA-LLEONART J, WEI Y, et al. Direct epitaxial growth of polar (1–x)HfO2–(x)ZrO2 ultrathin films on silicon[J]. ACS Applied Electronic Materials, 2019, 1(12): 2585-2593.
[49] GEORGE S M. Atomic layer deposition: an overview[J]. Chemical reviews, 2010, 110(1): 111-131.
[50] EASON R. Pulsed laser deposition of thin films: applications-led growth of functional materials[M]. John Wiley & Sons, 2007.
[51] WASA K, HAYAKAWA S. Handbook of sputter deposition technology[J]. 1992
[52] HENCH L, WILSON J. The chemical processing of silicates for biological applications-a review[J]. MRS Online Proceedings Library, 1990, 180: 1061-1071.
[53] ASHFOLD M N, CLAEYSSENS F, FUGE G M, et al. Pulsed laser ablation and deposition of thin films[J]. Chemical Society Reviews, 2004, 33(1): 23-31.
[54] GIESSIBL F J. Advances in atomic force microscopy[J]. Reviews of modern physics, 2003, 75(3): 949.
[55] BUTT H J, CAPPELLA B, KAPPL M. Force measurements with the atomic force microscope: Technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1-6): 1-152.
[56] SOERGEL E. Piezoresponse force microscopy (PFM)[J]. Journal of Physics D: Applied Physics, 2011, 44(46): 464003.
[57] GRUVERMAN A, KALININ S V. Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics[J]. Journal of Materials Science, 2006, 41: 107-116.
[58] CHAUHAN A, CHAUHAN P. Powder XRD technique and its applications in science and technology[J]. J Anal Bioanal Tech, 2014, 5(5): 1-5.
[59] LEE M. Transmission electron microscopy (TEM) of Earth and planetary materials: A review[J]. Mineralogical Magazine, 2010, 74(1): 1-27.
[60] LIN Y, ZHOU M, TAI X, et al. Analytical transmission electron microscopy for emerging advanced materials[J]. Matter, 2021, 4(7): 2309-2339.
[61] SAWYER C B, TOWER C. Rochelle salt as a dielectric[J]. Physical Review, 1930, 35(3): 269.
修改评论