中文版 | English
题名

ZrO2 基外延铁电薄膜制备及性能研究

其他题名
PREPARATION AND PROPERTIES OF ZrO2- BASED EPITAXIAL FERROELECTRIC THIN FILMS
姓名
姓名拼音
XU Zengxu
学号
12132947
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
陈朗
导师单位
物理系
论文答辩日期
2023-05-25
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  量子通信、云计算、物联网、人工智能等高新技术的发展对存储芯片、逻辑器件提出了更高的要求。集成电路发展到纳米时代,传统材料和平面式结构已陷入发展瓶颈,小尺寸带来的漏电及隧穿效应严重阻碍摩尔定律发展及器件的微型化。在高介电常数 HfO2、ZrO2 基材料中意外发现的铁电和反铁电性为后摩尔时代晶体管制备以及新型存储器的发展带来了一个全新的解决方案。以往研究和制备的铪锆基铁电薄膜为多晶多相的,与此相比外延薄膜有更少的缺陷和更可控微的观结构,更容易揭示铁电机理及调控铁电性能。

  本文主要基于激光脉冲沉积技术,制备高质量外延铁电 ZrO2薄膜,探寻 ZrO2薄 膜生长过程中温度、氧压、厚度等因素对薄膜相结构及铁电性能的影响,研究 ZrO2 外延膜中 Hf 掺杂对铁电相的影响,探究 ZrO2与衬底之间的外延关系。实验结果表明,生长条件为 800 ℃、10 Pa 和 10 nm 时,所制备的 ZrO2铁电薄膜具有良好的微观和宏观铁电性能,剩余极化值可达 55 μC/cm2。在探索不同 Hf 含量掺杂和衬底取向对铪锆氧薄膜相结构和性能的影响中发现纯的 ZrO2 体系是铁电态,而不是以往报道的反铁电态,且相比于其他含量的铪锆氧薄膜,ZrO2 薄膜中有最大的铁电剩余极化值。此外研究发现不同的面内原子排列关系对铁电相含量和性能有显著影响,铁电相 ZrO2 与底部 LSMO 具有以下外延关系:ZrO2[02 - 2]//LSMO[001]。这种特殊的外延关系致使 STO(110)衬底上外延的 ZrO2 有最高的铁电相比例以及最佳的铁电性。

  本文通过对铁电 ZrO2 薄膜生长条件和结构性质的探究得出了最佳生长条件, 并且深入研究了铁电相结构特性及衬底取向对氧化锆薄膜相组成的影响,为该材料在电子器件领域的应用奠定了基础。 

其他摘要

  The development of new high-tech industries such as quantum communication, cloud computing, the Internet of Things, and artificial intelligence have created higher demands for storage chips and logic devices. In nano-age integrated circuits, the development of traditional materials and planar structures are hindered. The leakage and tunneling effects caused by small size seriously hinder the development of Moore's Law and the miniaturization of devices.The unexpected ferroelectric and antiferroelectric properties discovered in high dielectric constant HfO2 and ZrO2 materials have brought a new solution to post-Moore's Law transistor development and new type storage. The hafnium zirconium based ferroelectric films studied in the past are usually polycrystalline and polyphase. Compared with polycrystalline films, the epaxial films have fewer defects and more controllable microstructure, and it is easier to reveal the ferroelectric mechanism and the control of ferroelectric properties.

  In this paper, laser pulse deposition technology is used to prepare high-quality epitaxial ferroelectric ZrO2 film, explore the influence of temperature, oxygen pressure, thickness and other factors on the film phase structure and ferroelectric properties during the growth process of ZrO2 film, study the influence of Hf doping amount on the ferroelectric phase, explore the epitaxial relationship of ZrO2.Experimental results show that under growth conditions of 800 ℃, 10 Pa, and 10 nm, the prepared ZrO2 ferroelectric film has good microscopic and macroscopic ferroelectric properties, with a remanent polarization value of up to 55 μC/cm2 . The prepared ZrO2 film is in a ferroelectric state, rather than the antiferroelectric state reported in the past. Compared with the films with different Hf doping amounts, the pure ZrO2 film has the largest ferroelectric remanent polarization value. In addition, it is found that different in-plane atomic arrangement relationships have significant effects on ferroelectric phase content and properties. It is found that ferroelectric phase ZrO2 has the following epitaxial relationship with bottom LSMO:ZrO2[02-2]//LSMO[001].This special epitaxial relationship results in the highest ferroelectric phase content and the best ferroelectric properties of ZrO2 epitaxial on STO(110) substrates.

  In this paper, the optimum growth conditions of ferroelectric ZrO2 thin film were obtained, the ferroelectric phase structure was investigated, and the influence of substrate orientation on the phase composition of zirconia thin film was studied, which laid the foundation for the application of this material in the field of electronic devices.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] MOORE G E. Cramming more components onto integrated circuits[Z]. McGraw-Hill New York. 1965,38: 114–117.
[2] MOORE G E. Progress in digital integrated electronics; proceedings of the Electron devices meeting, F, 1975, pp. 11–13 [C]. Washington, DC.
[3] DENNARD R H, GAENSSLEN F H, YU H N, et al. Design of ion-implanted MOSFET's with very small physical dimensions[J]. IEEE Journal of Solid-State Circuits, 1974, 9(5): 256-268.
[4] SALAHUDDIN S, NI K, DATTA S. The era of hyper-scaling in electronics[J]. Nature Electronics, 2018, 1(8): 442-450.
[5] HU C. Modern semiconductor devices for integrated circuits[M]. Prentice Hall Upper Saddle River, NJ, 2010.
[6] HISAMOTO D, LEE W C, KEDZIERSKI J, et al. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm[J]. IEEE Transactions on Electron Devices, 2000, 47(12): 2320-2325.
[7] INSTRUMENTS T. CMOS power consumption and cpd calculation[J]. SCAA035B June, 1997
[8] SALAHUDDIN S, DATTA S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices[J]. Nano Letters, 2008, 8(2): 405-410.
[9] SEABAUGH A C, ZHANG Q. Low-voltage tunnel transistors for beyond CMOS logic[J]. Proceedings of the IEEE, 2010, 98(12): 2095-2110.
[10] BERNSTEIN K, CAVIN R K, POROD W, et al. Device and architecture outlook for beyond CMOS switches[J]. Proceedings of the IEEE, 2010, 98(12): 2169-2184.
[11] IONESCU A M. Negative capacitance gives a positive boost[J]. Nature Nanotechnology, 2018, 13(1): 7-8.
[12] BöSCKE T, MüLLER J, BRäUHAUS D, et al. Ferroelectricity in hafnium oxide thin films[J]. Applied Physics Letters, 2011, 99(10): 102903.
[13] MüLLER J, SCHRöDER U, BöSCKE T, et al. Ferroelectricity in yttrium-doped hafnium oxide[J]. Journal of Applied Physics, 2011, 110(11): 114113.
[14] SCOTT J. Ferroelectrics go bananas[J]. Journal of Physics: Condensed Matter, 2007, 20(2): 021001.
[15] FOUSEK J. Joseph Valasek and the discovery of ferroelectricity ; proceedings of the Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics, F, 1994 [C]. IEEE.
[16] FUJIMOTO K, KAWANO T, ONOE A, et al. 1 Tbit/inch 2 very high-density recording in 60polycrystalline PZT/SRO/SiO2/Si thin film; Proceedings of the 2008 17th IEEE International Symposium on the Applications of Ferroelectrics, F, 2008 [C]. IEEE.
[17] PANOMSUWAN G, TAKAI O, SAITO N. Enhanced memory window of Au/BaTiO3/SrTiO3/Si (001) MFIS structure with high c-axis orientation for non-volatile memory applications[J]. Applied Physics A, 2012, 108: 337-342.
[18] LI B, LI S, WANG H, et al. An electronic synapse based on 2D ferroelectric CuInP2S6[J]. Advanced Electronic Materials, 2020, 6(12): 2000760.
[19] XU Y. Ferroelectric materials and their applications[M]. Elsevier, 2013.
[20] SCHROEDER U, PARK M H, MIKOLAJICK T, et al. The fundamentals and applications of ferroelectric HfO2[J]. Nature Reviews Materials, 2022, 7(8): 653-669.
[21] GUAN S H, ZHANG X J, LIU Z P. Energy landscape of zirconia phase transitions[J]. Journal of the American Chemical Society, 2015, 137(25): 8010-8013.
[22] KERSCH A, FALKOWSKI M. New Low‐Energy Crystal Structures in ZrO2 and HfO2[J]. Physica Status Solidi (RRL)–Rapid Research Letters, 2021, 15(5): 2100074.
[23] HUAN T D, SHARMA V, ROSSETTI JR G A, et al. Pathways towards ferroelectricity in hafnia[J]. Physical Review B, 2014, 90(6): 064111.
[24] WEI Y, NUKALA P, SALVERDA M, et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films[J]. Nature Materials, 2018, 17(12): 1095-1100.
[25] MATERLIK R, KüNNETH C, KERSCH A. The origin of ferroelectricity in Hf1−xZrxO2: A computational investigation and a surface energy model[J]. Journal of Applied Physics, 2015, 117(13): 134109.
[26] OHTAKA O, FUKUI H, KUNISADA T, et al. Phase relations and volume changes of hafnia under high pressure and high temperature[J]. Journal of the American Ceramic Society, 2001, 84(6): 1369-1373.
[27] OHTAKA O, FUKUI H, KUNISADA T, et al. Phase relations and equations of state of ZrO2 under high temperature and high pressure[J]. Physical Review B, 2001, 63(17): 174108.
[28] CLIMA S, WOUTERS D, ADELMANN C, et al. Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: A first principles insight[J]. Applied Physics Letters, 2014, 104(9): 092906.
[29] SANG X, GRIMLEY E D, SCHENK T, et al. On the structural origins of ferroelectricity in HfO2 thin films[J]. Applied Physics Letters, 2015, 106(16): 162905.
[30] LUO Q, CHENG Y, YANG J, et al. A highly CMOS compatible hafnia-based ferroelectric diode[J]. Nature Communications, 2020, 11(1): 1391.
[31] MATERANO M, LOMENZO P D, KERSCH A, et al. Interplay between oxygen defects and dopants: effect on structure and performance of HfO2-based ferroelectrics[J]. Inorganic Chemistry Frontiers, 2021, 8(10): 2650-2672.
[32] PARK M H, LEE Y H, HWANG C S. Understanding ferroelectric phase formation in doped HfO2 thin films based on classical nucleation theory[J]. Nanoscale, 2019, 11(41): 19477-6119487.
[33] PARK M H, LEE Y H, MIKOLAJICK T, et al. Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides[J]. Advanced Electronic Materials, 2019, 5(3): 1800522.
[34] LI T, DONG J, ZHANG N, et al. Interface control of tetragonal ferroelectric phase in ultrathin Si-doped HfO2 epitaxial films[J]. Acta Materialia, 2021, 207: 116696.
[35] SCHROEDER U, YURCHUK E, MüLLER J, et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide[J]. Japanese Journal of Applied Physics, 2014, 53(8S1): 08LE02.
[36] MULLER J, BOSCKE T S, SCHRODER U, et al. Ferroelectricity in simple binary ZrO2 and HfO2[J]. Nano letters, 2012, 12(8): 4318-4323.
[37] CAI Y, ZHANG Q, ZHANG Z, et al. Influence of Applied Stress on the Ferroelectricity of Thin Zr-Doped HfO2 Films[J]. Applied Sciences, 2021, 11(9): 4295.
[38] MUELLER S, ADELMANN C, SINGH A, et al. Ferroelectricity in Gd-doped HfO2 thin films[J]. ECS Journal of Solid State Science and Technology, 2012, 1(6): N123.
[39] PARK M H, CHUNG C C, SCHENK T, et al. Effect of Annealing Ferroelectric HfO2 Thin Films: In Situ, High Temperature X‐Ray Diffraction[J]. Advanced Electronic Materials, 2018, 4(7): 1800091.
[40] LIU S, HANRAHAN B M. Effects of growth orientations and epitaxial strains on phase stability of HfO2 thin films[J]. Physical Review Materials, 2019, 3(5): 054404.
[41] MIMURA T, SHIMIZU T, KIGUCHI T, et al. Effects of heat treatment and in situ high-temperature X-ray diffraction study on the formation of ferroelectric epitaxial Y-doped HfO2film[J]. Japanese Journal of Applied Physics, 2019, 58(SB): SBBB09.
[42] ESTANDIA S, DIX N, GAZQUEZ J, et al. Engineering ferroelectric Hf0.5Zr0.5O2 thin films by epitaxial stress[J]. ACS Applied Electronic Materials, 2019, 1(8): 1449-1457.
[43] ESTANDíA S, DIX N, CHISHOLM M F, et al. Domain-matching epitaxy of ferroelectric Hf0.5Zr0.5O2(111)on La2/3Sr1/3MnO3(001)[J].Crystal Growth & Design, 2020, 20(6): 3801-3806.
[44] LIU K, JIN F, ZHANG X, et al. Anisotropic Strain‐Mediated Symmetry Engineering and Enhancement of Ferroelectricity in Hf0.5Zr0.5O2/La0.67Sr0.33MnO3 Heterostructures[J].Advanced Functional Materials, 2022, 33(9)
[45] NUKALA P, WEI Y, DE HAAS V, et al. Guidelines for the stabilization of a polar rhombohedral phase in epitaxial Hf0.5Zr0.5O2 thin films[J]. Ferroelectrics, 2020, 569(1): 148-163.
[46] Stabilization of the epitaxial rhombohedral ferroelectric phase in ZrO2 by surface energy[J]. Physical Review Materials ,2022, 6(7): 074406
[47] SILVA J P B, NEGREA R F, ISTRATE M C, et al. Wake-up Free Ferroelectric Rhombohedral Phase in Epitaxially Strained ZrO2 Thin Films[J]. ACS Appl Mater Interfaces, 2021, 13(43): 51383-51392.
[48] NUKALA P, ANTOJA-LLEONART J, WEI Y, et al. Direct epitaxial growth of polar (1–x)HfO2–(x)ZrO2 ultrathin films on silicon[J]. ACS Applied Electronic Materials, 2019, 1(12): 2585-2593.
[49] GEORGE S M. Atomic layer deposition: an overview[J]. Chemical reviews, 2010, 110(1): 111-131.
[50] EASON R. Pulsed laser deposition of thin films: applications-led growth of functional materials[M]. John Wiley & Sons, 2007.
[51] WASA K, HAYAKAWA S. Handbook of sputter deposition technology[J]. 1992
[52] HENCH L, WILSON J. The chemical processing of silicates for biological applications-a review[J]. MRS Online Proceedings Library, 1990, 180: 1061-1071.
[53] ASHFOLD M N, CLAEYSSENS F, FUGE G M, et al. Pulsed laser ablation and deposition of thin films[J]. Chemical Society Reviews, 2004, 33(1): 23-31.
[54] GIESSIBL F J. Advances in atomic force microscopy[J]. Reviews of modern physics, 2003, 75(3): 949.
[55] BUTT H J, CAPPELLA B, KAPPL M. Force measurements with the atomic force microscope: Technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1-6): 1-152.
[56] SOERGEL E. Piezoresponse force microscopy (PFM)[J]. Journal of Physics D: Applied Physics, 2011, 44(46): 464003.
[57] GRUVERMAN A, KALININ S V. Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics[J]. Journal of Materials Science, 2006, 41: 107-116.
[58] CHAUHAN A, CHAUHAN P. Powder XRD technique and its applications in science and technology[J]. J Anal Bioanal Tech, 2014, 5(5): 1-5.
[59] LEE M. Transmission electron microscopy (TEM) of Earth and planetary materials: A review[J]. Mineralogical Magazine, 2010, 74(1): 1-27.
[60] LIN Y, ZHOU M, TAI X, et al. Analytical transmission electron microscopy for emerging advanced materials[J]. Matter, 2021, 4(7): 2309-2339.
[61] SAWYER C B, TOWER C. Rochelle salt as a dielectric[J]. Physical Review, 1930, 35(3): 269.

所在学位评定分委会
物理学 ; 材料与化工
国内图书分类号
0484
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544472
专题理学院_物理系
推荐引用方式
GB/T 7714
徐曾徐. ZrO2 基外延铁电薄膜制备及性能研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132947-徐曾徐-物理系.pdf(10661KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[徐曾徐]的文章
百度学术
百度学术中相似的文章
[徐曾徐]的文章
必应学术
必应学术中相似的文章
[徐曾徐]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。