中文版 | English
题名

Li3N对固态电解质Li2ZrCl6与锂金属界面优化作用的研究

其他题名
RESEARCH ON THE OPTIMIZATION EFFECT OF Li3N ON THE INTERFACE BETWEEN SOLID-STATE ELECTROLYTE Li2ZrCl6 AND LITHIUM METAL
姓名
姓名拼音
DI Longbang
学号
12132918
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
韩松柏
导师单位
前沿与交叉科学研究院
论文答辩日期
2023-05-24
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

全固态锂金属电池由于具有较高的安全性能和高能量密度被认为是最有应用前景的下一代储能和动力电池。开发出性能优良的固态电解质是发展全固态锂金属电池的难点之一。氯化物固态电解质Li2ZrCl6LZC)由于其高室温离子电导率、高氧化稳定性和低成本等特性而受到了国内外学者的广泛关注,但是由于LZC还原稳定性较差,和锂金属接触后会直接发生反应,这限制了其在全固态锂金属电池中的应用。为了攻克该难题,本文首次系统研究了LZC和锂金属界面的失效机制并开展了利用Li3N进行界面保护的研究工作。

本文利用球磨的方式合成了LZC,对其电化学性能进行了测试。重点研究了LZCLi金属的反应现象,对反应产物进行了表征分析,监测了电化学循环过程中LZC和锂金属负极界面的演化过程。发现界面不但无法自限,而且会持续恶化导致失效。通过对LZC和锂金属的界面失效机制的分析,提出了一种优化策略。

本文选择Li3N作为保护层来进行界面优化的策略。基于固态烧结方法制备的α-Li3N具有较高的室温离子电导率,并且与Li接触非常稳定,对于LZCLi金属界面同时产生优化作用,可有效防止LZCLi金属在电池循环中发生反应。在α-Li3N保护层的作用下,LZC能够在对称锂金属电池中实现稳定的循环,并能够与常用正极材料组装成全固态锂金属电池,并实现更好的循环性能。

综上所述,本文通过合理的材料选择和界面优化,较好地解决了LZC还原稳定性差、锂金属负极循环不稳定等问题。本工作为利用LZC电解质和锂金属负极开发高性能全固态锂金属电池提供了有效的策略。

其他摘要

All-solid-state lithium-metal batteries (ASSLMBs) are considered to be the most promising next-generation batteries due to their high safety performance and high energy density. The development of solid electrolytes with excellent performance is the key to the development of ASSLMBs. The chloride solid-state electrolyte Li2ZrCl6 (LZC) has attracted extensive attention because of its high ionic conductivity at room temperature, high oxidation stability and low cost. However, owing to poor reduction stability, LZC will be reduced upon contact with lithium metal, limiting the application in ASSLMBs. To solve this problem, we studied the degradation mechanism of interface between LZC and lithium metal, and proposed using Li3N as an interface protection strategy.

In this work, LZC was synthesized by mechanochemical milling. Its electrochemical performance was analyzed, focusing particularly on the reaction products of LZC and lithium metal, and the interface between LZC and lithium-metal anode during cycling. During cycling, the interface deteriorated continuously. By analyzing the mechanism of its interface degradation, an optimization strategy was proposed.

To solve the problem of the LZC/lithium-metal interface, Li3N was selected as a protective layer. α-Li3N prepared by sintering has high ionic conductivity at room temperature. It effectively prevents the reaction between LZC and lithium metal during cycling. Moreover, α-Li3N shows an excellent optimization effect on the LZC/lithium-metal anode interface. The use of an α-Li3N protective layer enables LZC to form ASSLMBs with common cathode materials, and achieve better cycling performance. The use of an α-Li3N protective layer also enables LZC to achieve stable cycling in symmetrical lithium-metal batteries, and to form state-of-the-art ASSLMBs with common cathode materials.

In summary, through reasonable material selection and interface optimization, the problems of poor reduction stability of LZC and unstable cycling of lithium-metal anode are well solved. This work provides an effective strategy for the development of high-performance ASSLMBs with LZC electrolyte and lithium-metal anode.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] POIZOT P, DOLHEM F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices[J]. Energy & Environmental Science, 2011, 4(6): 2003-2019.
[2] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
[3] SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430.
[4] PERRIN M, SAINT-DRENAN Y M, MATTERA F, et al. Lead-acid batteries in stationary applications: competitors and new markets for large penetration of renewable energies[J]. Journal of Power Sources, 2005, 144(2): 402-410.
[5] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[6] LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): 1-11.
[7] WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
[8] KIM K J, BALAISH M, WADAGUCHI M, et al. Solid-State Li-Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces[J]. Advanced Energy Materials, 2020, 11(1).
[9] KIM H, JEONG G, KIM Y U, et al. Metallic anodes for next generation secondary batteries[J]. Chemical Society Reviews, 2013, 42(23): 9011-9034.
[10] PELED E. The Electrochemical-Behavior of Alkali and Alkaline-Earth Metals in Non-Aqueous Battery Systems—The Solid Electrolyte Interphase Model[J]. Journal of The Electrochemical Society, 1979, 126(12): 2047-2051.
[11] PELED E, GOLODNITSKY D, ARDEL G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of The Electrochemical Society, 1997, 144(8): L208-L210.
[12] JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016, 1: 1-4.
[13] LEWIS G N, KEYES F G. The potential of the potassium electrode[J]. Journal of the American Chemical Society, 1912, 34(2): 119-122.
[14] TOBIAS C W. Electrochemical Studies in Cyclic Carbonate Esters[J]. Journal of the Electrochemical Society, 1957, 104(8): C171-C178.
[15] ARMAND M B, WHITTINGHAM M S, HUGGINS R A. The iron cyanide bronzes[J]. Materials Research Bulletin, 1972, 7(2): 101-107.
[16] WHITTINGHAM M S. Electrical Energy-Storage and Intercalation Chemistry[J]. Science, 1976, 192(4244): 1126-1127.
[17] MIZUSHIMA K, JONES P C, WISEMAN P J, et al. LixCoO2 (0[18] THACKERAY M M, DAVID W I F, BRUCE P G, et al. Lithium Insertion into Manganese Spinels[J]. Materials Research Bulletin, 1983, 18(4): 461-472.
[19] Battery revolution to evolution[J]. Nature Energy, 2019, 4(11): 893.
[20] SALKIND A J. Advances in battery technologies and markets: Material science aspects[J]. MRS Online Proceedings Library, 1998, 496: 3-14.
[21] FUNKE K. Solid State Ionics: from Michael Faraday to green energy-the European dimension[J]. Science and Technology of Advanced Materials, 2013, 14(4): 1-50.
[22] YUNG-FANG YU Y, KUMMER J T. Ion exchange properties of and rates of ionic diffusion in beta-alumina[J]. Journal of Inorganic and Nuclear Chemistry, 1967, 29(9): 2453-2475.
[23] KUMMER J T, WEBER N. A Sodium-Sulfur Secondary Battery[Z]. SAE International. 1967.
[24] WEBER N. A thermoelectric device based on beta-alumina solid electrolyte[J]. Energy Conversion, 1974, 14(1): 1-8.
[25] KNÖDLER R. Thermal properties of sodium-sulphur cells[J]. Journal of Applied Electrochemistry, 1984, 14(1): 39-46.
[26] SURESH C, LAL H B, SHAHI K. An electrochemical cell with solid, super-ionic Ag4KI5 as the electrolyte[J]. Journal of Physics D: Applied Physics, 1974, 7(1): 194.
[27] REUTER B, HARDEL K. Silbersulfidbromid und Silbersulfidjodid[J]. Angewandte Chemie, 1960, 72: 138-139.
[28] DELAHAY P, VIJH A K. Advances in Electrochemistry and Electrochemical Engineering[J]. Journal of The Electrochemical Society, 1970, 117(10): 367C.
[29] DUDNEY N J, BATES J B, ZUHR R A, et al. Sputtering of lithium compounds for preparation of electrolyte thin films[J]. Solid State Ionics, 1992, 53-56: 655-661.
[30] ZHANG X, SAHRAEI E, WANG K. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts[J]. Scientific Reports, 2016, 6(1): 32578.
[31] YADA C, BRASSE C. Better batteries with Solid-state instead of liquid-based electrolytes[J]. ATZelektronik worldwide, 2014, 9(3): 10-15.
[32] DUNN B, KAMATH H, TARASCON J-M. Electrical Energy Storage for the Grid: A Battery of Choices[J]. Science, 2011, 334(6058): 928-935.
[33] KATO Y, SHIOTANI S, MORITA K, et al. All-Solid-State Batteries with Thick Electrode Configurations[J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 607-613.
[34] ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252.
[35] OHNO S, BANIK A, DEWALD G F, et al. Materials design of ionic conductors for solid state batteries[J]. Progress in Energy, 2020, 2(2):1-36.
[36] DEISEROTH H J, KONG S T, ECKERT H, et al. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angewandte Chemie-International Edition, 2008, 47(4): 755-758.
[37] ZHOU L D, MINAFRA N, ZEIER W G, et al. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries[J]. Accounts of Chemical Research, 2021, 54(12): 2717-2728.
[38] STRAMARE S, THANGADURAI V, WEPPNER W. Lithium lanthanum titanates: A review[J]. Chemistry of Materials, 2003, 15(21): 3974-3990.
[39] ALPEN U V. Li3N: A promising Li ionic conductor[J]. Journal of Solid State Chemistry, 1979, 29(3): 379-392.
[40] LI W, WU G, ARAÚJO C M, et al. Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N[J]. Energy & Environmental Science, 2010, 3(10): 1524-1530.
[41] ALPEN U V, RABENAU A, TALAT G H. Ionic conductivity in Li3N single crystals[J]. Applied Physics Letters, 1977, 30(12): 621-623.
[42] PARK K H, BAI Q, KIM D H, et al. Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries[J]. Advanced Energy Materials, 2018, 8(18).
[43] SAKUDA A, HAYASHI A, TATSUMISAGO M. Intefacial Observation between LiCoO2 Electrode and Li2S-P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy[J]. Chemistry of Materials, 2010, 22(3): 949-956.
[44] XIAO Y H, WANG Y, BO S H, et al. Understanding interface stability in solid-state batteries[J]. Nature Reviews Materials, 2020, 5(2): 105-126.
[45] ZHU Y Z, MO Y F. Materials Design Principles for Air-Stable Lithium/Sodium Solid Electrolytes[J]. Angewandte Chemie-International Edition, 2020, 59(40): 17472-17476.
[46] OHTA N, TAKADA K, SAKAGUCHI I, et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries[J]. Electrochemistry Communications, 2007, 9(7): 1486-1490.
[47] JUNG S H, OH K, NAM Y J, et al. Li3BO3-Li2CO3: Rationally Designed Buffering Phase for Sulfide All Solid-State Li-Ion Batteries[J]. Chemistry of Materials, 2018, 30(22): 8190-8200.
[48] ITO S, FUJIKI S, YAMADA T, et al. A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte[J]. Journal of Power Sources, 2014, 248: 943-950.
[49] STRAUSS F, TEO J H, MAIBACH J, et al. Li2ZrO3-Coated NCM622 for Application in Inorganic Solid-State Batteries: Role of Surface Carbonates in the Cycling Performance[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57146-57154.
[50] FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291.
[51] ZHU Y Z, HE X F, MO Y F. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693.
[52] REA J R, FOSTER D L. High Ionic-Conductivity in Densified Polycrystalline Lithium Nitride[J]. Materials Research Bulletin, 1979, 14(6): 841-846.
[53] RABENAU A. Lithium nitride and related materials case study of the use of modern solid state research techniques[J]. Solid State Ionics, 1982, 6(4): 277-293.
[54] CHEN K, PATHAK R, GURUNG A, et al. Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes[J]. Energy Storage Materials, 2019, 18: 389-396.
[55] BAI M, XIE K, HONG B, et al. Surface modification via a nanosized nitride material to stabilize lithium metal anode[J]. Ceramics International, 2019, 45(6): 8045-8048.
[56] XU H, LI Y, ZHOU A, et al. Li3N‑Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 °C[J]. Nano Letters, 2018, 18(11): 7414-7418.
[57] LI Y, SUN Y, PEI A, et al. Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium[J]. ACS Central Science, 2018, 4(1): 97-104.
[58] PARK K, GOODENOUGH J B. Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li3N[J]. Advanced Energy Materials, 2017, 7(19).
[59] BALOCH M, SHANMUKARAJ D, BONDARCHUK O, et al. Variations on Li3N protective coating using ex-situ and in-situ techniques for Li° in sulphur batteries[J]. Energy Storage Materials, 2017, 9: 141-149.
[60] ZHANG Y J, WANG W, TANG H, et al. An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries[J]. Journal of Power Sources, 2015, 277: 304-311.
[61] WU M, WEN Z, LIU Y, et al. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries[J]. Journal of Power Sources, 2011, 196(19): 8091-8097.
[62] PARK K, YU B-C, GOODENOUGH J B. Li3N as a Cathode Additive for High-Energy-Density Lithium-Ion Batteries[J]. Advanced Energy Materials, 2016, 6(10): 1614-1632.
[63] SUN Y, LI Y, SUN J, et al. Stabilized Li3N for efficient battery cathode prelithiation[J]. Energy Storage Materials, 2017, 6: 119-124.
[64] BIAN X, PANG Q, WEI Y, et al. Dual Roles of Li3N as an Electrode Additive for Li-Excess Layered Cathode Materials: A Li-Ion Sacrificial Salt and Electrode-Stabilizing Agent[J]. Chemistry, 2018, 24(52): 13815-13820.
[65] PARK S W, CHOI H J, YOO Y, et al. Stable Cycling of All-Solid-State Batteries with Sacrificial Cathode and Lithium-Free Indium Layer[J]. Advanced Functional Materials, 2021, 32(5).
[66] MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4).
[67] CULVER S P, KOERVER R, KRAUSKOPF T, et al. Designing Ionic Conductors: The Interplay between Structural Phenomena and Interfaces in Thiophosphate-Based Solid-State Batteries[J]. Chemistry of Materials, 2018, 30(13): 4179-4192.
[68] KOERVER R, WALTHER F, AYGÜN I, et al. Redox-active cathode interphases in solid-state batteries[J]. Journal of Materials Chemistry A, 2017, 5(43): 22750-22760.
[69] LEE Y-G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver¬-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308.
[70] WALTHER F, KOERVER R, FUCHS T, et al. Visualization of the Interfacial Decomposition of Composite Cathodes in Argyrodite-Based All-Solid-State Batteries Using Time-of-Flight Secondary-Ion Mass Spectrometry[J]. Chemistry of Materials, 2019, 31(10): 3745-3755.
[71] MUY S, VOSS J, SCHLEM R, et al. High-Throughput Screening of Solid-State Li-Ion Conductors Using Lattice-Dynamics Descriptors[J]. iScience, 2019, 16: 270-282.
[72] GINNINGS D C, PHIPPS T E. Temperature-conductance curves of solid salts. III. Halides of lithium[J]. Journal of The American Chemical Society, 1930, 52: 1340-1345.
[73] LI X, LIANG J, YANG X, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy & Environmental Science, 2020, 13(5): 1429-1461.
[74] ASANO T, SAKAI A, OUCHI S, et al. Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries[J]. Advanced Materials, 2018, 30(44): e1803075.
[75] KWAK H, WANG S, PARK J, et al. Emerging Halide Superionic Conductors for All-Solid-State Batteries: Design, Synthesis, and Practical Applications[J]. ACS Energy Letters, 2022: 1776-1805.
[76] WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14(10): 1026-1031.
[77] WANG S, BAI Q, NOLAN A M, et al. Lithium Chlorides and Bromides as Promising Solid-State Chemistries for Fast Ion Conductors with Good Electrochemical Stability[J]. Angewandte Chemie-International Edition, 2019, 58(24): 8039-8943.
[78] WANG S, BAI Q, NOLAN A M, et al. Lithium Chlorides and Bromides as Promising Solid-State Chemistries for Fast Ion Conductors with Good Electrochemical Stability[J]. Angewandte Chemie-International Edition, 2019, 58(24): 8039-8043.
[79] HAN Y, JUNG S H, KWAK H, et al. Single- or Poly-Crystalline Ni-Rich Layered Cathode, Sulfide or Halide Solid Electrolyte: Which Will be the Winners for All-Solid-State Batteries?[J]. Advanced Energy Materials, 2021, 11(21).
[80] KWAK H, HAN D, LYOO J, et al. New Cost-Effective Halide Solid Electrolytes for All-Solid-State Batteries: Mechanochemically Prepared Fe3+-Substituted Li2ZrCl6[J]. Advanced Energy Materials, 2021, 11(12).
[81] ZHOU L, ZUO T-T, KWOK C Y, et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes[J]. Nature Energy, 2022, 7(1): 83-93.
[82] LI X, LIANG J, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy & environmental science, 2019, 12(9): 2665-2671.
[83] LIANG J, LI X, WANG S, et al. Site-Occupation-Tuned Superionic LixScCl3+x Halide Solid Electrolytes for All-Solid-State Batteries[J]. Journal of the American Chemical Society, 2020, 142(15): 7012-7022.
[84] WANG K, REN Q, GU Z, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nature Communications, 2021, 12(1): 4410.
[85] RIEGGER L M, SCHLEM R, SANN J, et al. Lithium-Metal Anode Instability of the Superionic Halide Solid Electrolytes and the Implications for Solid-State Batteries[J]. Angewandte Chemie-International Edition, 2021, 60(12): 6718-6723.
[86] SHI X M, ZENG Z C, ZHANG H T, et al. Gram-Scale Synthesis of Nanosized Li3HoBr6 Solid Electrolyte for All-Solid-State Li-Se Battery[J]. Small Methods, 2021, 5(11).
[87] LI X, LIANG J, CHEN N, et al. Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte[J]. Angewandte Chemie-International Edition, 2019, 58(46): 16427-16432.
[88] CHEN S, YU C, CHEN S, et al. Enabling ultrafast lithium-ion conductivity of Li2ZrCl6 by indium doping[J]. Chinese Chemical Letters, 2021.
[89] LUO X, WU X, XIANG J, et al. Heterovalent Cation Substitution to Enhance the Ionic Conductivity of Halide Electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 47610-47618.
[90] SCHLEM R, BURMEISTER C F, MICHALOWSKI P, et al. Energy Storage Materials for Solid-State Batteries: Design by Mechanochemistry[J]. Advanced Energy Materials, 2021, 11(30).
[91] FLORES-GONZALEZ N, MINAFRA N, DEWALD G, et al. Mechanochemical Synthesis and Structure of Lithium Tetrahaloaluminates, LiAlX4 (X = Cl, Br, I): A Family of Li-Ion Conducting Ternary Halides[J]. ACS Materials Letters, 2021, 3(5): 652-657.
[92] BANIK A, FAMPRIKIS T, GHIDIU M, et al. On the underestimated influence of synthetic conditions in solid ionic conductors[J]. Chemical Science, 2021, 12(18): 6238-6263.
[93] SCHLEM R, MUY S, PRINZ N, et al. Mechanochemical Synthesis: A Tool to Tune Cation Site Disorder and Ionic Transport Properties of Li3MCl6 (M = Y, Er) Superionic Conductors[J]. Advanced Energy Materials, 2020, 10(6).
[94] SCHLEM R, BANIK A, OHNO S, et al. Insights into the Lithium Sub-structure of Superionic Conductors Li3YCl6 and Li3YBr6[J]. Chemistry of Materials, 2020.
[95] PARK K H, BAI Q, KIM D H, et al. Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries[J]. Advanced Energy Materials, 2018, 8(18): 1800035.
[96] YUBUCHI S, ITO A, MASUZAWA N, et al. Aqueous solution synthesis of Na3SbS4-Na2WS4 superionic conductors[J]. Journal of Materials Chemistry A, 2020, 8(4): 1947-1954.
[97] LEE J E, PARK K H, KIM J C, et al. Universal Solution Synthesis of Sulfide Solid Electrolytes Using Alkahest for All-Solid-State Batteries[J]. Advanced Materials, 2022, 34(16).
[98] TAYLOR M D. Preparation of anhydrous lanthanon halides[J]. Chemical Reviews, 1962, 62(6): 503-&.
[99] WEIGEL F, WISHNEVSKY V. Die Dampfphasenhydrolyse von Lanthaniden(III)-chloriden, 5. Wärmetönung und Gibbs-Energie der Reaktion MCl3 (f) + H2O (g) ⇌ MOCl (f) +2HCl (g) (M = Y, Tb)[J]. Chemische Berichte, 1973, 106(6): 1976-1984.
[100]MEYER G, AX P. An analysis of the ammonium-chloride route to anhydrous rare-earth-metal chlorides[J]. Materials Research Bulletin, 1982, 17(11): 1447-1455.
[101]XU B, HUANG B, LIU H, et al. Influence of sintering additives on Li+ conductivity and electrochemical property of perovskite-type Li3/8Sr7/16Hf1/4Ta3/4O3[J]. Electrochimica Acta, 2017, 234: 1-6.
[102]JIAN G, ZHU J, LI X, et al. Rational Design of Mixed Electronic-Ionic Conducting Ti-Doping Li7La3Zr2O12 for Lithium Dendrites Suppression[J]. Advanced Functional Materials, 2021, 31.
[103]REN Y, SHEN Y, LIN Y, et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte[J]. Electrochemistry Communications, 2015, 57: 27-30.
[104]PAUL P P, CHEN B-R, LANGEVIN S A, et al. Interfaces in all solid state Li-metal batteries: A review on instabilities, stabilization strategies, and scalability[J]. Energy Storage Materials, 2022, 45: 969-1001.
[105]WOOD K N, NOKED M, DASGUPTA N P. Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior[J]. ACS Energy Letters, 2017, 2(3): 664-672.
[106]YAN H, TANTRATIAN K, ELLWOOD K, et al. How Does the Creep Stress Regulate Void Formation at the Lithium-Solid Electrolyte Interface during Stripping?[J]. Advanced Energy Materials, 2022, 12(2): 2102283.
[107]SPENCER JOLLY D, NING Z, HARTLEY G O, et al. Temperature Dependence of Lithium Anode Voiding in Argyrodite Solid-State Batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22708-22716.
[108]KOERVER R, ZHANG W, DE BIASI L, et al. Chemo-mechanical expansion of lithium electrode materials - on the route to mechanically optimized all-solid-state batteries[J]. Energy & Environmental Science, 2018, 11(8): 2142-2158.
[109]WENZEL S, LEICHTWEISS T, KRUGER D, et al. Interphase formation on lithium solid electrolytes-An in situ approach to study interfacial reactions by photoelectron spectroscopy[J]. Solid State Ionics, 2015, 278: 98-105.
[110]ZHU Y Z, HE X F, MO Y F. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(9): 3253-3266.
[111]BINNINGER T, MARCOLONGO A, MOTTET M, et al. Comparison of computational methods for the electrochemical stability window of solid-state electrolyte materials[J]. Journal of Materials Chemistry A, 2020, 8(3): 1347-1359.
[112]BUCHARSKY E C, SCHELL K G, HINTENNACH A, et al. Preparation and characterization of sol-gel derived high lithium ion conductive NZP-type ceramics Li1+xAlxTi2-x(PO4)3[J]. Solid State Ionics, 2015, 274: 77-82.
[113]WENZEL S, RANDAU S, LEICHTWEISS T, et al. Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode[J]. Chemistry of Materials, 2016, 28(7): 2400-7.
[114]HARTMANN P, LEICHTWEISS T, BUSCHE M R, et al. Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes[J]. Journal of Physical Chemistry C, 2013, 117(41): 21064-21074.
[115]MA C, CHENG Y Q, YIN K B, et al. Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy[J]. Nano Letters, 2016, 16(11): 7030-7036.
[116]SCHWOBEL A, HAUSBRAND R, JAEGERMANN W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission[J]. Solid State Ionics, 2015, 273: 51-54.
[117]WENZEL S, WEBER D A, LEICHTWEISS T, et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J]. Solid State Ionics, 2016, 286: 24-33.
[118]JI W, ZHENG D, ZHANG X, et al. A kinetically stable anode interface for Li3YCl6-based all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2021, 9(26): 15012-15018.
[119]KEPPNER J, SCHUBERT J, ZIEGNER M, et al. Influence of texture and grain misorientation on the ionic conduction in multilayered solid electrolytes – interface strain effects in competition with blocking grain boundaries[J]. Physical Chemistry Chemical Physics, 2018, 20(14): 9269-9280.
[120]SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 627-631.
[121]SUN Y, SUZUKI K, HARA K, et al. Oxygen substitution effects in Li10GeP2S12 solid electrolyte[J]. Journal of Power Sources, 2016, 324: 798-803.
[122]PRASADA RAO R, SESHASAYEE M. Molecular dynamics simulation of ternary glasses Li2S–P2S5–LiI[J]. Journal of Non-Crystalline Solids, 2006, 352(30): 3310-3314.
[123]XU R-C, XIA X-H, LI S-H, et al. All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor[J]. Journal of Materials Chemistry A, 2017, 5(13): 6310-6317.
[124]CULVER S P, KOERVER R, ZEIER W G, et al. On the Functionality of Coatings for Cathode Active Materials in Thiophosphate-Based All-Solid-State Batteries[J]. Advanced Energy Materials, 2019, 9(24): 1900626.
[125]TAKADA K. Interfacial Nanoarchitectonics for Solid-State Lithium Batteries[J]. Langmuir, 2013, 29(24): 7538-7541.
[126]NAKAMURA T, AMEZAWA K, KULISCH J, et al. Guidelines for All-Solid-State Battery Design and Electrode Buffer Layers Based on Chemical Potential Profile Calculation[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 19968-19976.
[127]KATO A, HAYASHI A, TATSUMISAGO M. Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films[J]. Journal of Power Sources, 2016, 309: 27-32.
[128]ZHANG W, WEBER D A, WEIGAND H, et al. Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 17835-17845.
[129]YU T W, LIANG J W, LUO L, et al. Superionic Fluorinated Halide Solid Electrolytes for Highly Stable Li-Metal in All-Solid-State Li Batteries[J]. Advanced Energy Materials, 2021, 11(36).
[130]LIU Z, MA S, LIU J, et al. High Ionic Conductivity Achieved in Li3Y(Br3Cl3) Mixed Halide Solid Electrolyte via Promoted Diffusion Pathways and Enhanced Grain Boundary[J]. ACS Energy Letters, 2021, 6(1): 298-304.
[131]WANG C, LIANG J, LUO J, et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries[J]. Science Advances, 2021, 7(37): eabh1896.
[132]LUO X, ZHONG Y, WANG X, et al. Ionic Conductivity Enhancement of Li2ZrCl6 Halide Electrolytes via Mechanochemical Synthesis for All-Solid-State Lithium-Metal Batteries[J]. ACS Applied Materials & Interfaces, 2022.
[133]DO J L, FRISCIC T. Mechanochemistry: A Force of Synthesis[J]. ACS Central Science, 2017, 3(1): 13-19.
[134]KRAUSKOPF T, DIPPEL R, HARTMANN H, et al. Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes[J]. Joule, 2019, 3(8): 2030-2049.
[135]SAGANE F, SHIMOKAWA R, SANO H, et al. In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface[J]. Journal of Power Sources, 2013, 225: 245-250.
[136]WOOD K N, STEIRER K X, HAFNER S E, et al. Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes[J]. Nature Communications, 2018, 9(1): 2490.
[137]VADHVA P, HU J, JOHNSON M J, et al. Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook[J]. ChemElectroChem, 2021, 8(11): 1930-1947.
[138]NOLAN A M, ZHU Y, HE X, et al. Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries[J]. Joule, 2018, 2(10): 2016-2046.
[139]SHARAFI A, MEYER H M, NANDA J, et al. Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density[J]. Journal of Power Sources, 2016, 302: 135-139.
[140]BOHNSACK A, STENZEL F, ZAJONC A, et al. Ternäre Halogenide vom Typ A3MX6. VI
[1]. Ternäre Chloride der Selten-Erd-Elemente mit Lithium, Li3MCl6 (M = Tb-Lu, Y, Sc): Synthese, Kristallstrukturen und Ionenbewegung[J]. Zeitschrift für anorganische und allgemeine Chemie, 1997, 623(7): 1067-1073.
[141]ZHOU L D, KWOK C Y, SHYAMSUNDER A, et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries[J]. Energy & Environmental Science, 2020, 13(7): 2056-2063.
[142]YAMANE H, SHIBATA M, SHIMANE Y, et al. Crystal structure of a superionic conductor, Li7P3S11[J]. Solid State Ionics, 2007, 178(15): 1163-1167.
[143]KUDU Ö U, FAMPRIKIS T, FLEUTOT B, et al. A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S-P2S5 binary system[J]. Journal of Power Sources, 2018, 407: 31-43.
[144]DULUARD S, PAILLASSA A, PUECH L, et al. Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry[J]. Journal of the European Ceramic Society, 2013, 33(6): 1145-1153.
[145]MCCLOSKEY B D. Attainable Gravimetric and Volumetric Energy Density of Li–S and Li Ion Battery Cells with Solid Separator-Protected Li Metal Anodes[J]. The Journal of Physical Chemistry Letters, 2015, 6(22): 4581-4588.
[146]CRONK A, CHEN Y-T, DEYSHER G, et al. Overcoming the Interfacial Challenges of LiFePO4 in Inorganic All-Solid-State Batteries[J]. ACS Energy Letters, 2023, 8(1): 827-835.
[147]ZHANG H, YU Z, CHEN H, et al. Li-richening strategy in Li2ZrCl6 lattice towards enhanced ionic conductivity[J]. Journal of Energy Chemistry, 2023, 79: 348-356.
[148]SHAO Q N, YAN C H, GAO M X, et al. New Insights into the Effects of Zr Substitution and Carbon Additive on Li3-xEr1-xZrxCl6 Halide Solid Electrolytes[J]. Acs Applied Materials & Interfaces, 2022, 14(6): 8095-8105.
[149]LI X N, LIANG J W, ADAIR K R, et al. Origin of Superionic Li3Y1-xInxCl6 Halide Solid Electrolytes with High Humidity Tolerance[J]. Nano Letters, 2020, 20(6): 4384-4392.
[150]FAMPRIKIS T, KUDU Ö U, DAWSON J A, et al. Under Pressure: Mechanochemical Effects on Structure and Ion Conduction in the Sodium-Ion Solid Electrolyte Na3PS4[J]. Journal of the American Chemical Society, 2020, 142(43): 18422-18436.
[151]TORBEN LAPP S S, ALAN HOOPER. Ionic conductivity of pure and doped Li3N[J]. Solid State Ionics, 1983, 11(2): 97-103.
[152]RICHARDS W D, MIARA L J, WANG Y, et al. Interface Stability in Solid-State Batteries[J]. Chemistry of Materials, 2016, 28(1): 266-273.
[153]HUO Y, HU Y H. UV–visible absorption spectrum determination of optical energy gaps of α and β lithium nitrides[J]. Journal of Physics and Chemistry of Solids, 2012, 73(8): 999-1002.
[154]YE L, LI X. A dynamic stability design strategy for lithium metal solid state batteries[J]. Nature, 2021, 593(7858): 218-222.

所在学位评定分委会
材料与化工
国内图书分类号
TM911
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544474
专题理学院_物理系
推荐引用方式
GB/T 7714
狄龙邦. Li3N对固态电解质Li2ZrCl6与锂金属界面优化作用的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132918-狄龙邦-物理系.pdf(5964KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[狄龙邦]的文章
百度学术
百度学术中相似的文章
[狄龙邦]的文章
必应学术
必应学术中相似的文章
[狄龙邦]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。