[1] POIZOT P, DOLHEM F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices[J]. Energy & Environmental Science, 2011, 4(6): 2003-2019.
[2] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
[3] SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430.
[4] PERRIN M, SAINT-DRENAN Y M, MATTERA F, et al. Lead-acid batteries in stationary applications: competitors and new markets for large penetration of renewable energies[J]. Journal of Power Sources, 2005, 144(2): 402-410.
[5] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[6] LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): 1-11.
[7] WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
[8] KIM K J, BALAISH M, WADAGUCHI M, et al. Solid-State Li-Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces[J]. Advanced Energy Materials, 2020, 11(1).
[9] KIM H, JEONG G, KIM Y U, et al. Metallic anodes for next generation secondary batteries[J]. Chemical Society Reviews, 2013, 42(23): 9011-9034.
[10] PELED E. The Electrochemical-Behavior of Alkali and Alkaline-Earth Metals in Non-Aqueous Battery Systems—The Solid Electrolyte Interphase Model[J]. Journal of The Electrochemical Society, 1979, 126(12): 2047-2051.
[11] PELED E, GOLODNITSKY D, ARDEL G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of The Electrochemical Society, 1997, 144(8): L208-L210.
[12] JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016, 1: 1-4.
[13] LEWIS G N, KEYES F G. The potential of the potassium electrode[J]. Journal of the American Chemical Society, 1912, 34(2): 119-122.
[14] TOBIAS C W. Electrochemical Studies in Cyclic Carbonate Esters[J]. Journal of the Electrochemical Society, 1957, 104(8): C171-C178.
[15] ARMAND M B, WHITTINGHAM M S, HUGGINS R A. The iron cyanide bronzes[J]. Materials Research Bulletin, 1972, 7(2): 101-107.
[16] WHITTINGHAM M S. Electrical Energy-Storage and Intercalation Chemistry[J]. Science, 1976, 192(4244): 1126-1127.
[17] MIZUSHIMA K, JONES P C, WISEMAN P J, et al. LixCoO2 (0[18] THACKERAY M M, DAVID W I F, BRUCE P G, et al. Lithium Insertion into Manganese Spinels[J]. Materials Research Bulletin, 1983, 18(4): 461-472.
[19] Battery revolution to evolution[J]. Nature Energy, 2019, 4(11): 893.
[20] SALKIND A J. Advances in battery technologies and markets: Material science aspects[J]. MRS Online Proceedings Library, 1998, 496: 3-14.
[21] FUNKE K. Solid State Ionics: from Michael Faraday to green energy-the European dimension[J]. Science and Technology of Advanced Materials, 2013, 14(4): 1-50.
[22] YUNG-FANG YU Y, KUMMER J T. Ion exchange properties of and rates of ionic diffusion in beta-alumina[J]. Journal of Inorganic and Nuclear Chemistry, 1967, 29(9): 2453-2475.
[23] KUMMER J T, WEBER N. A Sodium-Sulfur Secondary Battery[Z]. SAE International. 1967.
[24] WEBER N. A thermoelectric device based on beta-alumina solid electrolyte[J]. Energy Conversion, 1974, 14(1): 1-8.
[25] KNÖDLER R. Thermal properties of sodium-sulphur cells[J]. Journal of Applied Electrochemistry, 1984, 14(1): 39-46.
[26] SURESH C, LAL H B, SHAHI K. An electrochemical cell with solid, super-ionic Ag4KI5 as the electrolyte[J]. Journal of Physics D: Applied Physics, 1974, 7(1): 194.
[27] REUTER B, HARDEL K. Silbersulfidbromid und Silbersulfidjodid[J]. Angewandte Chemie, 1960, 72: 138-139.
[28] DELAHAY P, VIJH A K. Advances in Electrochemistry and Electrochemical Engineering[J]. Journal of The Electrochemical Society, 1970, 117(10): 367C.
[29] DUDNEY N J, BATES J B, ZUHR R A, et al. Sputtering of lithium compounds for preparation of electrolyte thin films[J]. Solid State Ionics, 1992, 53-56: 655-661.
[30] ZHANG X, SAHRAEI E, WANG K. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts[J]. Scientific Reports, 2016, 6(1): 32578.
[31] YADA C, BRASSE C. Better batteries with Solid-state instead of liquid-based electrolytes[J]. ATZelektronik worldwide, 2014, 9(3): 10-15.
[32] DUNN B, KAMATH H, TARASCON J-M. Electrical Energy Storage for the Grid: A Battery of Choices[J]. Science, 2011, 334(6058): 928-935.
[33] KATO Y, SHIOTANI S, MORITA K, et al. All-Solid-State Batteries with Thick Electrode Configurations[J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 607-613.
[34] ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252.
[35] OHNO S, BANIK A, DEWALD G F, et al. Materials design of ionic conductors for solid state batteries[J]. Progress in Energy, 2020, 2(2):1-36.
[36] DEISEROTH H J, KONG S T, ECKERT H, et al. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angewandte Chemie-International Edition, 2008, 47(4): 755-758.
[37] ZHOU L D, MINAFRA N, ZEIER W G, et al. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries[J]. Accounts of Chemical Research, 2021, 54(12): 2717-2728.
[38] STRAMARE S, THANGADURAI V, WEPPNER W. Lithium lanthanum titanates: A review[J]. Chemistry of Materials, 2003, 15(21): 3974-3990.
[39] ALPEN U V. Li3N: A promising Li ionic conductor[J]. Journal of Solid State Chemistry, 1979, 29(3): 379-392.
[40] LI W, WU G, ARAÚJO C M, et al. Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N[J]. Energy & Environmental Science, 2010, 3(10): 1524-1530.
[41] ALPEN U V, RABENAU A, TALAT G H. Ionic conductivity in Li3N single crystals[J]. Applied Physics Letters, 1977, 30(12): 621-623.
[42] PARK K H, BAI Q, KIM D H, et al. Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries[J]. Advanced Energy Materials, 2018, 8(18).
[43] SAKUDA A, HAYASHI A, TATSUMISAGO M. Intefacial Observation between LiCoO2 Electrode and Li2S-P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy[J]. Chemistry of Materials, 2010, 22(3): 949-956.
[44] XIAO Y H, WANG Y, BO S H, et al. Understanding interface stability in solid-state batteries[J]. Nature Reviews Materials, 2020, 5(2): 105-126.
[45] ZHU Y Z, MO Y F. Materials Design Principles for Air-Stable Lithium/Sodium Solid Electrolytes[J]. Angewandte Chemie-International Edition, 2020, 59(40): 17472-17476.
[46] OHTA N, TAKADA K, SAKAGUCHI I, et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries[J]. Electrochemistry Communications, 2007, 9(7): 1486-1490.
[47] JUNG S H, OH K, NAM Y J, et al. Li3BO3-Li2CO3: Rationally Designed Buffering Phase for Sulfide All Solid-State Li-Ion Batteries[J]. Chemistry of Materials, 2018, 30(22): 8190-8200.
[48] ITO S, FUJIKI S, YAMADA T, et al. A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte[J]. Journal of Power Sources, 2014, 248: 943-950.
[49] STRAUSS F, TEO J H, MAIBACH J, et al. Li2ZrO3-Coated NCM622 for Application in Inorganic Solid-State Batteries: Role of Surface Carbonates in the Cycling Performance[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57146-57154.
[50] FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291.
[51] ZHU Y Z, HE X F, MO Y F. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693.
[52] REA J R, FOSTER D L. High Ionic-Conductivity in Densified Polycrystalline Lithium Nitride[J]. Materials Research Bulletin, 1979, 14(6): 841-846.
[53] RABENAU A. Lithium nitride and related materials case study of the use of modern solid state research techniques[J]. Solid State Ionics, 1982, 6(4): 277-293.
[54] CHEN K, PATHAK R, GURUNG A, et al. Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes[J]. Energy Storage Materials, 2019, 18: 389-396.
[55] BAI M, XIE K, HONG B, et al. Surface modification via a nanosized nitride material to stabilize lithium metal anode[J]. Ceramics International, 2019, 45(6): 8045-8048.
[56] XU H, LI Y, ZHOU A, et al. Li3N‑Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 °C[J]. Nano Letters, 2018, 18(11): 7414-7418.
[57] LI Y, SUN Y, PEI A, et al. Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium[J]. ACS Central Science, 2018, 4(1): 97-104.
[58] PARK K, GOODENOUGH J B. Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li3N[J]. Advanced Energy Materials, 2017, 7(19).
[59] BALOCH M, SHANMUKARAJ D, BONDARCHUK O, et al. Variations on Li3N protective coating using ex-situ and in-situ techniques for Li° in sulphur batteries[J]. Energy Storage Materials, 2017, 9: 141-149.
[60] ZHANG Y J, WANG W, TANG H, et al. An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries[J]. Journal of Power Sources, 2015, 277: 304-311.
[61] WU M, WEN Z, LIU Y, et al. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries[J]. Journal of Power Sources, 2011, 196(19): 8091-8097.
[62] PARK K, YU B-C, GOODENOUGH J B. Li3N as a Cathode Additive for High-Energy-Density Lithium-Ion Batteries[J]. Advanced Energy Materials, 2016, 6(10): 1614-1632.
[63] SUN Y, LI Y, SUN J, et al. Stabilized Li3N for efficient battery cathode prelithiation[J]. Energy Storage Materials, 2017, 6: 119-124.
[64] BIAN X, PANG Q, WEI Y, et al. Dual Roles of Li3N as an Electrode Additive for Li-Excess Layered Cathode Materials: A Li-Ion Sacrificial Salt and Electrode-Stabilizing Agent[J]. Chemistry, 2018, 24(52): 13815-13820.
[65] PARK S W, CHOI H J, YOO Y, et al. Stable Cycling of All-Solid-State Batteries with Sacrificial Cathode and Lithium-Free Indium Layer[J]. Advanced Functional Materials, 2021, 32(5).
[66] MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4).
[67] CULVER S P, KOERVER R, KRAUSKOPF T, et al. Designing Ionic Conductors: The Interplay between Structural Phenomena and Interfaces in Thiophosphate-Based Solid-State Batteries[J]. Chemistry of Materials, 2018, 30(13): 4179-4192.
[68] KOERVER R, WALTHER F, AYGÜN I, et al. Redox-active cathode interphases in solid-state batteries[J]. Journal of Materials Chemistry A, 2017, 5(43): 22750-22760.
[69] LEE Y-G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver¬-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308.
[70] WALTHER F, KOERVER R, FUCHS T, et al. Visualization of the Interfacial Decomposition of Composite Cathodes in Argyrodite-Based All-Solid-State Batteries Using Time-of-Flight Secondary-Ion Mass Spectrometry[J]. Chemistry of Materials, 2019, 31(10): 3745-3755.
[71] MUY S, VOSS J, SCHLEM R, et al. High-Throughput Screening of Solid-State Li-Ion Conductors Using Lattice-Dynamics Descriptors[J]. iScience, 2019, 16: 270-282.
[72] GINNINGS D C, PHIPPS T E. Temperature-conductance curves of solid salts. III. Halides of lithium[J]. Journal of The American Chemical Society, 1930, 52: 1340-1345.
[73] LI X, LIANG J, YANG X, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy & Environmental Science, 2020, 13(5): 1429-1461.
[74] ASANO T, SAKAI A, OUCHI S, et al. Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries[J]. Advanced Materials, 2018, 30(44): e1803075.
[75] KWAK H, WANG S, PARK J, et al. Emerging Halide Superionic Conductors for All-Solid-State Batteries: Design, Synthesis, and Practical Applications[J]. ACS Energy Letters, 2022: 1776-1805.
[76] WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14(10): 1026-1031.
[77] WANG S, BAI Q, NOLAN A M, et al. Lithium Chlorides and Bromides as Promising Solid-State Chemistries for Fast Ion Conductors with Good Electrochemical Stability[J]. Angewandte Chemie-International Edition, 2019, 58(24): 8039-8943.
[78] WANG S, BAI Q, NOLAN A M, et al. Lithium Chlorides and Bromides as Promising Solid-State Chemistries for Fast Ion Conductors with Good Electrochemical Stability[J]. Angewandte Chemie-International Edition, 2019, 58(24): 8039-8043.
[79] HAN Y, JUNG S H, KWAK H, et al. Single- or Poly-Crystalline Ni-Rich Layered Cathode, Sulfide or Halide Solid Electrolyte: Which Will be the Winners for All-Solid-State Batteries?[J]. Advanced Energy Materials, 2021, 11(21).
[80] KWAK H, HAN D, LYOO J, et al. New Cost-Effective Halide Solid Electrolytes for All-Solid-State Batteries: Mechanochemically Prepared Fe3+-Substituted Li2ZrCl6[J]. Advanced Energy Materials, 2021, 11(12).
[81] ZHOU L, ZUO T-T, KWOK C Y, et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes[J]. Nature Energy, 2022, 7(1): 83-93.
[82] LI X, LIANG J, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy & environmental science, 2019, 12(9): 2665-2671.
[83] LIANG J, LI X, WANG S, et al. Site-Occupation-Tuned Superionic LixScCl3+x Halide Solid Electrolytes for All-Solid-State Batteries[J]. Journal of the American Chemical Society, 2020, 142(15): 7012-7022.
[84] WANG K, REN Q, GU Z, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nature Communications, 2021, 12(1): 4410.
[85] RIEGGER L M, SCHLEM R, SANN J, et al. Lithium-Metal Anode Instability of the Superionic Halide Solid Electrolytes and the Implications for Solid-State Batteries[J]. Angewandte Chemie-International Edition, 2021, 60(12): 6718-6723.
[86] SHI X M, ZENG Z C, ZHANG H T, et al. Gram-Scale Synthesis of Nanosized Li3HoBr6 Solid Electrolyte for All-Solid-State Li-Se Battery[J]. Small Methods, 2021, 5(11).
[87] LI X, LIANG J, CHEN N, et al. Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte[J]. Angewandte Chemie-International Edition, 2019, 58(46): 16427-16432.
[88] CHEN S, YU C, CHEN S, et al. Enabling ultrafast lithium-ion conductivity of Li2ZrCl6 by indium doping[J]. Chinese Chemical Letters, 2021.
[89] LUO X, WU X, XIANG J, et al. Heterovalent Cation Substitution to Enhance the Ionic Conductivity of Halide Electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 47610-47618.
[90] SCHLEM R, BURMEISTER C F, MICHALOWSKI P, et al. Energy Storage Materials for Solid-State Batteries: Design by Mechanochemistry[J]. Advanced Energy Materials, 2021, 11(30).
[91] FLORES-GONZALEZ N, MINAFRA N, DEWALD G, et al. Mechanochemical Synthesis and Structure of Lithium Tetrahaloaluminates, LiAlX4 (X = Cl, Br, I): A Family of Li-Ion Conducting Ternary Halides[J]. ACS Materials Letters, 2021, 3(5): 652-657.
[92] BANIK A, FAMPRIKIS T, GHIDIU M, et al. On the underestimated influence of synthetic conditions in solid ionic conductors[J]. Chemical Science, 2021, 12(18): 6238-6263.
[93] SCHLEM R, MUY S, PRINZ N, et al. Mechanochemical Synthesis: A Tool to Tune Cation Site Disorder and Ionic Transport Properties of Li3MCl6 (M = Y, Er) Superionic Conductors[J]. Advanced Energy Materials, 2020, 10(6).
[94] SCHLEM R, BANIK A, OHNO S, et al. Insights into the Lithium Sub-structure of Superionic Conductors Li3YCl6 and Li3YBr6[J]. Chemistry of Materials, 2020.
[95] PARK K H, BAI Q, KIM D H, et al. Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries[J]. Advanced Energy Materials, 2018, 8(18): 1800035.
[96] YUBUCHI S, ITO A, MASUZAWA N, et al. Aqueous solution synthesis of Na3SbS4-Na2WS4 superionic conductors[J]. Journal of Materials Chemistry A, 2020, 8(4): 1947-1954.
[97] LEE J E, PARK K H, KIM J C, et al. Universal Solution Synthesis of Sulfide Solid Electrolytes Using Alkahest for All-Solid-State Batteries[J]. Advanced Materials, 2022, 34(16).
[98] TAYLOR M D. Preparation of anhydrous lanthanon halides[J]. Chemical Reviews, 1962, 62(6): 503-&.
[99] WEIGEL F, WISHNEVSKY V. Die Dampfphasenhydrolyse von Lanthaniden(III)-chloriden, 5. Wärmetönung und Gibbs-Energie der Reaktion MCl3 (f) + H2O (g) ⇌ MOCl (f) +2HCl (g) (M = Y, Tb)[J]. Chemische Berichte, 1973, 106(6): 1976-1984.
[100]MEYER G, AX P. An analysis of the ammonium-chloride route to anhydrous rare-earth-metal chlorides[J]. Materials Research Bulletin, 1982, 17(11): 1447-1455.
[101]XU B, HUANG B, LIU H, et al. Influence of sintering additives on Li+ conductivity and electrochemical property of perovskite-type Li3/8Sr7/16Hf1/4Ta3/4O3[J]. Electrochimica Acta, 2017, 234: 1-6.
[102]JIAN G, ZHU J, LI X, et al. Rational Design of Mixed Electronic-Ionic Conducting Ti-Doping Li7La3Zr2O12 for Lithium Dendrites Suppression[J]. Advanced Functional Materials, 2021, 31.
[103]REN Y, SHEN Y, LIN Y, et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte[J]. Electrochemistry Communications, 2015, 57: 27-30.
[104]PAUL P P, CHEN B-R, LANGEVIN S A, et al. Interfaces in all solid state Li-metal batteries: A review on instabilities, stabilization strategies, and scalability[J]. Energy Storage Materials, 2022, 45: 969-1001.
[105]WOOD K N, NOKED M, DASGUPTA N P. Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior[J]. ACS Energy Letters, 2017, 2(3): 664-672.
[106]YAN H, TANTRATIAN K, ELLWOOD K, et al. How Does the Creep Stress Regulate Void Formation at the Lithium-Solid Electrolyte Interface during Stripping?[J]. Advanced Energy Materials, 2022, 12(2): 2102283.
[107]SPENCER JOLLY D, NING Z, HARTLEY G O, et al. Temperature Dependence of Lithium Anode Voiding in Argyrodite Solid-State Batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22708-22716.
[108]KOERVER R, ZHANG W, DE BIASI L, et al. Chemo-mechanical expansion of lithium electrode materials - on the route to mechanically optimized all-solid-state batteries[J]. Energy & Environmental Science, 2018, 11(8): 2142-2158.
[109]WENZEL S, LEICHTWEISS T, KRUGER D, et al. Interphase formation on lithium solid electrolytes-An in situ approach to study interfacial reactions by photoelectron spectroscopy[J]. Solid State Ionics, 2015, 278: 98-105.
[110]ZHU Y Z, HE X F, MO Y F. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(9): 3253-3266.
[111]BINNINGER T, MARCOLONGO A, MOTTET M, et al. Comparison of computational methods for the electrochemical stability window of solid-state electrolyte materials[J]. Journal of Materials Chemistry A, 2020, 8(3): 1347-1359.
[112]BUCHARSKY E C, SCHELL K G, HINTENNACH A, et al. Preparation and characterization of sol-gel derived high lithium ion conductive NZP-type ceramics Li1+xAlxTi2-x(PO4)3[J]. Solid State Ionics, 2015, 274: 77-82.
[113]WENZEL S, RANDAU S, LEICHTWEISS T, et al. Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode[J]. Chemistry of Materials, 2016, 28(7): 2400-7.
[114]HARTMANN P, LEICHTWEISS T, BUSCHE M R, et al. Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes[J]. Journal of Physical Chemistry C, 2013, 117(41): 21064-21074.
[115]MA C, CHENG Y Q, YIN K B, et al. Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy[J]. Nano Letters, 2016, 16(11): 7030-7036.
[116]SCHWOBEL A, HAUSBRAND R, JAEGERMANN W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission[J]. Solid State Ionics, 2015, 273: 51-54.
[117]WENZEL S, WEBER D A, LEICHTWEISS T, et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J]. Solid State Ionics, 2016, 286: 24-33.
[118]JI W, ZHENG D, ZHANG X, et al. A kinetically stable anode interface for Li3YCl6-based all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2021, 9(26): 15012-15018.
[119]KEPPNER J, SCHUBERT J, ZIEGNER M, et al. Influence of texture and grain misorientation on the ionic conduction in multilayered solid electrolytes – interface strain effects in competition with blocking grain boundaries[J]. Physical Chemistry Chemical Physics, 2018, 20(14): 9269-9280.
[120]SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 627-631.
[121]SUN Y, SUZUKI K, HARA K, et al. Oxygen substitution effects in Li10GeP2S12 solid electrolyte[J]. Journal of Power Sources, 2016, 324: 798-803.
[122]PRASADA RAO R, SESHASAYEE M. Molecular dynamics simulation of ternary glasses Li2S–P2S5–LiI[J]. Journal of Non-Crystalline Solids, 2006, 352(30): 3310-3314.
[123]XU R-C, XIA X-H, LI S-H, et al. All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor[J]. Journal of Materials Chemistry A, 2017, 5(13): 6310-6317.
[124]CULVER S P, KOERVER R, ZEIER W G, et al. On the Functionality of Coatings for Cathode Active Materials in Thiophosphate-Based All-Solid-State Batteries[J]. Advanced Energy Materials, 2019, 9(24): 1900626.
[125]TAKADA K. Interfacial Nanoarchitectonics for Solid-State Lithium Batteries[J]. Langmuir, 2013, 29(24): 7538-7541.
[126]NAKAMURA T, AMEZAWA K, KULISCH J, et al. Guidelines for All-Solid-State Battery Design and Electrode Buffer Layers Based on Chemical Potential Profile Calculation[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 19968-19976.
[127]KATO A, HAYASHI A, TATSUMISAGO M. Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films[J]. Journal of Power Sources, 2016, 309: 27-32.
[128]ZHANG W, WEBER D A, WEIGAND H, et al. Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 17835-17845.
[129]YU T W, LIANG J W, LUO L, et al. Superionic Fluorinated Halide Solid Electrolytes for Highly Stable Li-Metal in All-Solid-State Li Batteries[J]. Advanced Energy Materials, 2021, 11(36).
[130]LIU Z, MA S, LIU J, et al. High Ionic Conductivity Achieved in Li3Y(Br3Cl3) Mixed Halide Solid Electrolyte via Promoted Diffusion Pathways and Enhanced Grain Boundary[J]. ACS Energy Letters, 2021, 6(1): 298-304.
[131]WANG C, LIANG J, LUO J, et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries[J]. Science Advances, 2021, 7(37): eabh1896.
[132]LUO X, ZHONG Y, WANG X, et al. Ionic Conductivity Enhancement of Li2ZrCl6 Halide Electrolytes via Mechanochemical Synthesis for All-Solid-State Lithium-Metal Batteries[J]. ACS Applied Materials & Interfaces, 2022.
[133]DO J L, FRISCIC T. Mechanochemistry: A Force of Synthesis[J]. ACS Central Science, 2017, 3(1): 13-19.
[134]KRAUSKOPF T, DIPPEL R, HARTMANN H, et al. Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes[J]. Joule, 2019, 3(8): 2030-2049.
[135]SAGANE F, SHIMOKAWA R, SANO H, et al. In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface[J]. Journal of Power Sources, 2013, 225: 245-250.
[136]WOOD K N, STEIRER K X, HAFNER S E, et al. Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes[J]. Nature Communications, 2018, 9(1): 2490.
[137]VADHVA P, HU J, JOHNSON M J, et al. Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook[J]. ChemElectroChem, 2021, 8(11): 1930-1947.
[138]NOLAN A M, ZHU Y, HE X, et al. Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries[J]. Joule, 2018, 2(10): 2016-2046.
[139]SHARAFI A, MEYER H M, NANDA J, et al. Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density[J]. Journal of Power Sources, 2016, 302: 135-139.
[140]BOHNSACK A, STENZEL F, ZAJONC A, et al. Ternäre Halogenide vom Typ A3MX6. VI
[1]. Ternäre Chloride der Selten-Erd-Elemente mit Lithium, Li3MCl6 (M = Tb-Lu, Y, Sc): Synthese, Kristallstrukturen und Ionenbewegung[J]. Zeitschrift für anorganische und allgemeine Chemie, 1997, 623(7): 1067-1073.
[141]ZHOU L D, KWOK C Y, SHYAMSUNDER A, et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries[J]. Energy & Environmental Science, 2020, 13(7): 2056-2063.
[142]YAMANE H, SHIBATA M, SHIMANE Y, et al. Crystal structure of a superionic conductor, Li7P3S11[J]. Solid State Ionics, 2007, 178(15): 1163-1167.
[143]KUDU Ö U, FAMPRIKIS T, FLEUTOT B, et al. A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S-P2S5 binary system[J]. Journal of Power Sources, 2018, 407: 31-43.
[144]DULUARD S, PAILLASSA A, PUECH L, et al. Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry[J]. Journal of the European Ceramic Society, 2013, 33(6): 1145-1153.
[145]MCCLOSKEY B D. Attainable Gravimetric and Volumetric Energy Density of Li–S and Li Ion Battery Cells with Solid Separator-Protected Li Metal Anodes[J]. The Journal of Physical Chemistry Letters, 2015, 6(22): 4581-4588.
[146]CRONK A, CHEN Y-T, DEYSHER G, et al. Overcoming the Interfacial Challenges of LiFePO4 in Inorganic All-Solid-State Batteries[J]. ACS Energy Letters, 2023, 8(1): 827-835.
[147]ZHANG H, YU Z, CHEN H, et al. Li-richening strategy in Li2ZrCl6 lattice towards enhanced ionic conductivity[J]. Journal of Energy Chemistry, 2023, 79: 348-356.
[148]SHAO Q N, YAN C H, GAO M X, et al. New Insights into the Effects of Zr Substitution and Carbon Additive on Li3-xEr1-xZrxCl6 Halide Solid Electrolytes[J]. Acs Applied Materials & Interfaces, 2022, 14(6): 8095-8105.
[149]LI X N, LIANG J W, ADAIR K R, et al. Origin of Superionic Li3Y1-xInxCl6 Halide Solid Electrolytes with High Humidity Tolerance[J]. Nano Letters, 2020, 20(6): 4384-4392.
[150]FAMPRIKIS T, KUDU Ö U, DAWSON J A, et al. Under Pressure: Mechanochemical Effects on Structure and Ion Conduction in the Sodium-Ion Solid Electrolyte Na3PS4[J]. Journal of the American Chemical Society, 2020, 142(43): 18422-18436.
[151]TORBEN LAPP S S, ALAN HOOPER. Ionic conductivity of pure and doped Li3N[J]. Solid State Ionics, 1983, 11(2): 97-103.
[152]RICHARDS W D, MIARA L J, WANG Y, et al. Interface Stability in Solid-State Batteries[J]. Chemistry of Materials, 2016, 28(1): 266-273.
[153]HUO Y, HU Y H. UV–visible absorption spectrum determination of optical energy gaps of α and β lithium nitrides[J]. Journal of Physics and Chemistry of Solids, 2012, 73(8): 999-1002.
[154]YE L, LI X. A dynamic stability design strategy for lithium metal solid state batteries[J]. Nature, 2021, 593(7858): 218-222.
修改评论