中文版 | English
题名

m6A修饰调控免疫检查点PD-L1表达及肺腺癌免疫抑制的研究

其他题名
m6A modification regulated the expression of immune checkpoint PD-L1 and immunosuppression in lung adenocarcinoma
姓名
姓名拼音
MAO Wenli
学号
11930793
学位类型
博士
学位专业
071007 遗传学
学科门类/专业学位类别
07 理学
导师
王玉琨
导师单位
药理学系
论文答辩日期
2023-05-17
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

背景 
肺癌是临床上常见恶性肿瘤之一,肺腺癌(lung adenocarcinoma,LUAD)是肺癌最常见的组织亚型,约占肺恶性肿瘤的40%,其较差的预后是导致患者临床治疗失败和高死亡率的主要原因。近年来,免疫检查点阻断疗法在癌症的治疗中取得较大突破。m6A修饰在恶性肿瘤中的作用得到越来越多的证实,然而m6A修饰与肿瘤免疫微环境的关系尚不清楚。
方法 
运用MeRIP-seq检测30例肺腺癌临床样本组织中m6A修饰水平,通过GO富集和KEGG富集分析肺腺癌组织中m6A水平上调及下调的基因所涉及的生物学功能和信号通路。联合RNA-seq及蛋白质组分析m6A修饰在转录及蛋白合成中的作用。临床样本RNA-seq测序结合TCGA数据库中肺腺癌数据分析m6A识别蛋白YTHDF1在肺腺癌肿瘤微环境中的角色。同时利用多色免疫荧光技术检测m6A识别蛋白YTHDF1与CD8+ T细胞、树突状细胞、巨噬细胞空间定位之间的相关性。RNA-seq,蛋白质组及代谢组学分析YTHDF1在肺腺癌中的重要作用,运用GO,KEGG和GSEA富集分析YTHDF1缺失影响的下游信号。利用siRNA/shRNA对肺腺癌细胞进行转染沉默YTHDF1,进而检测YTHDF1对肺腺癌增殖、迁移、侵袭及凋亡等生物学功能的影响。构建小鼠肺腺癌皮下移植瘤模型,检测沉默YTHDF1后对肺腺癌肿瘤生长的影响。通过m6A-RIP-qPCR和RNA pull-down实验检测YTHDF1与PD-L1 mRNA相互作用方式。
结果 
MeRIP-seq, RNA-seq 和蛋白质组联合分析,肺腺癌中642个基因RNA未改变,但m6A修饰水平和蛋白表达均发生明显改变。GO富集分析显示,mRNA分解代谢过程的调节,RNA稳定性的调节,RNA定位,mRNA稳定性的调节和 RNA转运等生物学过程被富集。KEGG富集分析,蛋白酶体,RNA转运,RNA降解和错配修复被富集。通过30例临床样本RNA-seq数据,TCGA肺腺癌数据,TIMER数据库,TISIDB数据库以及组织芯片的多色免疫荧光结合分析YTHDF1与免疫细胞相关性,发现YTHDF1抑制肺腺癌中免疫细胞浸润,促进肺腺癌免疫抑制。联合shYTHDF1 RNA-seq与蛋白质组数据分析,YTHDF1缺失与甘油酯代谢,果糖和甘露糖代谢,甘氨酸、丝氨酸和苏氨酸代谢和核苷酸代谢等代谢途径相关。细胞功能实验发现沉默YTHDF1能够抑制人肺腺癌细胞增殖、迁移、侵袭和克隆形成能力,并且促进细胞凋亡。通过皮下移植瘤模型的建立,沉默YTHDF1明显抑制小鼠肺腺癌移植瘤的生长。WB实验发现YTHDF1沉默下调PD-L1蛋白表达。进一步机制研究发现YTHDF1通过m6A修饰位点与PD-L1的mRNA结合,增强PD-L1 mRNA的翻译,从而上调PD-L1蛋白表达。
结论 
m6A识别蛋白YTHDF1通过调节CD8+ T细胞的浸润在抗癌免疫中发挥关键作用。并且YTHDF1以m6A修饰依赖方式促进免疫检查点PD-L1 mRNA的翻译,增加PD-L1蛋白表达,以此促进肺腺癌免疫逃逸及恶性进展。这表明靶向YTHDF1可能是一种潜在的肿瘤免疫治疗新策略。

其他摘要

Background

Lung cancer is one of the most common malignant tumors in clinical practice. Lung adenocarcinoma (LUAD) is the most common tissue subtype of lung cancer, accounting for about 40% of lung malignancies. Its poor prognosis is the main cause of clinical treatment failure and high mortality of patients. Recently, immune checkpoint blocking has been a breakthrough in the treatment of cancer. The role of m6A modification in malignant tumors has been more and more confirmed, but the relationship between m6A modification and tumor microenvironment remains unclear.

Methods

MeRIP-seq was used to detect the m6A modification level in 30 LUAD clinical samples. GO enrichment and KEGG enrichment were used to analyze the biological functions and signaling pathways involved in the up-regulated and down-regulated m6A genes in LUAD tissues. Combined with RNA-seq and proteomics, the role of m6A modification in transcription and protein synthesis was analyzed. The role of m6A recognition protein YTHDF1 in the microenvironment of LUAD in clinical samples by RNA-seq combined with LUAD data in the TCGA database. Meanwhile, the correlation between the m6A recognition protein YTHDF1 and the spatial localization of CD8+ T cells, dendritic cells, and macrophages was detected by multiplex immunohistochemistry. RNA-seq, proteomics, and metabolomics were used to analyze the important role of YTHDF1 in LUAD. GO, KEGG, and GSEA enrichment was used to analyze the downstream signals of YTHDF1 influence. siRNA/shRNA was used to transfect LUAD cells, to detect the effects of YTHDF1 on the biological functions of LUAD, such as proliferation, migration, invasion, and apoptosis. A mouse LUAD subcutaneous graft model was established to detect the effect of silencing YTHDF1 on the growth of LUAD. The interaction between YTHDF1 and PD-L1 mRNA was detected by m6A-RIP-qPCR and RNA pull-down experiments.

Results

MeRIP-seq, RNA-seq, and proteome analysis showed that the RNA of 642 genes in LUAD did not change, but the modification level of m6A and protein expression were significantly changed. GO enrichment analysis showed that biological processes such as regulation of mRNA catabolism, regulation of RNA stability, RNA localization, regulation of mRNA stability, and RNA transport were enriched. KEGG enrichment analysis, proteasome, RNA transport, RNA degradation, and mismatch repair were enriched. The correlation between YTHDF1 and immune cells was analyzed by the combination of RNA-seq data, TCGA-LUAD data, TIMER database, TISIDB database, and tissue chip in 30 clinical samples. It was found that YTHDF1 inhibited the infiltration of immune cells in LUAD and promoted the immunosuppression of LUAD. In combination with shYTHDF1 RNA-seq and proteome data analysis, YTHDF1 deletion was associated with metabolic pathways such as triglyceride metabolism, fructose and mannose metabolism, glycine, serine, and threonine metabolism, and nucleotide metabolism. Function experiments showed that silencing YTHDF1 inhibited the proliferation, migration, invasion, and clone formation of lung adenocarcinoma cells, and promoted cell apoptosis. By establishing a subcutaneous graft model, silencing YTHDF1 significantly inhibited the growth of LUAD grafts in mice. WB experiment showed that YTHDF1 silencing down-regulated PD-L1 protein expression. Further mechanism study found that YTHDF1 binds to PD-L1 mRNA through the m6A modification site, enhancing the translation of PD-L1 mRNA and thereby increasing the expression of the PD-L1 protein.

Conclusion

The m6A recognition protein YTHDF1 plays a key role in anticancer immunity by regulating the infiltration of CD8+ T cells. Moreover, YTHDF1 promoted the translation of PD-L1 mRNA and increased the expression of PD-L1 protein in an m6A modification-dependent manner, thus promoting the immune escape and malignant progression of LUAD. This suggests that targeting YTHDF1 may be a potential new strategy for cancer immunotherapy.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] LI Y, SHENG H, MA F, et al. RNA m(6)A reader YTHDF2 facilitates lung adenocarcinoma cell proliferation and metastasis by targeting the AXIN1/Wnt/beta-catenin signaling [J]. Cell Death Dis, 2021, 12(5): 479.
[2] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023 [J]. CA Cancer J Clin, 2023, 73(1): 17-48.
[3] TOPALIAN S L, TAUBE J M, PARDOLL D M. Neoadjuvant checkpoint blockade for cancer immunotherapy [J]. Science, 2020, 367(6477):
[4] HEGDE P S, CHEN D S. Top 10 Challenges in Cancer Immunotherapy [J]. Immunity, 2020, 52(1): 17-35.
[5] ZHANG Z, ZHANG C, YANG Z, et al. m(6)A regulators as predictive biomarkers for chemotherapy benefit and potential therapeutic targets for overcoming chemotherapy resistance in small-cell lung cancer [J]. J Hematol Oncol, 2021, 14(1): 190.
[6] WANG R Q, LONG X R, ZHOU N N, et al. Lnc-GAN1 expression is associated with good survival and suppresses tumor progression by sponging mir-26a-5p to activate PTEN signaling in non-small cell lung cancer [J]. J Exp Clin Cancer Res. 2021;40(1):9.
[7] QIAN X, YANG J, QIU Q, et al. LCAT3, a novel m6A-regulated long non-coding RNA, plays an oncogenic role in lung cancer via binding with FUBP1 to activate c-MYC [J]. J Hematol Oncol, 2021, 14(1): 112.
[8] WANG J, TAN L, YU X, et al. lncRNA ZNRD1-AS1 promotes malignant lung cell proliferation, migration, and angiogenesis via the miR-942/TNS1 axis and is positively regulated by the m(6)A reader YTHDC2 [J]. Mol Cancer, 2022, 21(1): 229.
[9] ZHANG Z, ZHANG C, LUO Y, et al. RNA N(6)-methyladenosine modification in the lethal teamwork of cancer stem cells and the tumor immune microenvironment: Current landscape and therapeutic potential [J]. Clin Transl Med, 2021, 11(9): e525.
[10] GARBO S, ZWERGEL C, BATTISTELLI C. m6A RNA methylation and beyond - The epigenetic machinery and potential treatment options [J]. Drug Discov Today. 2021;26(11):2559-2574.
[11] CAI X, LIANG C, ZHANG M, et al. N6-methyladenosine modification and metabolic reprogramming of digestive system malignancies [J]. Cancer Lett, 2022, 544(215815.
[12] HE L, LI J, WANG X, et al. The dual role of N6-methyladenosine modification of RNAs is involved in human cancers [J]. J Cell Mol Med, 2018, 22(10): 4630-9.
[13] CHEN H, WANG Y, SU H, et al. RNA N(6)-Methyladenine Modification, Cellular Reprogramming, and Cancer Stemness [J]. Front Cell Dev Biol. 2022;10:935224.
[14] DESROSIERS R, FRIDERICI K, ROTTMAN F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells [J]. Proc Natl Acad Sci U S A, 1974, 71(10):3971-3975.
[15] JIA G, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO [J]. Nat Chem Biol, 2011, 7(12): 885-7.
[16] WANG S, LV W, LI T, et al. Dynamic regulation and functions of mRNA m6A modification [J]. Cancer Cell Int, 2022, 22(1): 48.
[17] WANG H, HU X, HUANG M, et al. Mettl3-mediated mRNA m(6)A methylation promotes dendritic cell activation [J]. Nat Commun, 2019, 10(1): 1898.
[18] TAKABA H, TAKAYANAGI H. The Mechanisms of T Cell Selection in the Thymus [J]. Trends Immunol, 2017, 38(11): 805-16.
[19] HAN D, LIU J, CHEN C, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells [J]. Nature, 2019, 566(7743): 270-4.
[20] LI N, KANG Y, WANG L, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment [J]. Proc Natl Acad Sci U S A, 2020, 117(33):201918986.
[21] MICHALAK E M, BURR M L, BANNISTER A J, et al. The roles of DNA, RNA and histone methylation in ageing and cancer [J]. Nat Rev Mol Cell Biol, 2019;20(10):573-589.
[22] LIVNEH I, MOSHITCH-MOSHKOVITZ S, AMARIGLIO N, et al. The m(6)A epitranscriptome: transcriptome plasticity in brain development and function [J]. Nat Rev Neurosci, 2020;21(1):36-51.
[23] BOCCALETTO P, MACHNICKA M A, PURTA E, et al. MODOMICS: a database of RNA modification pathways. 2017 update [J]. Nucleic Acids Res, 2018, 46(D1): D303-D7.
[24] DESROSIERS R, FRIDERICI K, ROTTMAN F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells [J]. Proc Natl Acad Sci U S A, 1974, 71(10): 3971-5.
[25] WANG D O. Mapping m(6)A and m(1)A with mutation signatures [J]. Nat Methods, 2019, 16(12): 1213-4.
[26] LIU H, BEGIK O, LUCAS M C, et al. Accurate detection of m(6)A RNA modifications in native RNA sequences [J]. Nat Commun, 2019, 10(1): 4079.
[27] OU X, PU Q, SHENG S, et al. Electrochemical competitive immunodetection of messenger RNA modified with N6-methyladenosine by using DNA-modified mesoporous PtCo nanospheres [J]. Mikrochim Acta, 2019, 187(1): 31.
[28] LINDER B, GROZHIK A V, OLARERIN-GEORGE A O, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome [J]. Nat Methods, 2015, 12(8): 767-72.
[29] NARAYAN P, LUDWICZAK R L, GOODWIN E C, et al. Context effects on N6-adenosine methylation sites in prolactin mRNA [J]. Nucleic Acids Res, 1994, 22(3): 419-26.
[30] MEYER K D, PATIL D P, ZHOU J, et al. 5' UTR m(6)A Promotes Cap-Independent Translation [J]. Cell, 2015, 163(4): 999-1010.
[31] ZHU D, LIU Y, CHEN J, et al. The methyltransferase METTL3 promotes tumorigenesis via mediating HHLA2 mRNA m6A modification in human renal cell carcinoma [J]. J Transl Med, 2022, 20(1): 298.
[32] ZHOU Y, PEI Z, MAIMAITI A, et al. m(6)A methyltransferase KIAA1429 acts as an oncogenic factor in colorectal cancer by regulating SIRT1 in an m(6)A-dependent manner [J]. Cell Death Discov, 2022, 8(1): 83.
[33] ZHAO Y, HUANG S, TAN X, et al. N(6) -Methyladenosine-Modified CBX1 Regulates Nasopharyngeal Carcinoma Progression Through Heterochromatin Formation and STAT1 Activation [J]. Adv Sci (Weinh), 2022, e2205091.
[34] LIU L, LI H, HU D, et al. Insights into N6-methyladenosine and programmed cell death in cancer [J]. Mol Cancer, 2022, 21(1): 32.
[35] YANG Y, HSU P J, CHEN Y S, et al. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism [J]. Cell Res, 2018, 28(6): 616-24.
[36] WANG X, FENG J, XUE Y, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex [J]. Nature, 2016, 534(7608): 575-8.
[37] SLEDZ P, JINEK M. Structural insights into the molecular mechanism of the m(6)A writer complex [J]. eLife, 2016, 5:e18434.
[38] CHOE J, LIN S, ZHANG W, et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis [J]. Nature, 2018, 561(7724): 556-60.
[39] PING X L, SUN B F, WANG L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase [J]. Cell Res, 2014, 24(2): 177-89.
[40] YUE Y, LIU J, CUI X, et al. VIRMA mediates preferential m(6)A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation [J]. Cell Discov, 2018;4:10.
[41] PATIL D P, CHEN C K, PICKERING B F, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression [J]. Nature, 2016, 537(7620): 369-73.
[42] WEN J, LV R, MA H, et al. Zc3h13 Regulates Nuclear RNA m(6)A Methylation and Mouse Embryonic Stem Cell Self-Renewal [J]. Mol Cell, 2018, 69(6): 1028-38 e6.
[43] PENDLETON K E, CHEN B, LIU K, et al. The U6 snRNA m(6)A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention [J]. Cell, 2017, 169(5): 824-35 e14.
[44] WARDA A S, KRETSCHMER J, HACKERT P, et al. Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs [J]. EMBO Rep, 2017, 18(11): 2004-14.
[45] ZACCARA S, RIES R J, JAFFREY S R. Reading, writing and erasing mRNA methylation [J]. Nat Rev Mol Cell Biol, 2019, 20(10): 608-24.
[46] ALARCÓN CR, GOODARZI H, LEE H, et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events [J]. Cell, 2015;162(6):1299-1308.
[47] WU B, SU S, PATIL D P, et al. Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1 [J]. Nat Commun, 2018, 9(1): 420.
[48] LIU N, DAI Q, ZHENG G, et al. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions [J]. Nature, 2015;518(7540):560-564.
[49] LIU N, ZHOU KI, PARISIEN M, et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein [J]. Nucleic Acids Res, 2017;45(10):6051-6063.
[50] BELL J L, WACHTER K, MUHLECK B, et al. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? [J]. Cell Mol Life Sci, 2013, 70(15): 2657-75.
[51] NIELSEN J, CHRISTIANSEN J, LYKKE-ANDERSEN J, et al. A Family of Insulin-Like Growth Factor II mRNA-Binding Proteins Represses Translation in Late Development [J]. Mol Cell Biol, 1999;19(2):1262-1270.
[52] HUANG H, WENG H, SUN W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation [J]. Nat Cell Biol, 2018, 20(3): 285-95.
[53] PATIL D P, PICKERING B F, JAFFREY S R. Reading m(6)A in the Transcriptome: m(6)A-Binding Proteins [J]. Trends Cell Biol, 2018, 28(2): 113-27.
[54] XIAO W, ADHIKARI S, DAHAL U, et al. Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing [J]. Mol Cell, 2016, 61(4): 507-19.
[55] ROUNDTREE I A, LUO G Z, ZHANG Z, et al. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs [J]. eLife, 2017;6:e31311.
[56] MAO Y, DONG L, LIU X M, et al. m(6)A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2 [J]. Nat Commun, 2019, 10(1): 5332.
[57] WANG X, ZHAO B S, ROUNDTREE I A, et al. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency [J]. Cell, 2015, 161(6): 1388-99.
[58] HUANG T, LIU Z, ZHENG Y, et al. YTHDF2 promotes spermagonial adhesion through modulating MMPs decay via m6A/mRNA pathway [J]. Cell Death & Disease, 2020;11(1):37.
[59] NI W, YAO S, ZHOU Y, et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)A reader YTHDF3 [J]. Mol Cancer, 2019, 18(1): 143.
[60] FRAYLING T M, TIMPSON N J, WEEDON M N, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity [J]. Science, 2007, 316(5826): 889-94.
[61] ZHENG G, DAHL J A, NIU Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility [J]. Mol Cell, 2013, 49(1): 18-29.
[62] WANG T, KONG S, TAO M, et al. The potential role of RNA N6-methyladenosine in Cancer progression [J]. Mol Cancer, 2020, 19(1): 88.
[63] MAUER J, LUO X, BLANJOIE A, et al. Reversible methylation of m(6)Am in the 5' cap controls mRNA stability [J]. Nature, 2017, 541(7637): 371-5.
[64] WEI J, LIU F, LU Z, et al. Differential m(6)A, m(6)Am, and m(1)A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm [J]. Mol Cell, 2018, 71(6): 973-85 e5.
[65] MAUER J, SINDELAR M, DESPIC V, et al. FTO controls reversible m(6)Am RNA methylation during snRNA biogenesis [J]. Nat Chem Biol, 2019, 15(4): 340-7.
[66] KAN L, GROZHIK A V, VEDANAYAGAM J, et al. The m(6)A pathway facilitates sex determination in Drosophila [J]. Nat Commun, 2017;8:15737.
[67] HAUSSMANN I U, BODI Z, SANCHEZ-MORAN E, et al. m(6)A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination [J]. Nature, 2016, 540(7632): 301-4.
[68] KE S, PANDYA-JONES A, SAITO Y, et al. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover [J]. Genes Dev, 2017;31(10):990-1006.
[69] LOULOUPI A, NTINI E, CONRAD T, et al. Transient N-6-Methyladenosine Transcriptome Sequencing Reveals a Regulatory Role of m6A in Splicing Efficiency [J]. Cell Rep, 2018, 23(12): 3429-37.
[70] GEULA S, MOSHITCH-MOSHKOVITZ S, DOMINISSINI D, et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. [J]. Science, 2015;347(6225):1002-1006.
[71] DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq [J]. Nature, 2012, 485(7397): 201-6.
[72] Hartmann AM, Nayler O, Schwaiger FW, et al. The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(fyn) [J]. Mol Biol Cell, 1999;10(11):3909-3926.
[73] IMAI Y, MATSUO N, OGAWA S, et al. Cloning of a gene, YT521, for a novel RNA splicing-related protein induced by hypoxia/reoxygenation [J]. Molecular Brain Research, 1998, 53(1-2):33-40.
[74] JACKSON R J, HELLEN C U, PESTOVA T V. The mechanism of eukaryotic translation initiation and principles of its regulation [J]. Nat Rev Mol Cell Biol, 2010, 11(2): 113-127.
[75] LEE A S, KRANZUSCH P J, CATE J H. eIF3 targets cell-proliferation messenger RNAs for translational activation or repression [J]. Nature, 2015, 522(7554): 111-4.
[76] XU Y, YUAN X D, WU J J, et al. The N6-methyladenosine mRNA methylase METTL14 promotes renal ischemic reperfusion injury via suppressing YAP1 [J]. J Cell Biochem, 2020, 121(1): 524-33.
[77] J A BOKAR 1 M E S, D POLAYES, A G MATERA, et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase [J]. RNA, 1997;3(11):1233-1247.
[78] ZHOU J, WAN J, GAO X, et al. Dynamic m(6)A mRNA methylation directs translational control of heat shock response [J]. Nature, 2015, 526(7574): 591-4.
[79] Sommer S, Lavi U, Darnell JE Jr. The Absolute Frequency of Labeled IV-6-methyladenosine in HeLa Cell Messenger RNA Decreases with Label Time [J]. J Mol Biol, 1978, 124(3):487-499.
[80] WANG X, LU Z, GOMEZ A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability [J]. Nature, 2014, 505(7481): 117-20.
[81] Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment [J]. Science, 2015, 348(6230):74-80.
[82] BINNEWIES M, ROBERTS E W, KERSTEN K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy [J]. Nat Med, 2018, 24(5): 541-50.
[83] MCGRANAHAN N, ROSENTHAL R, HILEY C T, et al. Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution [J]. Cell, 2017, 171(6): 1259-71 e11.
[84] IWAI, YOSHIKO, ISHIDA, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. [J]. Proc Natl Acad Sci U S A, 2002, 99(19):12293-12297.
[85] BORGHAEI H, PAZ-ARES L, HORN L, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer [J]. New Engl J Med, 2015, 373(17): 1627-39.
[86] RIBAS A, WOLCHOK J D. Cancer immunotherapy using checkpoint blockade [J]. Science, 2018, 359(6382): 1350-5.
[87] SAMSTEIN R M, LEE C H, SHOUSHTARI A N, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types [J]. Nat Genet, 2019, 51(2): 202-6.
[88] TOPALIAN S L, HODI F S, BRAHMER J R, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer [J]. New Engl J Med, 2012, 366(26): 2443-54.
[89] GAO J, SHI L Z, ZHAO H, et al. Loss of IFN-gamma Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy [J]. Cell, 2016, 167(2): 397-404 e9.
[90] SADE-FELDMAN M, JIAO Y J, CHEN J H, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation [J]. Nat Commun, 2017, 8(1): 1136.
[91] CURIEL T J, WEI S, DONG H, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity [J]. Nat Med, 2003, 9(5): 562-7.
[92] KEIR M E, BUTTE M J, FREEMAN G J, et al. PD-1 and its ligands in tolerance and immunity [J]. Annu Rev Immunol, 2008, 26(677-704.
[93] LIN H, WEI S, HURT E M, et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression [J]. J Clin Invest, 2018, 128(2): 805-15.
[94] OKAZAKI T, CHIKUMA S, IWAI Y, et al. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application [J]. Nat Immunol, 2013, 14(12): 1212-8.
[95] CHOW A, PERICA K, KLEBANOFF C A, et al. Clinical implications of T cell exhaustion for cancer immunotherapy [J]. Nat Rev Clin Oncol, 2022, 19(12): 775-90.
[96] CHEN G, HUANG A C, ZHANG W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response [J]. Nature, 2018, 560(7718): 382-6.
[97] POGGIO M, HU T, PAI C C, et al. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory [J]. Cell, 2019, 177(2): 414-27 e13.
[98] LEE H H, WANG Y N, XIA W, et al. Removal of N-Linked Glycosylation Enhances PD-L1 Detection and Predicts Anti-PD-1/PD-L1 Therapeutic Efficacy [J]. Cancer Cell, 2019, 36(2): 168-78 e4.
[99] PEIXOTO A, RELVAS-SANTOS M, AZEVEDO R, et al. Protein Glycosylation and Tumor Microenvironment Alterations Driving Cancer Hallmarks [J]. Front Oncol, 2019, 9:380.
[100] ZHAO Y, HARRISON D L, SONG Y, et al. Antigen-Presenting Cell-Intrinsic PD-1 Neutralizes PD-L1 in cis to Attenuate PD-1 Signaling in T Cells [J]. Cell Rep, 2018, 24(2): 379-90 e6.
[101] BUTTE M J, KEIR M E, PHAMDUY T B, et al. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses [J]. Immunity, 2007, 27(1): 111-22.
[102] CHAUDHRI A, XIAO Y, KLEE A N, et al. PD-L1 Binds to B7-1 Only In Cis on the Same Cell Surface [J]. Cancer Immunol Res, 2018, 6(8): 921-9.
[103] ZHAO Y, LEE C K, LIN C H, et al. PD-L1:CD80 Cis-Heterodimer Triggers the Co-stimulatory Receptor CD28 While Repressing the Inhibitory PD-1 and CTLA-4 Pathways [J]. Immunity, 2019, 51(6): 1059-73 e9.
[104] SUGIURA D, MARUHASHI T, OKAZAKI IM, et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses [J]. Science, 2019, 364(6440):558-566.
[105] Bronte V, Mocellin S. Suppressive influences in the immune response to cancer [J]. J Immunother, 2009, 32(1):1-11.
[106] SHI H, WANG X, LU Z, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA [J]. Cell Res, 2017, 27(3): 315-28.
[107] LIU H, WANG Y, XUE T, et al. Roles of m(6)A modification in oral cancer (Review) [J]. Int J Oncol, 2023, 62(1):
[108] ZOU Y, ZHENG S, XIE X, et al. N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer [J]. Nat Commun, 2022, 13(1): 2672.
[109] ZHU Y, PENG X, ZHOU Q, et al. METTL3-mediated m6A modification of STEAP2 mRNA inhibits papillary thyroid cancer progress by blocking the Hedgehog signaling pathway and epithelial-to-mesenchymal transition [J]. Cell Death Dis, 2022, 13(4): 358.
[110] WU Y, YANG X, CHEN Z, et al. m(6)A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1 [J]. Mol Cancer, 2019, 18(1): 87.
[111] WEI W, HUO B, SHI X. miR-600 inhibits lung cancer via downregulating the expression of METTL3 [J]. Cancer Manag Res, 2019, 11:1177-87.
[112] LIN S, CHOE J, DU P, et al. The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells [J]. Mol Cell, 2016, 62(3): 335-45.
[113] JIN D, GUO J, WU Y, et al. m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis [J]. J Hematol Oncol, 2019, 12(1): 135.
[114] DU Y, HOU G, ZHANG H, et al. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function [J]. Nucleic Acids Res, 2018, 46(10): 5195-208.
[115] LIU J, REN D, DU Z, et al. m(6)A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression [J]. Biochem Biophys Res Commun, 2018, 502(4): 456-64.
[116] HOU J, ZHANG H, LIU J, et al. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma [J]. Mol Cancer, 2019, 18(1): 163.
[117] ZHONG L, LIAO D, ZHANG M, et al. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma [J]. Cancer Lett, 2019, 442(252-61.
[118] CHEN M, WEI L, LAW C T, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2 [J]. Hepatology, 2018, 67(6): 2254-70.
[119] MULLER S, GLASS M, SINGH A K, et al. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner [J]. Nucleic Acids Res, 2019, 47(1): 375-90.
[120] MA J Z, YANG F, ZHOU C C, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing [J]. Hepatology, 2017, 65(2): 529-43.
[121] CHEN M, WONG C M. The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis [J]. Mol Cancer, 2020, 19(1): 44.
[122] YUE B, SONG C, YANG L, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer [J]. Mol Cancer, 2019, 18(1): 142.
[123] HE H, WU W, SUN Z, et al. MiR-4429 prevented gastric cancer progression through targeting METTL3 to inhibit m(6)A-caused stabilization of SEC62 [J]. Biochem Biophys Res Commun, 2019, 517(4): 581-7.
[124] PENG W, LI J, CHEN R, et al. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway [J]. J Exp Clin Cancer Res, 2019, 38(1): 393.
[125] DENG R, CHENG Y, YE S, et al. m(6)A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways [J]. Onco Targets Ther, 2019, 12:4391-402.
[126] TANABE A, TANIKAWA K, TSUNETOMI M, et al. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1alpha mRNA is translated [J]. Cancer Lett, 2016, 376(1): 34-42.
[127] LI T, HU P S, ZUO Z, et al. METTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinoma [J]. Mol Cancer, 2019, 18(1): 112.
[128] TAKETO K, KONNO M, ASAI A, et al. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells [J]. Int J Oncol, 2018, 52(2): 621-9.
[129] TANG B, YANG Y, KANG M, et al. m(6)A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling [J]. Mol Cancer, 2020, 19(1): 3.
[130] KONNO M, KOSEKI J, ASAI A, et al. Distinct methylation levels of mature microRNAs in gastrointestinal cancers [J]. Nat Commun, 2019, 10(1): 3888.
[131] STRICK A, VON HAGEN F, GUNDERT L, et al. The N(6)-methyladenosine (m(6) A) erasers alkylation repair homologue 5 (ALKBH5) and fat mass and obesity-associated protein (FTO) are prognostic biomarkers in patients with clear cell renal carcinoma [J]. BJU Int, 2020, 125(4): 617-24.
[132] GONG D, ZHANG J, CHEN Y, et al. The m6A-suppressed P2RX6 activation promotes renal cancer cells migration and invasion through ATP-induced Ca2+ influx modulating ERK1/2 phosphorylation and MMP9 signaling pathway [J]. J Exp Clin Cancer Res, 2019, 38(1):233.
[133] CHENG M, SHENG L, GAO Q, et al. The m(6)A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-kappaB/MYC signaling network [J]. Oncogene, 2019, 38(19): 3667-80.
[134] HAN J, WANG J Z, YANG X, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner [J]. Mol Cancer, 2019, 18(1): 110.
[135] JIN H, YING X, QUE B, et al. N(6)-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer [J]. EBioMedicine, 2019, 47:195-207.
[136] ZI H, HE S H, LENG X Y, et al. Global, regional, and national burden of kidney, bladder, and prostate cancers and their attributable risk factors, 1990-2019 [J]. Mil Med Res, 2021, 8(1): 60.
[137] YUAN S, HE S H, LI L Y, et al. A potassium-chloride co-transporter promotes tumor progression and castration resistance of prostate cancer through m(6)A reader YTHDC1 [J]. Cell Death Dis, 2023, 14(1): 7.
[138] LI E, WEI B, WANG X, et al. METTL3 enhances cell adhesion through stabilizing integrin β1 mRNA via an m6A-HuR-dependent mechanism in prostatic carcinoma [J]. Am J Cancer Res, 2020, 10(3):1012-1025.
[139] GABRIEL S B, CIBULSKIS K, LANDER E, et al. Integrated genomic characterization of endometrial carcinoma [J]. Nature, 2013, 497(7447): 67-73.
[140] LIU J, ECKERT M A, HARADA B T, et al. m(6)A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer [J]. Nat Cell Biol, 2018, 20(9): 1074-83.
[141] ZHANG Z, ZHOU D, LAI Y, et al. Estrogen induces endometrial cancer cell proliferation and invasion by regulating the fat mass and obesity-associated gene via PI3K/AKT and MAPK signaling pathways [J]. Cancer Lett, 2012, 319(1): 89-97.
[142] ZHU Y, SHEN J, GAO L, et al. Estrogen promotes fat mass and obesity-associated protein nuclear localization and enhances endometrial cancer cell proliferation via the mTOR signaling pathway [J]. Oncol Rep, 2016, 35(4): 2391-7.
[143] ZHOU S, BAI Z L, XIA D, et al. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting beta-catenin through mRNA demethylation [J]. Mol Carcinog, 2018, 57(5): 590-7.
[144] ZOU D, DONG L, LI C, et al. The m(6)A eraser FTO facilitates proliferation and migration of human cervical cancer cells [J]. Cancer Cell Int, 2019, 19:321.
[145] WANG X, ZHANG J, WANG Y. Long noncoding RNA GAS5-AS1 suppresses growth and metastasis of cervical cancer by increasing GAS5 stability [J]. Am J Transl Res, 2019, 11(8):4909-4921.
[146] LIU T, WEI Q, JIN J, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation [J]. Nucleic Acids Res, 2020, 48(7):3816-3831.
[147] ZHANG Y, QIU J G, JIA X Y, et al. METTL3-mediated N6-methyladenosine modification and HDAC5/YY1 promote IFFO1 downregulation in tumor development and chemo-resistance [J]. Cancer Lett, 2022, 553:215971.
[148] HUA W, ZHAO Y, JIN X, et al. METTL3 promotes ovarian carcinoma growth and invasion through the regulation of AXL translation and epithelial to mesenchymal transition [J]. Gynecol Oncol, 2018, 151(2): 356-65.
[149] CHEN J, ODENIKE O, ROWLEY J D. Leukaemogenesis: more than mutant genes [J]. Nat Rev Cancer, 2010, 10(1): 23-36.
[150] LI Z, WENG H, SU R, et al. FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N(6)-Methyladenosine RNA Demethylase [J]. Cancer Cell, 2017, 31(1): 127-41.
[151] SU R, DONG L, LI C, et al. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m(6)A/MYC/CEBPA Signaling [J]. Cell, 2018, 172(1-2): 90-105 e23.
[152] PARIS J, MORGAN M, CAMPOS J, et al. Targeting the RNA m(6)A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia [J]. Cell Stem Cell, 2019, 25(1): 137-48 e6.
[153] WANG H, ZUO H, LIU J, et al. Loss of YTHDF2-mediated m(6)A-dependent mRNA clearance facilitates hematopoietic stem cell regeneration [J]. Cell Res, 2018, 28(10): 1035-8.
[154] VU L P, PICKERING B F, CHENG Y, et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells [J]. Nat Med, 2017, 23(11): 1369-76.
[155] BARBIERI I, TZELEPIS K, PANDOLFINI L, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control [J]. Nature, 2017, 552(7683): 126-31.
[156] CUI Q, SHI H, YE P, et al. m(6)A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells [J]. Cell Rep, 2017, 18(11): 2622-34.
[157] LI F, YI Y, MIAO Y, et al. N(6)-Methyladenosine Modulates Nonsense-Mediated mRNA Decay in Human Glioblastoma [J]. Cancer Res, 2019, 79(22): 5785-98.
[158] ZHANG S, ZHAO B S, ZHOU A, et al. m(6)A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program [J]. Cancer Cell, 2017, 31(4): 591-606 e6.
[159] WANG H, XU B, SHI J. N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2 [J]. Gene, 2020, 722(144076.
[160] CAI X, WANG X, CAO C, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g [J]. Cancer Lett, 2018, 415:11-9.
[161] NIU Y, LIN Z, WAN A, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3 [J]. Mol Cancer, 2019, 18(1): 46.
[162] ZHANG C, SAMANTA D, LU H, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA [J]. Proc Natl Acad Sci U S A, 2016, 113(14): E2047-56.
[163] ZHANG P, HE Q, LEI Y, et al. m(6)A-mediated ZNF750 repression facilitates nasopharyngeal carcinoma progression [J]. Cell Death Dis, 2018, 9(12): 1169.
[164] ZHENG Z Q, LI Z X, ZHOU G Q, et al. Long Noncoding RNA FAM225A Promotes Nasopharyngeal Carcinoma Tumorigenesis and Metastasis by Acting as ceRNA to Sponge miR-590-3p/miR-1275 and Upregulate ITGB3 [J]. Cancer Res, 2019, 79(18): 4612-26.
[165] JIA R, CHAI P, WANG S, et al. m(6)A modification suppresses ocular melanoma through modulating HINT2 mRNA translation [J]. Mol Cancer, 2019, 18(1): 161.
[166] MIAO W, CHEN J, JIA L, et al. The m6A methyltransferase METTL3 promotes osteosarcoma progression by regulating the m6A level of LEF1 [J]. Biochem Biophys Res Commun, 2019, 516(3): 719-25.
[167] KAYMAK I, WILLIAMS K S, CANTOR J R, et al. Immunometabolic Interplay in the Tumor Microenvironment [J]. Cancer Cell, 2021, 39(1): 28-37.
[168] LI T, TAN Y T, CHEN Y X, et al. Methionine deficiency facilitates antitumour immunity by altering m(6)A methylation of immune checkpoint transcripts [J]. Gut, 2023, 72(3):501-511.
[169] JUNE C H, SADELAIN M. Chimeric Antigen Receptor Therapy [J]. New Engl J Med, 2018, 379(1): 64-73.
[170] BAGCHI S, YUAN R, ENGLEMAN E G. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance [J]. Annu Rev Pathol, 2021, 16(223-49.
[171] GU Y, WU X, ZHANG J, et al. The evolving landscape of N6-methyladenosine modification in the tumor microenvironment [J]. Mol Ther, 2021, 29(5):1703-1715.
[172] BOLLINO D, WEBB T J. Chimeric antigen receptor-engineered natural killer and natural killer T cells for cancer immunotherapy [J]. Transl Res, 2017, 187:32-43.
[173] MORVAN M G, LANIER L L. NK cells and cancer: you can teach innate cells new tricks [J]. Nat Rev Cancer, 2016, 16(1): 7-19.
[174] MA S, YAN J, BARR T, et al. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity [J]. J Exp Med, 2021, 218(8):
[175] SONG H, SONG J, CHENG M, et al. METTL3-mediated m(6)A RNA methylation promotes the anti-tumour immunity of natural killer cells [J]. Nat Commun, 2021, 12(1): 5522.
[176] NOY R, POLLARD J W. Tumor-associated macrophages: from mechanisms to therapy [J]. Immunity, 2014, 41(1): 49-61.
[177] CAUX C, RAMOS R N, PRENDERGAST G C, et al. A milestone review on how macrophages affect tumor growth [J]. Cancer Res, 2016, 76(22): 6439-42.
[178] SHRIVASTAVA R, ASIF M, SINGH V, et al. M2 polarization of macrophages by Oncostatin M in hypoxic tumor microenvironment is mediated by mTORC2 and promotes tumor growth and metastasis [J]. Cytokine, 2019, 118:130-43.
[179] YIN H, ZHANG X, YANG P, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming [J]. Nat Commun, 2021, 12(1): 1394.
[180] TONG J, WANG X, LIU Y, et al. Pooled CRISPR screening identifies m6A as a positive regulator of macrophage activation [J]. Sci Adv. 2021,7(18):eabd4742.
[181] DONG L, CHEN C, ZHANG Y, et al. The loss of RNA N(6)-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8(+) T cell dysfunction and tumor growth [J]. Cancer Cell, 2021, 39(7): 945-57 e10.
[182] YU R, LI Q, FENG Z, et al. m6A Reader YTHDF2 Regulates LPS-Induced Inflammatory Response [J]. Int J Mol Sci, 2019, 20(6):1323.
[183] RIDGE JP, DI ROSA F, MATZINGER P. A. conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell [J]. Nature, 1998, 393(6684):474-478.
[184] STEINMAN R M, BANCHEREAU J. Taking dendritic cells into medicine [J]. Nature, 2007, 449(7161): 419-26.
[185] WU H, XU Z, WANG Z, et al. Dendritic cells with METTL3 gene knockdown exhibit immature properties and prolong allograft survival [J]. Genes Immun, 2020, 21(3): 193-202.
[186]LI H B, TONG J, ZHU S, et al. m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways [J]. Nature, 2017, 548(7667): 338-42.
[187] TONG J, CAO G, ZHANG T, et al. m(6)A mRNA methylation sustains Treg suppressive functions [J]. Cell Res, 2018, 28(2): 253-6.
[188] CROTTY S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases [J]. Immunity, 2019, 50(5): 1132-48.
[189] YAO Y, YANG Y, GUO W, et al. METTL3-dependent m6A modification programs T follicular helper cell differentiation [J]. Nat Commun, 2021, 12(1):1333.
[190] ZHOU J, ZHANG X, HU J, et al. m6A demethylase ALKBH5 controls CD4+ T cell pathogenicity and promotes autoimmunity [J]. Sci Adv, 2021, 7(25):eabg0470.
[191] PARAMASIVAM A, PRIYADHARSINI J V, RAGHUNANDHAKUMAR S. Implications of m6A modification in autoimmune disorders [J]. Cell Mol Immunol, 2020, 17(5):550-551.
[192] KIM D J, IWASAKI A. YTHDF1 Control of Dendritic Cell Cross-Priming as a Possible Target of Cancer Immunotherapy [J]. Biochemistry, 2019, 58(15): 1945-6.
[193] DENG L J, DENG W Q, FAN S R, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond [J]. Mol Cancer, 2022, 21(1): 52.
[194] SHRIWAS O, MOHAPATRA P, MOHANTY S, et al. The Impact of m6A RNA Modification in Therapy Resistance of Cancer: Implication in Chemotherapy, Radiotherapy, and Immunotherapy [J]. Front Oncol, 2020, 10:612337.
[195] QUAN C, BELAYDI O, HU J, et al. N(6)-Methyladenosine in Cancer Immunotherapy: An Undervalued Therapeutic Target [J]. Front Immunol, 2021, 12:697026.
[196] XU J Y, ZHANG C, WANG X, et al. Integrative Proteomic Characterization of Human Lung Adenocarcinoma [J]. Cell, 2020, 182(1): 245-61 e17.
[197] MICHAEL I LOVE W A S A. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J]. Genome Biol, 2014, 15(12):550.
[198] YU G, WANG L G, HAN Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters [J]. OMICS, 2012, 16(5): 284-7.
[199] WALTER W, SÁNCHEZ-CABO F, RICOTE M. GOplot: an R package for visually combining expression data with functional analysis [J]. Bioinformatics, 2015, 31(17):2912-2914.
[200] CHEN Y, ZHAO Y, CHEN J, et al. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m(6)A-guided epigenetic inhibition of LYPD1 [J]. Mol Cancer, 2020, 19(1): 123.
[201] WANG W, HUANG Q, LIAO Z, et al. ALKBH5 prevents hepatocellular carcinoma progression by post-transcriptional inhibition of PAQR4 in an m6A dependent manner [J]. Exp Hematol Oncol, 2023, 12(1): 1.
[202] SUN R, YUAN L, JIANG Y, et al. ALKBH5 activates FAK signaling through m6A demethylation in ITGB1 mRNA and enhances tumor-associated lymphangiogenesis and lymph node metastasis in ovarian cancer [J]. Theranostics, 2023, 13(2): 833-848.
[203] YANG J, NIE J, MA X, et al. Targeting PI3K in cancer: mechanisms and advances in clinical trials [J]. Mol Cancer, 2019, 18(1): 26.
[204] ZHOU BP, HU MC, MILLER SA, et al. HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway [J]. J Biol Chem, 2000, 275(11):8027-8031.
[205] STEMKE-HALE K, GONZALEZ-ANGULO A M, LLUCH A, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer [J]. Cancer Res, 2008, 68(15): 6084-91.
[206] AZIZ S A, DAVIES M, PICK E, et al. Phosphatidylinositol-3-kinase as a therapeutic target in melanoma [J]. Clin Cancer Res, 2009, 15(9): 3029-36.
[207] WANG F, QI X M, WERTZ R, et al. p38gamma MAPK Is Essential for Aerobic Glycolysis and Pancreatic Tumorigenesis [J]. Cancer Res, 2020, 80(16): 3251-64.
[208] WEI X, ZHANG Y, LI C, et al. The evolutionarily conserved MAPK/Erk signaling promotes ancestral T-cell immunity in fish via c-Myc-mediated glycolysis [J]. J Biol Chem, 2020, 295(10): 3000-16.
[209] KELLER M, ROHLF K, GLOTZBACH A, et al. Inhibiting the glycerophosphodiesterase EDI3 in ER-HER2+ breast cancer cells resistant to HER2-targeted therapy reduces viability and tumour growth [J]. J Exp Clin Cancer Res, 2023, 42(1): 25.
[210] IORIO E, CARAMUJO M J, CECCHETTI S, et al. Key Players in Choline Metabolic Reprograming in Triple-Negative Breast Cancer [J]. Front Oncol, 2016, 6:205.
[211] STEWART J D, MARCHAN R, LESJAK M S, et al. Choline-releasing glycerophosphodiesterase EDI3 drives tumor cell migration and metastasis [J]. Proc Natl Acad Sci U S A, 2012, 109(21): 8155-60.
[212] LESJAK M S, MARCHAN R, STEWART J D, et al. EDI3 links choline metabolism to integrin expression, cell adhesion and spreading [J]. Cell Adh Migr, 2014, 8(5): 499-508.
[213] HUANG K B, PAN Y H, SHU G N, et al. Circular RNA circSNX6 promotes sunitinib resistance in renal cell carcinoma through the miR-1184/GPCPD1/lysophosphatidic acid axis [J]. Cancer Lett, 2021, 523:121-34.
[214] VARKI A. Biological roles of glycans [J]. Glycobiology, 2017, 27(1):3-49.
[215] KUDELKA M R, JU T, HEIMBURG-MOLINARO J, et al. Simple sugars to complex disease--mucin-type O-glycans in cancer [J]. Adv Cancer Res, 2015, 126:53-135.
[216] MICHAELA, FRYE, BRYAN, et al. RNA modifications modulate gene expression during development [J]. Science, 2018, 361(6409):1346-1349.
[217] SUBRAMANIAN A, TAMAYO P, MOOTHA VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles [J]. Proc Natl Acad Sci U S A, 2005, 102(43):15545-15550.
[218] HÄNZELMANN S, CASTELO R, GUINNEY J. GSVA: gene set variation analysis for microarray and RNA-seq data [J]. BMC Bioinformatics, 2013, 14(1):7-7.
[219] YOSHIHARA K, SHAHMORADGOLI M, MARTINEZ E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data [J]. Nat Commun, 2013, 4:2612.
[220] RU B, WONG C N, TONG Y, et al. TISIDB: an integrated repository portal for tumor-immune system interactions [J]. Bioinformatics, 2019, 35(20): 4200-2.
[221] LI T, FU J, ZENG Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells [J]. Nucleic Acids Res, 2020, 48(W1): W509-W14.
[222] GOLSTEIN P, GRIFFITHS G M. An early history of T cell-mediated cytotoxicity [J]. Nat Rev Immunol, 2018, 18(8): 527-35.
[223] CAO Y, DI X, CONG S, et al. RBM10 recruits METTL3 to induce N6-methyladenosine-MALAT1-dependent modification, inhibiting the invasion and migration of NSCLC [J]. Life Sci, 2023, 315:121359.
[224] CHEN B, LIU C, LONG H, et al. N(6)‑methyladenosine‑induced long non‑coding RNA PVT1 regulates the miR‑27b‑3p/BLM axis to promote prostate cancer progression [J]. Int J Oncol, 2023, 62(1):16.
[225] CHENG Y, GAO Z, ZHANG T, et al. Decoding m(6)A RNA methylome identifies PRMT6-regulated lipid transport promoting AML stem cell maintenance [J]. Cell Stem Cell, 2023, 30(1): 69-85e7.
[226] YANG S, WEI J, CUI Y H, et al. m(6)A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade [J]. Nat Commun, 2019, 10(1): 2782.
[227] LI N, KANG Y, WANG L, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment [J]. Proc Natl Acad Sci U S A, 2020, 117(33): 20159-70.
[228] LIU Y, LIANG G, XU H, et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance [J]. Cell Metab, 2021, 33(6): 1221-33 e11.
[229] HE X, TAN L, NI J, et al. Expression pattern of m(6)A regulators is significantly correlated with malignancy and antitumor immune response of breast cancer [J]. Cancer Gene Ther, 2021, 28(3-4):188-196.
[230] YI L, WU G, GUO L, et al. Comprehensive Analysis of the PD-L1 and Immune Infiltrates of m(6)A RNA Methylation Regulators in Head and Neck Squamous Cell Carcinoma [J]. Mol Ther Nucleic Acids, 2020, 21:299-314.
[231] ZHAO H, XU Y, XIE Y, et al. m6A Regulators Is Differently Expressed and Correlated With Immune Response of Esophageal Cancer [J]. Front Cell Dev Biol, 2021, 9:650023.
[232] XIAO Y, YU D. Tumor microenvironment as a therapeutic target in cancer [J]. Pharmacol Ther, 2021, 221:107753.
[233] DONG L, CAO Y, HOU Y, et al. N(6) -methyladenosine RNA methylation: A novel regulator of the development and function of immune cells [J]. J Cell Physiol, 2022, 237(1):329-345.
[234] MANTOVANI A, MARCHESI F, MALESCI A, et al. Tumour-associated macrophages as treatment targets in oncology [J]. Nat Rev Clin Oncol, 2017, 14(7): 399-416.
[235] KIM T H, KANG M S, MANDAKHBAYAR N, et al. Anti-inflammatory actions of folate-functionalized bioactive ion-releasing nanoparticles imply drug-free nanotherapy of inflamed tissues [J]. Biomaterials, 2019, 207:23-38.
[236] XU Y, CUI K, LI J, et al. Melatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathway [J]. J Pineal Res, 2020, 69(1): e12660.
[237] PERRY C J, MUNOZ-ROJAS A R, MEETH K M, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity [J]. J Exp Med, 2018, 215(3): 877-93.
[238] HAO S, MENG J, ZHANG Y, et al. Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization [J]. Biomaterials, 2017, 140:16-25.
[239] ANNAMALAI R T, TURNER P A, CARSON W F T, et al. Harnessing macrophage-mediated degradation of gelatin microspheres for spatiotemporal control of BMP2 release [J]. Biomaterials, 2018, 161:216-27.
[240] SCHRIMPE-RUTLEDGE A C, CODREANU S G, SHERROD S D, et al. Untargeted Metabolomics Strategies-Challenges and Emerging Directions [J]. J Am Soc Mass Spectrom, 2016, 27(12): 1897-905.
[241] FUHRER T, ZAMBONI N. High-throughput discovery metabolomics [J]. Curr Opin Biotechnol, 2015, 31:73-78.
[242] PLUMB R S, JOHNSON K A, RAINVILLE P, et al. UPLC/MS(E); a new approach for generating molecular fragment information for biomarker structure elucidation [J]. Rapid Commun Mass Spectrom, 2006, 20(13): 1989-94.
[243] YUAN M, BREITKOPF S B, YANG X, et al. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue [J]. Nat Protoc, 2012, 7(5): 872-81.
[244] SELLICK C A, HANSEN R, STEPHENS G M, et al. Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling [J]. Nat Protoc, 2011, 6(8): 1241-9.
[245] WEN B, MEI Z, ZENG C, et al. metaX: a flexible and comprehensive software for processing metabolomics data [J]. BMC Bioinformatics, 2017, 18(1): 183.
[246] HEISCHMANN S, QUINN K, CRUICKSHANK-QUINN C, et al. Exploratory Metabolomics Profiling in the Kainic Acid Rat Model Reveals Depletion of 25-Hydroxyvitamin D3 during Epileptogenesis [J]. Sci Rep, 2016, 6:31424.
[247] AN Y, DUAN H. The role of m6A RNA methylation in cancer metabolism [J]. Mol Cancer, 2022, 21(1): 14.
[248] LI Q, NI Y, ZHANG L, et al. HIF-1alpha-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation [J]. Signal Transduct Target Ther, 2021, 6(1): 76.
[249] SHI Y, FAN S, WU M, et al. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression [J]. Nat Commun, 2019, 10(1): 4892.
[250] LUNT S Y, VANDER HEIDEN M G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation [J]. Annu Rev Cell Dev Biol, 2011, 27:441-64.
[251] ROHRIG F, SCHULZE A. The multifaceted roles of fatty acid synthesis in cancer [J]. Nat Rev Cancer, 2016, 16(11): 732-49.
[252] BIAN X, LIU R, MENG Y, et al. Lipid metabolism and cancer [J]. J Exp Med, 2021, 218(1):e20201606.
[253] PASCUAL G, AVGUSTINOVA A, MEJETTA S, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36 [J]. Nature, 2017, 541(7635): 41-5.
[254] YUE S, LI J, LEE S Y, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness [J]. Cell Metab, 2014, 19(3): 393-406.
[255] WANG G, QIU M, XING X, et al. Lung cancer scRNA-seq and lipidomics reveal aberrant lipid metabolism for early-stage diagnosis [J]. Sci Transl Med, 2022, 14(630):eabk2756.
[256] GONZALEZ M A, OLIVAS I M, BENCOMO‐ALVAREZ A E, et al. Loss of G0/G1 switch gene 2 (G0S2) promotes disease progression and drug resistance in chronic myeloid leukaemia (CML) by disrupting glycerophospholipid metabolism [J]. Clinical and Translational Medicine, 2022, 12(12): e1146.
[257] PAN Y, MA P, LIU Y, et al. Multiple functions of m(6)A RNA methylation in cancer [J]. J Hematol Oncol, 2018, 11(1): 48.
[258] CHEN X Y, ZHANG J, ZHU J S. The role of m(6)A RNA methylation in human cancer [J]. Mol Cancer, 2019, 18(1): 103.
[259] CHANDOLA U, DAS R, PANDA B. Role of the N6-methyladenosine RNA mark in gene regulation and its implications on development and disease [J]. Brief Funct Genomics, 2015, 14(3): 169-79.
[260] DENG X, SU R, FENG X, et al. Role of N(6)-methyladenosine modification in cancer [J]. Curr Opin Genet Dev, 2018, 48:1-7.
[261] LAN Q, LIU P Y, HAASE J, et al. The Critical Role of RNA m(6)A Methylation in Cancer [J]. Cancer Res, 2019, 79(7): 1285-92.
[262] VU L P, CHENG Y, KHARAS M G. The Biology of m(6)A RNA Methylation in Normal and Malignant Hematopoiesis [J]. Cancer Discov, 2019, 9(1): 25-33.
[263] WANG S, SUN C, LI J, et al. Roles of RNA methylation by means of N(6)-methyladenosine (m(6)A) in human cancers [J]. Cancer Lett, 2017, 408:112-20.
[264] ZHAO W, QI X, LIU L, et al. Epigenetic Regulation of m(6)A Modifications in Human Cancer [J]. Mol Ther Nucleic Acids, 2019, 19:405-12.
[265] PI J, WANG W, JI M, et al. YTHDF1 Promotes Gastric Carcinogenesis by Controlling Translation of FZD7 [J]. Cancer Res, 2020, 81(10):2651-2665.
[266] SU T, HUANG M, LIAO J, et al. Insufficient Radiofrequency Ablation Promotes Hepatocellular Carcinoma Metastasis through m(6) A mRNA Methylation Dependent Mechanism [J]. Hepatology, 2021, 74(3):1339-1356.
[267] YI Y C, CHEN X Y, ZHANG J, et al. Novel insights into the interplay between m(6)A modification and noncoding RNAs in cancer [J]. Mol Cancer, 2020, 19(1): 121.
[268] HUANG H, WENG H, CHEN J. m(6)A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer [J]. Cancer Cell, 2020, 37(3): 270-88.
[269] NOMBELA P, MIGUEL-LOPEZ B, BLANCO S. The role of m(6)A, m(5)C and Psi RNA modifications in cancer: Novel therapeutic opportunities [J]. Mol Cancer, 2021, 20(1): 18.
[270] WANG L, HUI H, AGRAWAL K, et al. m(6) A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy [J]. EMBO J, 2020, e104514.
[271] ZHANG B, WU Q, LI B, et al. m(6)A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer [J]. Mol Cancer, 2020, 19(1): 53.
[272] CHONG W, SHANG L, LIU J, et al. m(6)A regulator-based methylation modification patterns characterized by distinct tumor microenvironment immune profiles in colon cancer [J]. Theranostics, 2021, 11(5):2201-2217.
[273] PARDOLL D M. The blockade of immune checkpoints in cancer immunotherapy [J]. Nature Reviews Cancer, 2012, 12(4):252-264.
[274] BELLUCCI R, MARTIN A, BOMMARITO D, et al. Interferon-gamma-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression [J]. Oncoimmunology. 2015, 4(6).
[275] NOMAN M Z, DESANTIS G, JANJI B, et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation [J]. J Exp Med, 2014, 211(5): 781-90.
[276] CASEY S C, TONG L, LI Y, et al. MYC regulates the antitumor immune response through CD47 and PD-L1 [J]. Science, 2016, 352(6282): 227-31.
[277] LI C W, LIM S O, CHUNG E M, et al. Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1 [J]. Cancer Cell, 2018, 33(2): 187-201 e10.
[278] LI X, MA S, DENG Y, et al. Targeting the RNA m(6)A modification for cancer immunotherapy [J]. Mol Cancer, 2022, 21(1): 76.
[279] TSURUTA N, TSUCHIHASHI K, OHMURA H, et al. RNA N6-methyladenosine demethylase FTO regulates PD-L1 expression in colon cancer cells [J]. Biochem Biophys Res Commun, 2020, 530(1): 235-9.
[280] ZHANG J, DANG F, REN J, et al. Biochemical Aspects of PD-L1 Regulation in Cancer Immunotherapy [J]. Trends Biochem Sci, 2018, 43(12): 1014-32.
[281] ZHANG F, LIU H, DUAN M, et al. Crosstalk among m(6)A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application [J]. J Hematol Oncol, 2022, 15(1): 84.

所在学位评定分委会
生物学
国内图书分类号
R734.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544476
专题南方科技大学医学院
推荐引用方式
GB/T 7714
茆文莉. m6A修饰调控免疫检查点PD-L1表达及肺腺癌免疫抑制的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930793-茆文莉-南方科技大学医(11323KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[茆文莉]的文章
百度学术
百度学术中相似的文章
[茆文莉]的文章
必应学术
必应学术中相似的文章
[茆文莉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。