[1] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2016, 16(1): 16-22.
[2] ZOU C, ZHAO Q, ZHANG G, et al. Energy revolution: From a fossil energy era to a new energy era[J]. Natural Gas Industry B, 2016, 3(1): 1-11.
[3] KIM T, SONG W, SON D-Y, et al. Lithium-ion batteries: outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964.
[4] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[5] XU K. A Long Journey of Lithium: From the Big Bang to Our Smartphones[J]. Energy & Environmental Materials, 2019, 2(4): 229-233.
[6] GOODENOUGH J B, KIM Y. Challenges for Rechargeable Li Batteries[J]. Chemistry of Materials, 2009, 22(3): 587-603.
[7] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[8] GREY C P, TARASCON J M. Sustainability and in situ monitoring in battery development[J]. Nature Materials, 2016, 16(1): 45-56.
[9] XI G, XIAO M, WANG S, et al. Polymer‐Based Solid Electrolytes: Material Selection, Design, and Application[J]. Advanced Functional Materials, 2020, 31(9): 2007598.
[10] CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journal of Power Sources, 2020, 478: 228649.
[11] YUAN H, LUAN J, YANG Z, et al. Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7249-7256.
[12] TAN J, MATZ J, DONG P, et al. A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase[J]. Advanced Energy Materials, 2021, 11(16): 2100046.
[13] SHADIKE Z, LEE H, BORODIN O, et al. Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes[J]. Nature Nanotechnology, 2021, 16(5): 549-554.
[14] HUANG J, ZHU Y, FENG Y, et al. Research Progress on Key Materials and Technologies for Secondary Batteries[J]. Acta Physico - Chimica Sinica, 2022, 38(12): 2208008.
[15] GONZALEZ-LEON J A, ACAR M H, RYU S W, et al. Low-temperature processing of 'baroplastics' by pressure-induced flow[J]. Nature, 2003, 426(6965): 424-428.
[16] FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291.
[17] BANERJEE A, WANG X, FANG C, et al. Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes[J]. Chemical Reviews, 2020, 120(14): 6878-6933.
[18] HUANG J Y, IPUTERA K, JENA A, et al. Halide‐type Li‐ion conductors: Future options for high‐voltage all‐solid‐state batteries[J]. Journal of the Chinese Chemical Society, 2022, 69(8): 1233-1241.
[19] LI X, LIANG J, CHEN N, et al. Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte[J]. Angewandte Chemie - International Edition, 2019, 58(46): 16427-16432.
[20] LUO X, CAI D, WANG X, et al. A Novel Ethanol-Mediated Synthesis of Superionic Halide Electrolytes for High-Voltage All-Solid-State Lithium-Metal Batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 29844-29855.
[21] FEUILLADE G, PERCHE P. Ion-conductive macromolecular gels and membranes for solid lithium cells[J]. Journal of Applied Electrochemistry, 1975, 5: 63-69.
[22] FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589.
[23] CHEN J, WU J, WANG X, et al. Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries[J]. Energy Storage Materials, 2021, 35: 70-87.
[24] MOHANTY D, CHEN S Y, HUNG I M. Effect of Lithium Salt Concentration on Materials Characteristics and Electrochemical Performance of Hybrid Inorganic/Polymer Solid Electrolyte for Solid-State Lithium-Ion Batteries[J]. Batteries, 2022, 8(10): 173.
[25] FERGUS J W. Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569.
[26] SUN C, LIU J, GONG Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363-386.
[27] SONG J Y, WANG Y Y, WAN C C. Review of gel-type polymer electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 1999, 77(2): 183-197.
[28] APPETECCHI G B, CROCE F, SCROSATI B. Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes[J]. Electrochimica Acta, 1995, 40(8): 991-997.
[29] ZOU Z, LI Y, LU Z, et al. Mobile Ions in Composite Solids[J]. Chemical Reviews, 2020, 120(9): 4169-4221.
[30] GAO Z, SUN H, FU L, et al. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries[J]. Advanced Materials, 2018, 30(17): 1705702.
[31] MILLER T F, WANG Z G, COATES G W, et al. Designing Polymer Electrolytes for Safe and High Capacity Rechargeable Lithium Batteries[J]. Accounts of Chemical Research, 2017, 50(3): 590-593.
[32] BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction[J]. Chemical Reviews, 2016, 116(1): 140-162.
[33] YUE J, HUANG Y, LIU S, et al. Rational Designed Mixed-Conductive Sulfur Cathodes for All-Solid-State Lithium Batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36066-36071.
[34] ZHAO N, FANG R, HE M H, et al. Cycle stability of lithium/garnet/lithium cells with different intermediate layers[J]. Rare Metals, 2018, 37(6): 473-479.
[35] LUO W, GONG Y, ZHU Y, et al. Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte[J]. Journal of the American Chemical Society, 2016, 138(37): 12258-12262.
[36] PENG Z, ZHAO N, ZHANG Z, et al. Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains[J]. Nano Energy, 2017, 39: 662-672.
[37] DU F, ZHAO N, LI Y, et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes[J]. Journal of Power Sources, 2015, 300: 24-28.
[38] HUO H, ZHAO N, SUN J, et al. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery[J]. Journal of Power Sources, 2017, 372: 1-7.
[39] GUO X, LI Y, CUI Z, et al. Influence of Electronic Conducting Additives on Cycle Performance of Garnet-based Solid Lithium Batteries[J]. Journal of Inorganic Materials, 2018, 33(4): 462.
[40] LIU W, YI C, LI L, et al. Designing Polymer-in-Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid-State Lithium Batteries[J]. Angewandte Chemie - International Edition, 2021, 60(23): 12931-12940.
[41] GAO H C, GRUNDISH N S, ZHAO Y J, et al. Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries[J]. Energy Material Advances, 2021, 2021: 1-10.
[42] PRABAKARAN P, MANIMUTHU R P, GURUSAMY S, et al. Plasticized polymer electrolyte membranes based on PEO/PVdF-HFP for use as an effective electrolyte in lithium-ion batteries[J]. Chinese Journal of Polymer Science, 2017, 35(3): 407-421.
[43] RAMESH S, WINIE T, AROF A K. Investigation of mechanical properties of polyvinyl chloride-polyethylene oxide (PVC-PEO) based polymer electrolytes for lithium polymer cells[J]. European Polymer Journal, 2007, 43(5): 1963-1968.
[44] SHIN J H, HENDERSON W A, PASSERINI S. PEO-Based Polymer Electrolytes with Ionic Liquids and Their Use in Lithium Metal-Polymer Electrolyte Batteries[J]. Journal of the Electrochemical Society, 2005, 152(5): A978-A983.
[45] HUANG B. Lithium ion conduction in polymer electrolytes based on PAN[J]. Solid State Ionics, 1996, 85(1-4): 79-84.
[46] MOHAMED N S, AROF A K. Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes[J]. Journal of Power Sources, 2004, 132(1-2): 229-234.
[47] CUI Y, WAN J, YE Y, et al. A Fireproof, Lightweight, Polymer-Polymer Solid-State Electrolyte for Safe Lithium Batteries[J]. Nano Letters, 2020, 20(3): 1686-1692.
[48] WANG Z, GAO W, HUANG X, et al. Ion Transport in Polyacrylonitrile-Based Electrolytes with High LiTFSI Contents[J]. Electrochemical and Solid-State Letters, 2001, 4(9): A148-A150.
[49] CHEN R, LI Q, YU X, et al. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces[J]. Chemical Reviews, 2020, 120(14): 6820-6877.
[50] JIE J, LIU Y, CONG L, et al. High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery[J]. Journal of Energy Chemistry, 2020, 49: 80-88.
[51] KIM K M, PARK N-G, RYU K S, et al. Characteristics of PVdF-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methods[J]. Electrochimica Acta, 2006, 51(26): 5636-5644.
[52] FERRARI S, QUARTARONE E, MUSTARELLI P, et al. Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid[J]. Journal of Power Sources, 2010, 195(2): 559-566.
[53] ZHAO Q, LIU X, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nature Energy, 2019, 4(5): 365-373.
[54] PAN J, CHENG Y T, QI Y. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes[J]. Physical Review B, 2015, 91(13): 134116.
[55] HAO H, HUTTER T, BOYCE B L, et al. Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries[J]. Chemical Reviews, 2022, 122(9): 8053-8125.
[56] ZHU Y, ZHANG Q, YANG X, et al. Probing atomic structure of beam-sensitive energy materials in their native states using cryogenic transmission electron microscopes[J]. iScience, 2021, 24(11): 103385.
[57] ZHANG K, WU F, ZHANG K, et al. Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode[J]. Energy Storage Materials, 2021, 41: 485-494.
[58] HAN B, ZHANG Z, ZOU Y, et al. Poor Stability of Li2CO3 in the Solid Electrolyte Interphase of a Lithium-Metal Anode Revealed by Cryo-Electron Microscopy[J]. Advanced Materials, 2021, 33(22): 2100404.
[59] WANG C, LIU H, LIANG Y, et al. Molecular‐level Designed Polymer Electrolyte for High‐Voltage Lithium–Metal Solid‐State Batteries[J]. Advanced Functional Materials, 2022, 33(3): 2209828.
[60] RAMASUBRAMANIAN A, YURKIV V, FOROOZAN T, et al. Lithium Diffusion Mechanism through Solid-Electrolyte Interphase in Rechargeable Lithium Batteries[J]. The Journal of Physical Chemistry C, 2019, 123(16): 10237-10245.
[61] JURNG S, BROWN Z L, KIM J, et al. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes[J]. Energy & Environmental Science, 2018, 11(9): 2600-2608.
[62] SOTO F A, MA Y, MARTINEZ DE LA HOZ J M, et al. Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries[J]. Chemistry of Materials, 2015, 27(23): 7990-8000.
[63] NIE M, LUCHT B L. Role of Lithium Salt on Solid Electrolyte Interface (SEI) Formation and Structure in Lithium Ion Batteries[J]. Journal of the Electrochemical Society, 2014, 161(6): A1001-A1006.
[64] BORODIN O, SMITH G D. Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped Oligoether, polyether, and carbonate-based electrolytes[J]. Journal of Physical Chemistry B, 2006, 110(12): 6293-6299.
[65] LU J, LIU Y, YAO P, et al. Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries[J]. Chemical Engineering Journal, 2019, 367: 230-238.
[66] DOUX J M, NGUYEN H, TAN D H S, et al. Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries[J]. Advanced Energy Materials, 2019, 10(1): 1903253.
[67] MA C, FENG Y, XING F, et al. A borate decorated anion-immobilized solid polymer electrolyte for dendrite-free, long-life Li metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(34): 19970-19976.
[68] WAN J, XIE J, KONG X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14(7): 705-711.
[69] WANG Q, LIU X, CUI Z, et al. A fluorinated polycarbonate based all solid state polymer electrolyte for lithium metal batteries[J]. Electrochimica Acta, 2020, 337: 135843.
[70] JIANG T, HE P, WANG G, et al. Solvent‐Free Synthesis of Thin, Flexible, Nonflammable Garnet‐Based Composite Solid Electrolyte for All‐Solid‐State Lithium Batteries[J]. Advanced Energy Materials, 2020, 10(12): 1903376.
[71] LI A, LIAO X, ZHANG H, et al. Nacre-Inspired Composite Electrolytes for Load-Bearing Solid-State Lithium-Metal Batteries[J]. Advanced Materials, 2020, 32(2): 1905517.
[72] XU Y, GAO L, WU X, et al. Porous Composite Gel Polymer Electrolyte with Interfacial Transport Pathways for Flexible Quasi Solid Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23743-23750.
[73] HE F, TANG W, ZHANG X, et al. High Energy Density Solid State Lithium Metal Batteries Enabled by Sub-5 microm Solid Polymer Electrolytes[J]. Advanced Materials, 2021, 33(45): 2105329.
[74] SUN C C, YUSUF A, LI S W, et al. Metal organic frameworks enabled rational design of multifunctional PEO-based solid polymer electrolytes[J]. Chemical Engineering Journal, 2021, 414: 128702.
[75] ZHANG Y H, LU M N, LI Q, et al. Hybrid lithium salts regulated solid polymer electrolyte for high-temperature lithium metal battery[J]. Journal of Solid State Chemistry, 2022, 310: 123072.
[76] MA Y, SUN Q, WANG S, et al. Li salt initiated in-situ polymerized solid polymer electrolyte: new insights via in-situ electrochemical impedance spectroscopy[J]. Chemical Engineering Journal, 2022, 429: 132483.
[77] LI S, LU J, GENG Z, et al. Solid Polymer Electrolyte Reinforced with a Li1.3Al0.3Ti1.7(PO4)3-Coated Separator for All-Solid-State Lithium Batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1195-1202.
[78] ZACHMAN M J, TU Z, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349.
[79] LI Y, HUANG W, LI Y, et al. Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy[J]. Joule, 2018, 2(10): 2167-2177.
[80] WANG X, ZHANG M, ALVARADO J, et al. New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM[J]. Nano Letters, 2017, 17(12): 7606-7612.
[81] LI Y, LI Y, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510.
[82] LIU Y, JU Z, ZHANG B, et al. Visualizing the Sensitive Lithium with Atomic Precision: Cryogenic Electron Microscopy for Batteries[J]. Accounts of Chemical Research, 2021, 54(9): 2088-2099.
[83] HAN B, LI X, BAI S, et al. Conformal three-dimensional interphase of Li metal anode revealed by low-dose cryoelectron microscopy[J]. Matter, 2021, 4(11): 3741-3752.
[84] WANG J, HUANG W, PEI A, et al. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy[J]. Nature Energy, 2019, 4(8): 664-670.
[85] AURBACH D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources, 2000, 89(2): 206-218.
[86] PELED E, GOLODNITSKY D, ARDEL G. Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(8): L208-L210.
[87] ZHOU Y, SU M, YU X, et al. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery[J]. Nature Nanotechnology, 2020, 15(3): 224-230.
[88] LU P, HARRIS S J. Lithium transport within the solid electrolyte interphase[J]. Electrochemistry Communications, 2011, 13(10): 1035-1037.
[89] CAO X, REN X, ZOU L, et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization[J]. Nature Energy, 2019, 4(9): 796-805.
[90] XU Y, HE Y, WU H, et al. Atomic Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases Revealed by Cryo–electron Microscopy[J]. Microscopy and Microanalysis, 2019, 25(S2): 2220-2221.
[91] XU Y, WU H, HE Y, et al. Atomic to Nanoscale Origin of Vinylene Carbonate Enhanced Cycling Stability of Lithium Metal Anode Revealed by Cryo-Transmission Electron Microscopy[J]. Nano Letters, 2020, 20(1): 418-425.
[92] CHENG D, WYNN T A, WANG X, et al. Unveiling the Stable Nature of the Solid Electrolyte Interphase between Lithium Metal and LiPON via Cryogenic Electron Microscopy[J]. Joule, 2020, 4(11): 2484-2500.
[93] WANG J, ZHOU J, HU Y, et al. Chemical interaction and imaging of single Co3O4/graphene sheets studied by scanning transmission X-ray microscopy and X-ray absorption spectroscopy[J]. Energy & Environmental Science, 2013, 6(3): 926-934.
[94] MANSOT J L, GOLABKAN V, ROMANA L, et al. Chemical and physical characterization by EELS of strontium hexanoate reverse micelles and strontium carbonate nanophase produced during tribological experiments[J]. Journal of Microscopy, 2003, 210(Pt 1): 110-118.
[95] PARIMALAM B S, LUCHT B L. Reduction Reactions of Electrolyte Salts for Lithium Ion Batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI[J]. Journal of the Electrochemical Society, 2018, 165(2): A251-A255.
[96] ZHANG Q, PAN J, LU P, et al. Synergetic Effects of Inorganic Components in Solid Electrolyte Interphase on High Cycle Efficiency of Lithium Ion Batteries[J]. Nano Letters, 2016, 16(3): 2011-2016.
修改评论