中文版 | English
题名

固态锂金属电池开发及电极界面对电化学性能影响的机理研究

其他题名
DEVELOPMENT OF SOLID-STATE LITHIUM METAL BATTERY AND RESEARCH ON THE EFFECTS OF ELECTRODE INTERFACES ON ELECTROCHEMICAL PERFORMANCE
姓名
姓名拼音
LU Xinzhen
学号
12032249
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
谷猛
导师单位
材料科学与工程系
论文答辩日期
2023-05-15
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

目前锂离子电池(LIBs)具有十分广泛的应用前景,但是能量密度受限、枝晶生长和安全隐患较大等缺点限制了LIBs的进一步发展。为了解决以上问题,有研究提出通过研发固态电解质(SSEs),减少或杜绝使用易燃易爆成分,装配使用锂金属作为电极的固态锂金属电池(SSLMBs)从而提升电池的能量密度和安全性。但是同样存在一些问题阻碍了SSLMBs的实际应用,例如SSEs刚性结构导致机械性能较差离子电导率较低;此外由于SSEs和电极之间的界面主要为点接触导致界面湿润性差;SSEs的刚性结构并不能完全抑制锂枝晶在电解质内部的生长,甚至在某些情况还会促进其生长;最后是SSLMBs中对其界面微观结构的研究较为缺乏,例如固体电解质界面(SEI)组分和结构对电池电化学性能的影响机理尚不明确。

本课题提出了一种基于聚偏氟乙烯-六氟丙烯共聚物(PVDF-HFP)基体的聚合物固态电解质(PPE),通过使用碳酸丙烯酯作为塑化剂,有效提高了PPE的界面湿润性并使其离子电导率室温下达到1.15×10-3 S cm-1。此外,还研究了使用不同锂盐提供自由穿梭的离子和不同塑化剂作为添加剂时对电池电化学性能的影响。当PPE体系组分包含LiBF4与碳酸丙烯酯时,对称电池循环时间超过1000 h。通过低剂量冷冻透射电子显微镜(Cryo-TEM)表征,揭示了Li负极与PPE之间的高界面相容性。SSLMBsSEI由可以与PPE保持紧密接触的无定形外层,以及Li2O主导的内层组成,该内层可以避免Li在电池循环过程中发生连续的副反应。根据表征结果提出了在靠近Li负极的PPE区域存在富含LiF的过渡层。本课题证明了Cryo-TEM技术在研究聚合物基固态电池中界面相的优势,该技术将来可以广泛用于从SSEs微观界面结构合理化解释其与电池性能之间的关联。

其他摘要

At present, lithium-ion batteries (LIBs) have very wide application prospects, but the drawbacks of limited energy density, dendrite growth, and high safety hazards limit the further development of LIBs. To address these issues, researchers have proposed to develop solid-state electrolytes (SSEs) to reduce or eliminate the use of flammable and explosive components, and to assemble solid-state lithium metal batteries (SSLMBs) with lithium metal as the electrode, thereby improving the energy density and safety of the batteries. However, there are several issues that hinder the practical application of SSLMBs. For example, the rigid structure of SSEs leads to poor mechanical performance and low ionic conductivity. In addition, the interfaces between SSEs and electrodes are mainly point contacts, resulting in poor interface wettability. The rigid structure of SSEs cannot completely suppress the growth of lithium dendrites in the electrolyte, and in some cases may even promote their growth. Finally, there is a lack of research on the microstructure of the interphases in SSLMBs. For example, the mechanism by which the composition and structure of the solid electrolyte interphase (SEI) affect the electrochemical performance of the battery is still unclear.

Herein, this project develops a novel Poly Vinylidenefluoride-hexafluoro Propylene (PVDF-HFP)-based polymer electrolyte (PPE) with propylene carbonate as the plasticizer. It effectively improved the interfacial wettability and achieved an ionic conductivity of 1.15×10-3 S cm-1 at room temperature for the PPE. In addition, the effects of using different lithium salts provide free-shuttle ions and different plasticizers as additives on the electrochemical performance of the battery are also investigated. When the PPE system components include LiBF4 and propylene carbonate, the symmetrical cell can operate for over 1000 h. Low-dose cryogenic transmission electron microscopy (Cryo-TEM) characterization reveals the high interfacial compatibility between Li metal anode and PPE. The SEI of SSLMBs is made up of an amorphous outer layer, which can keep intimate contact with PPE, and a Li2O-dominated inner layer, which can protect Li from continuous side reactions during battery cycling. According to the characterization results, a LiF-rich transition layer is also discovered in the region of PPE close to the Li metal anode. This project demonstrates the feasibility of investigating interphases in polymer-based solid-state batteries via Cryo-TEM techniques, which could be widely employed in the future to rationalize the correlation between solid-state electrolytes and battery performance from ultrafine interfacial structures.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2016, 16(1): 16-22.
[2] ZOU C, ZHAO Q, ZHANG G, et al. Energy revolution: From a fossil energy era to a new energy era[J]. Natural Gas Industry B, 2016, 3(1): 1-11.
[3] KIM T, SONG W, SON D-Y, et al. Lithium-ion batteries: outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964.
[4] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[5] XU K. A Long Journey of Lithium: From the Big Bang to Our Smartphones[J]. Energy & Environmental Materials, 2019, 2(4): 229-233.
[6] GOODENOUGH J B, KIM Y. Challenges for Rechargeable Li Batteries[J]. Chemistry of Materials, 2009, 22(3): 587-603.
[7] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[8] GREY C P, TARASCON J M. Sustainability and in situ monitoring in battery development[J]. Nature Materials, 2016, 16(1): 45-56.
[9] XI G, XIAO M, WANG S, et al. Polymer‐Based Solid Electrolytes: Material Selection, Design, and Application[J]. Advanced Functional Materials, 2020, 31(9): 2007598.
[10] CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journal of Power Sources, 2020, 478: 228649.
[11] YUAN H, LUAN J, YANG Z, et al. Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7249-7256.
[12] TAN J, MATZ J, DONG P, et al. A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase[J]. Advanced Energy Materials, 2021, 11(16): 2100046.
[13] SHADIKE Z, LEE H, BORODIN O, et al. Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes[J]. Nature Nanotechnology, 2021, 16(5): 549-554.
[14] HUANG J, ZHU Y, FENG Y, et al. Research Progress on Key Materials and Technologies for Secondary Batteries[J]. Acta Physico - Chimica Sinica, 2022, 38(12): 2208008.
[15] GONZALEZ-LEON J A, ACAR M H, RYU S W, et al. Low-temperature processing of 'baroplastics' by pressure-induced flow[J]. Nature, 2003, 426(6965): 424-428.
[16] FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291.
[17] BANERJEE A, WANG X, FANG C, et al. Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes[J]. Chemical Reviews, 2020, 120(14): 6878-6933.
[18] HUANG J Y, IPUTERA K, JENA A, et al. Halide‐type Li‐ion conductors: Future options for high‐voltage all‐solid‐state batteries[J]. Journal of the Chinese Chemical Society, 2022, 69(8): 1233-1241.
[19] LI X, LIANG J, CHEN N, et al. Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte[J]. Angewandte Chemie - International Edition, 2019, 58(46): 16427-16432.
[20] LUO X, CAI D, WANG X, et al. A Novel Ethanol-Mediated Synthesis of Superionic Halide Electrolytes for High-Voltage All-Solid-State Lithium-Metal Batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 29844-29855.
[21] FEUILLADE G, PERCHE P. Ion-conductive macromolecular gels and membranes for solid lithium cells[J]. Journal of Applied Electrochemistry, 1975, 5: 63-69.
[22] FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589.
[23] CHEN J, WU J, WANG X, et al. Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries[J]. Energy Storage Materials, 2021, 35: 70-87.
[24] MOHANTY D, CHEN S Y, HUNG I M. Effect of Lithium Salt Concentration on Materials Characteristics and Electrochemical Performance of Hybrid Inorganic/Polymer Solid Electrolyte for Solid-State Lithium-Ion Batteries[J]. Batteries, 2022, 8(10): 173.
[25] FERGUS J W. Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569.
[26] SUN C, LIU J, GONG Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363-386.
[27] SONG J Y, WANG Y Y, WAN C C. Review of gel-type polymer electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 1999, 77(2): 183-197.
[28] APPETECCHI G B, CROCE F, SCROSATI B. Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes[J]. Electrochimica Acta, 1995, 40(8): 991-997.
[29] ZOU Z, LI Y, LU Z, et al. Mobile Ions in Composite Solids[J]. Chemical Reviews, 2020, 120(9): 4169-4221.
[30] GAO Z, SUN H, FU L, et al. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries[J]. Advanced Materials, 2018, 30(17): 1705702.
[31] MILLER T F, WANG Z G, COATES G W, et al. Designing Polymer Electrolytes for Safe and High Capacity Rechargeable Lithium Batteries[J]. Accounts of Chemical Research, 2017, 50(3): 590-593.
[32] BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction[J]. Chemical Reviews, 2016, 116(1): 140-162.
[33] YUE J, HUANG Y, LIU S, et al. Rational Designed Mixed-Conductive Sulfur Cathodes for All-Solid-State Lithium Batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36066-36071.
[34] ZHAO N, FANG R, HE M H, et al. Cycle stability of lithium/garnet/lithium cells with different intermediate layers[J]. Rare Metals, 2018, 37(6): 473-479.
[35] LUO W, GONG Y, ZHU Y, et al. Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte[J]. Journal of the American Chemical Society, 2016, 138(37): 12258-12262.
[36] PENG Z, ZHAO N, ZHANG Z, et al. Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains[J]. Nano Energy, 2017, 39: 662-672.
[37] DU F, ZHAO N, LI Y, et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes[J]. Journal of Power Sources, 2015, 300: 24-28.
[38] HUO H, ZHAO N, SUN J, et al. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery[J]. Journal of Power Sources, 2017, 372: 1-7.
[39] GUO X, LI Y, CUI Z, et al. Influence of Electronic Conducting Additives on Cycle Performance of Garnet-based Solid Lithium Batteries[J]. Journal of Inorganic Materials, 2018, 33(4): 462.
[40] LIU W, YI C, LI L, et al. Designing Polymer-in-Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid-State Lithium Batteries[J]. Angewandte Chemie - International Edition, 2021, 60(23): 12931-12940.
[41] GAO H C, GRUNDISH N S, ZHAO Y J, et al. Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries[J]. Energy Material Advances, 2021, 2021: 1-10.
[42] PRABAKARAN P, MANIMUTHU R P, GURUSAMY S, et al. Plasticized polymer electrolyte membranes based on PEO/PVdF-HFP for use as an effective electrolyte in lithium-ion batteries[J]. Chinese Journal of Polymer Science, 2017, 35(3): 407-421.
[43] RAMESH S, WINIE T, AROF A K. Investigation of mechanical properties of polyvinyl chloride-polyethylene oxide (PVC-PEO) based polymer electrolytes for lithium polymer cells[J]. European Polymer Journal, 2007, 43(5): 1963-1968.
[44] SHIN J H, HENDERSON W A, PASSERINI S. PEO-Based Polymer Electrolytes with Ionic Liquids and Their Use in Lithium Metal-Polymer Electrolyte Batteries[J]. Journal of the Electrochemical Society, 2005, 152(5): A978-A983.
[45] HUANG B. Lithium ion conduction in polymer electrolytes based on PAN[J]. Solid State Ionics, 1996, 85(1-4): 79-84.
[46] MOHAMED N S, AROF A K. Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes[J]. Journal of Power Sources, 2004, 132(1-2): 229-234.
[47] CUI Y, WAN J, YE Y, et al. A Fireproof, Lightweight, Polymer-Polymer Solid-State Electrolyte for Safe Lithium Batteries[J]. Nano Letters, 2020, 20(3): 1686-1692.
[48] WANG Z, GAO W, HUANG X, et al. Ion Transport in Polyacrylonitrile-Based Electrolytes with High LiTFSI Contents[J]. Electrochemical and Solid-State Letters, 2001, 4(9): A148-A150.
[49] CHEN R, LI Q, YU X, et al. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces[J]. Chemical Reviews, 2020, 120(14): 6820-6877.
[50] JIE J, LIU Y, CONG L, et al. High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery[J]. Journal of Energy Chemistry, 2020, 49: 80-88.
[51] KIM K M, PARK N-G, RYU K S, et al. Characteristics of PVdF-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methods[J]. Electrochimica Acta, 2006, 51(26): 5636-5644.
[52] FERRARI S, QUARTARONE E, MUSTARELLI P, et al. Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid[J]. Journal of Power Sources, 2010, 195(2): 559-566.
[53] ZHAO Q, LIU X, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nature Energy, 2019, 4(5): 365-373.
[54] PAN J, CHENG Y T, QI Y. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes[J]. Physical Review B, 2015, 91(13): 134116.
[55] HAO H, HUTTER T, BOYCE B L, et al. Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries[J]. Chemical Reviews, 2022, 122(9): 8053-8125.
[56] ZHU Y, ZHANG Q, YANG X, et al. Probing atomic structure of beam-sensitive energy materials in their native states using cryogenic transmission electron microscopes[J]. iScience, 2021, 24(11): 103385.
[57] ZHANG K, WU F, ZHANG K, et al. Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode[J]. Energy Storage Materials, 2021, 41: 485-494.
[58] HAN B, ZHANG Z, ZOU Y, et al. Poor Stability of Li2CO3 in the Solid Electrolyte Interphase of a Lithium-Metal Anode Revealed by Cryo-Electron Microscopy[J]. Advanced Materials, 2021, 33(22): 2100404.
[59] WANG C, LIU H, LIANG Y, et al. Molecular‐level Designed Polymer Electrolyte for High‐Voltage Lithium–Metal Solid‐State Batteries[J]. Advanced Functional Materials, 2022, 33(3): 2209828.
[60] RAMASUBRAMANIAN A, YURKIV V, FOROOZAN T, et al. Lithium Diffusion Mechanism through Solid-Electrolyte Interphase in Rechargeable Lithium Batteries[J]. The Journal of Physical Chemistry C, 2019, 123(16): 10237-10245.
[61] JURNG S, BROWN Z L, KIM J, et al. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes[J]. Energy & Environmental Science, 2018, 11(9): 2600-2608.
[62] SOTO F A, MA Y, MARTINEZ DE LA HOZ J M, et al. Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries[J]. Chemistry of Materials, 2015, 27(23): 7990-8000.
[63] NIE M, LUCHT B L. Role of Lithium Salt on Solid Electrolyte Interface (SEI) Formation and Structure in Lithium Ion Batteries[J]. Journal of the Electrochemical Society, 2014, 161(6): A1001-A1006.
[64] BORODIN O, SMITH G D. Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped Oligoether, polyether, and carbonate-based electrolytes[J]. Journal of Physical Chemistry B, 2006, 110(12): 6293-6299.
[65] LU J, LIU Y, YAO P, et al. Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries[J]. Chemical Engineering Journal, 2019, 367: 230-238.
[66] DOUX J M, NGUYEN H, TAN D H S, et al. Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries[J]. Advanced Energy Materials, 2019, 10(1): 1903253.
[67] MA C, FENG Y, XING F, et al. A borate decorated anion-immobilized solid polymer electrolyte for dendrite-free, long-life Li metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(34): 19970-19976.
[68] WAN J, XIE J, KONG X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14(7): 705-711.
[69] WANG Q, LIU X, CUI Z, et al. A fluorinated polycarbonate based all solid state polymer electrolyte for lithium metal batteries[J]. Electrochimica Acta, 2020, 337: 135843.
[70] JIANG T, HE P, WANG G, et al. Solvent‐Free Synthesis of Thin, Flexible, Nonflammable Garnet‐Based Composite Solid Electrolyte for All‐Solid‐State Lithium Batteries[J]. Advanced Energy Materials, 2020, 10(12): 1903376.
[71] LI A, LIAO X, ZHANG H, et al. Nacre-Inspired Composite Electrolytes for Load-Bearing Solid-State Lithium-Metal Batteries[J]. Advanced Materials, 2020, 32(2): 1905517.
[72] XU Y, GAO L, WU X, et al. Porous Composite Gel Polymer Electrolyte with Interfacial Transport Pathways for Flexible Quasi Solid Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23743-23750.
[73] HE F, TANG W, ZHANG X, et al. High Energy Density Solid State Lithium Metal Batteries Enabled by Sub-5 microm Solid Polymer Electrolytes[J]. Advanced Materials, 2021, 33(45): 2105329.
[74] SUN C C, YUSUF A, LI S W, et al. Metal organic frameworks enabled rational design of multifunctional PEO-based solid polymer electrolytes[J]. Chemical Engineering Journal, 2021, 414: 128702.
[75] ZHANG Y H, LU M N, LI Q, et al. Hybrid lithium salts regulated solid polymer electrolyte for high-temperature lithium metal battery[J]. Journal of Solid State Chemistry, 2022, 310: 123072.
[76] MA Y, SUN Q, WANG S, et al. Li salt initiated in-situ polymerized solid polymer electrolyte: new insights via in-situ electrochemical impedance spectroscopy[J]. Chemical Engineering Journal, 2022, 429: 132483.
[77] LI S, LU J, GENG Z, et al. Solid Polymer Electrolyte Reinforced with a Li1.3Al0.3Ti1.7(PO4)3-Coated Separator for All-Solid-State Lithium Batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1195-1202.
[78] ZACHMAN M J, TU Z, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349.
[79] LI Y, HUANG W, LI Y, et al. Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy[J]. Joule, 2018, 2(10): 2167-2177.
[80] WANG X, ZHANG M, ALVARADO J, et al. New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM[J]. Nano Letters, 2017, 17(12): 7606-7612.
[81] LI Y, LI Y, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510.
[82] LIU Y, JU Z, ZHANG B, et al. Visualizing the Sensitive Lithium with Atomic Precision: Cryogenic Electron Microscopy for Batteries[J]. Accounts of Chemical Research, 2021, 54(9): 2088-2099.
[83] HAN B, LI X, BAI S, et al. Conformal three-dimensional interphase of Li metal anode revealed by low-dose cryoelectron microscopy[J]. Matter, 2021, 4(11): 3741-3752.
[84] WANG J, HUANG W, PEI A, et al. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy[J]. Nature Energy, 2019, 4(8): 664-670.
[85] AURBACH D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources, 2000, 89(2): 206-218.
[86] PELED E, GOLODNITSKY D, ARDEL G. Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(8): L208-L210.
[87] ZHOU Y, SU M, YU X, et al. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery[J]. Nature Nanotechnology, 2020, 15(3): 224-230.
[88] LU P, HARRIS S J. Lithium transport within the solid electrolyte interphase[J]. Electrochemistry Communications, 2011, 13(10): 1035-1037.
[89] CAO X, REN X, ZOU L, et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization[J]. Nature Energy, 2019, 4(9): 796-805.
[90] XU Y, HE Y, WU H, et al. Atomic Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases Revealed by Cryo–electron Microscopy[J]. Microscopy and Microanalysis, 2019, 25(S2): 2220-2221.
[91] XU Y, WU H, HE Y, et al. Atomic to Nanoscale Origin of Vinylene Carbonate Enhanced Cycling Stability of Lithium Metal Anode Revealed by Cryo-Transmission Electron Microscopy[J]. Nano Letters, 2020, 20(1): 418-425.
[92] CHENG D, WYNN T A, WANG X, et al. Unveiling the Stable Nature of the Solid Electrolyte Interphase between Lithium Metal and LiPON via Cryogenic Electron Microscopy[J]. Joule, 2020, 4(11): 2484-2500.
[93] WANG J, ZHOU J, HU Y, et al. Chemical interaction and imaging of single Co3O4/graphene sheets studied by scanning transmission X-ray microscopy and X-ray absorption spectroscopy[J]. Energy & Environmental Science, 2013, 6(3): 926-934.
[94] MANSOT J L, GOLABKAN V, ROMANA L, et al. Chemical and physical characterization by EELS of strontium hexanoate reverse micelles and strontium carbonate nanophase produced during tribological experiments[J]. Journal of Microscopy, 2003, 210(Pt 1): 110-118.
[95] PARIMALAM B S, LUCHT B L. Reduction Reactions of Electrolyte Salts for Lithium Ion Batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI[J]. Journal of the Electrochemical Society, 2018, 165(2): A251-A255.
[96] ZHANG Q, PAN J, LU P, et al. Synergetic Effects of Inorganic Components in Solid Electrolyte Interphase on High Cycle Efficiency of Lithium Ion Batteries[J]. Nano Letters, 2016, 16(3): 2011-2016.

所在学位评定分委会
化学
国内图书分类号
TM912
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544477
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
陆新镇. 固态锂金属电池开发及电极界面对电化学性能影响的机理研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032249-陆新镇-材料科学与工程(14523KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陆新镇]的文章
百度学术
百度学术中相似的文章
[陆新镇]的文章
必应学术
必应学术中相似的文章
[陆新镇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。