[1] SCHMITT J M. Optical coherence tomography (OCT): a review[J]. IEEE Journal of SelectedTopics in Quantum Electronics, 1999, 5(4): 1205-1215.
[2] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography[J]. Science, 1991,254(5035): 1178-1181.
[3] MARMOR M F, WOLFENSBERGER T. The retinal pigment epithelium[J]. Function andDisease, 1998: 103-134.
[4] KLETTNER A K, DITHMAR S. Retinal pigment epithelium in health and disease[M].Springer, 2020.
[5] KHATRI M, SAXENA S, KAUR A, et al. Resistive index of ophthalmic artery correlateswith retinal pigment epithelial alterations on spectral domain optical coherence tomography indiabetic retinopathy[J]. International Journal of Retina and Vitreous, 2018, 4(1): 1-7.
[6] SCHLANITZ F, BAUMANN B, SACU S, et al. Impact of drusen and drusenoid retinal pigmentepithelium elevation size and structure on the integrity of the retinal pigment epithelium layer[J]. British Journal of Ophthalmology, 2019, 103(2): 227-232.
[7] MITCHELL P, RODRÍGUEZ F J, JOUSSEN A M, et al. Management of retinal pigment epithelium tear during anti-VEGF therapy[J]. Retina (Philadelphia, Pa.), 2021, 41(4): 671.
[8] HOSKIN A, BIRD A, SEHMI K. Tears of detached retinal pigment epithelium[J]. BritishJournal of Ophthalmology, 1981, 65(6): 417-422.
[9] BRESSLER N M, BRESSLER S B, FINE S L. Age-related macular degeneration[J]. Surveyof Ophthalmology, 1988, 32(6): 375-413.
[10] FERRIS F L, FINE S L, HYMAN L. Age-related macular degeneration and blindness due toneovascular maculopathy[J]. Archives of Ophthalmology, 1984, 102(11): 1640-1642.
[11] GROSSNIKLAUS H, GASS J D. Clinicopathologic correlations of surgically excised type 1 andtype 2 submacular choroidal neovascular membranes[J]. American Journal of Ophthalmology,1998, 126(1): 59-69.
[12] SUGMK J, KIATTISIN S, LEELASANTITHAM A. Automated classifcation between agerelated macular degeneration and diabetic macular edema in OCT image using image segmentation[C]//The 7th 2014 Biomedical Engineering International Conference. IEEE, 2014: 1-4.
[13] HASSAN B, RAJA G, HASSAN T, et al. Structure tensor based automated detection of macularedema and central serous retinopathy using optical coherence tomography images[J]. JOSA A,2016, 33(4): 455-463.
[14] KOPROWSKI R, TEPER S, WRÓBEL Z, et al. Automatic analysis of selected choroidal diseases in OCT images of the eye fundus[J]. Biomedical Engineering Online, 2013, 12(1): 1-18.
[15] LIU Y Y, CHEN M, ISHIKAWA H, et al. Automated macular pathology diagnosis in retinalOCT images using multi-scale spatial pyramid and local binary patterns in texture and shapeencoding[J]. Medical Image Analysis, 2011, 15(5): 748-759.61参考文献
[16] VENHUIZEN F G, VAN GINNEKEN B, BLOEMEN B, et al. Automated age-related maculardegeneration classifcation in OCT using unsupervised feature learning[C]//Medical Imaging2015: Computer-Aided Diagnosis: volume 9414. SPIE, 2015: 391-397.
[17] LEE C S, BAUGHMAN D M, LEE A Y. Deep learning is efective for classifying normal versusage-related macular degeneration OCT images[J]. Ophthalmology Retina, 2017, 1(4): 322-327.
[18] GRASSMANN F, MENGELKAMP J, BRANDL C, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration fromcolor fundus photography[J]. Ophthalmology, 2018, 125(9): 1410-1420.
[19] TREDER M, LAUERMANN J L, ETER N. Automated detection of exudative age-relatedmacular degeneration in spectral domain optical coherence tomography using deep learning[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 2018, 256(2): 259-265.
[20] DAS V, DANDAPAT S, BORA P K. Automated Classifcation of Retinal OCT Images using aDeep Multi-Scale Fusion CNN[J]. IEEE Sensors Journal, 2021, 21(20): 23256-23265.
[21] SUNIJA A, KAR S, GAYATHRI S, et al. Octnet: A lightweight cnn for retinal disease classifcation from optical coherence tomography images[J]. Computer Methods and Programs inBiomedicine, 2021, 200: 105877.
[22] RUNKLE A P, KAISER P K, SRIVASTAVA S K, et al. OCT angiography and ellipsoid zonemapping of macular telangiectasia type 2 from the AVATAR study[J]. Investigative Ophthalmology & Visual Science, 2017, 58(9): 3683-3689.
[23] ZHU W, CHEN H, ZHAO H, et al. Automatic three-dimensional detection of photoreceptorellipsoid zone disruption caused by trauma in the OCT[J]. Scientifc Reports, 2016, 6(1): 1-10.
[24] MUKHERJEE D, LAD E M, VANN R R, et al. Correlation between macular integrity assessment and optical coherence tomography imaging of ellipsoid zone in macular telangiectasiatype 2[J]. Investigative Ophthalmology & Visual Science, 2017, 58(6): BIO291-BIO299.
[25] WANG Z, CAMINO A, HAGAG A M, et al. Automated detection of preserved photoreceptoron optical coherence tomography in choroideremia based on machine learning[J]. Journal ofBiophotonics, 2018, 11(5): e201700313.
[26] DE SILVA T, JAYAKAR G, GRISSO P, et al. Deep Learning-Based Automatic Detection of Ellipsoid Zone Loss in Spectral-Domain OCT for Hydroxychloroquine Retinal Toxicity Screening[J]. Ophthalmology Science, 2021, 1(4): 100060.
[27] CHEN X, ZHANG L, SOHN E H, et al. Quantifcation of external limiting membrane disruptioncaused by diabetic macular edema from SD-OCT[J]. Investigative Ophthalmology & VisualScience, 2012, 53(13): 8042-8048.
[28] WANG L, ZHU W, LIAO J, et al. Support vector machine based IS/OS disruption detection fromSD-OCT images[C]//Medical Imaging 2014: Image Processing: volume 9034. InternationalSociety for Optics and Photonics, 2014: 90341U.
[29] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[30] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale imagerecognition[C]//International Conference on Learning Representations. 2015: 1-14.62参考文献
[31] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedingsof the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[32] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances inNeural Information Processing Systems, 2017, 30.
[33] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words:Transformers for image recognition at scale[A/OL]. 2020. arXiv: 2010.11929. https://arxiv.org/abs/2010.11929.
[34] LIU Z, LIN Y, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shiftedwindows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021: 10012-10022.
[35] CHU X, TIAN Z, WANG Y, et al. Twins: Revisiting the design of spatial attention in visiontransformers[J]. Advances in Neural Information Processing Systems, 2021, 34: 9355-9366.
[36] CHEN C F R, FAN Q, PANDA R. Crossvit: Cross-attention multi-scale vision transformer forimage classifcation[C]//Proceedings of the IEEE/CVF International Conference on ComputerVision. 2021: 357-366.
[37] D’ASCOLI S, TOUVRON H, LEAVITT M L, et al. Convit: Improving vision transformers withsoft convolutional inductive biases[C]//International Conference on Machine Learning. PMLR,2021: 2286-2296.
[38] DAI Z, LIU H, LE Q V, et al. Coatnet: Marrying convolution and attention for all data sizes[J].Advances in Neural Information Processing Systems, 2021, 34: 3965-3977.
[39] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7132-7141.
[40] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Proceedingsof the European Conference on Computer Vision (ECCV). 2018: 3-19.
[41] PARK J, WOO S, LEE J Y, et al. Bam: Bottleneck attention module[A/OL]. 2018. arXiv:1807.06514. https://arxiv.org/abs/1807.06514.
[42] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate objectdetection and semantic segmentation[C]//Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition. 2014: 580-587.
[43] UIJLINGS J R, VAN DE SANDE K E, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104: 154-171.
[44] GIRSHICK R. Fast r-cnn[C]//Proceedings of the IEEE International Conference on ComputerVision. 2015: 1440-1448.
[45] REN S, HE K, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with regionproposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28.
[46] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unifed, real-time objectdetection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 779-788.63参考文献
[47] ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016: 2921-2929.
[48] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-cam: Visual explanations from deepnetworks via gradient-based localization[C]//Proceedings of the IEEE International Conferenceon Computer Vision. 2017: 618-626.
[49] LI X, WANG W, HU X, et al. Selective kernel networks[C]//Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition. 2019: 510-519.
[50] ZHANG X, HU Y, XIAO Z, et al. Machine learning for cataract classifcation/grading onophthalmic imaging modalities: a survey[J/OL]. Machine Intelligence Research, 2022. DOI:http://doi.org/10.1007/s11633-022-1329-0.
[51] ZHANG X, XIAO Z, HIGASHITA R, et al. Adaptive feature squeeze network for nuclearcataract classifcation in AS-OCT image[J]. Journal of Biomedical Informatics, 2022, 128:104037.
[52] XU L, WANG L, CHENG S, et al. MHANet: A hybrid attention mechanism for retinal diseasesclassifcation[J]. Plos One, 2021, 16(12): e0261285.
[53] ZHANG X, XIAO Z, LI X, et al. Mixed pyramid attention network for nuclear cataract classifcation based on anterior segment OCT images[J]. Health Information Science and Systems,2022, 10(1): 1-12.
[54] LUO W, LI Y, URTASUN R, et al. Understanding the efective receptive feld in deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2016, 29.
[55] DING X, ZHANG X, HAN J, et al. Scaling up your kernels to 31x31: Revisiting large kerneldesign in cnns[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and PatternRecognition. 2022: 11963-11975.
[56] XIE X, NIU J, LIU X, et al. A survey on incorporating domain knowledge into deep learningfor medical image analysis[J/OL]. Medical Image Analysis, 2021, 69: 101985. https://www.sciencedirect.com/science/article/pii/S1361841521000311. DOI: https://doi.org/10.1016/j.media.2021.101985.
[57] SRINIVASAN P P, KIM L A, METTU P S, et al. Fully automated detection of diabetic macularedema and dry age-related macular degeneration from optical coherence tomography images[J]. Biomedical Optics Express, 2014, 5(10): 3568-3577.
[58] BUSLAEV A, IGLOVIKOV V I, KHVEDCHENYA E, et al. Albumentations: fast and fexibleimage augmentations[J]. Information, 2020, 11(2): 125.
[59] WIGHTMAN R. PyTorch image models[J/OL]. GitHub Repository, 2019. https://github.com/rwightman/pytorch-image-models. DOI: 10.5281/zenodo.4414861.
[60] RASTI R, RABBANI H, MEHRIDEHNAVI A, et al. Macular OCT classifcation using a multiscale convolutional neural network ensemble[J]. IEEE Transactions on Medical Imaging, 2017,37(4): 1024-1034.
[61] CAI Z, VASCONCELOS N. Cascade r-cnn: Delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 6154-6162.64参考文献
[62] ZHANG H, CHANG H, MA B, et al. Dynamic R-CNN: Towards high quality object detectionvia dynamic training[C]//European Conference on Computer Vision. Springer, 2020: 260-275.
[63] WANG J, ZHANG W, CAO Y, et al. Side-aware boundary localization for more precise objectdetection[C]//European Conference on Computer Vision. Springer, 2020: 403-419.
[64] MCROBERT A P, CAUSER J, VASSILIADIS J, et al. Contextual information infuences diagnosis accuracy and decision making in simulated emergency medicine emergencies[J]. BMJQuality & Safety, 2013, 22(6): 478-484.
[65] LU X, LI B, YUE Y, et al. Grid r-cnn[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 7363-7372.
[66] ZHONG Q, LI C, ZHANG Y, et al. Cascade region proposal and global context for deep objectdetection[J]. Neurocomputing, 2020, 395: 170-177.
[67] CHEN Z M, JIN X, ZHAO B R, et al. HCE: Hierarchical Context Embedding for Region-BasedObject Detection[J]. IEEE Transactions on Image Processing, 2021, 30: 6917-6929.
[68] WU Y, CHEN Y, YUAN L, et al. Rethinking classifcation and localization for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020: 10186-10195.
[69] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:2117-2125.
[70] ROSENFELD A, THURSTON M. Edge and curve detection for visual scene analysis[J]. IEEETransactions on Computers, 1971, 100(5): 562-569.
[71] HE K, GKIOXARI G, DOLLÁR P, et al. Mask r-cnn[C]//Proceedings of the IEEE InternationalConference on Computer Vision. 2017: 2961-2969.
[72] CHENG J, HUANG W, CAO S, et al. Enhanced performance of brain tumor classifcation viatumor region augmentation and partition[J]. PloS One, 2015, 10(10): e0140381.
[73] DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009: 248-255.
[74] SHAO Q, GONG L, MA K, et al. Attentive CT lesion detection using deep pyramid inferencewith multi-scale booster[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part VI 22. Springer, 2019: 301-309.
[75] FENG C, ZHONG Y, GAO Y, et al. Tood: Task-aligned one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 3510-3519.
修改评论