[1] Shirasaki Y, Supran G J, Bawendi M G, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature photonics, 2013, 7(1): 13-23.
[2] Rossetti R, Ellison J L, Gibson J M, et al. Size effects in the excited electronic states of small colloidal CdS crystallites[J]. SPIE milestone series, 2005, 180: 75-80.
[3] Kagan C R, Bassett L C, Murray C B, et al. Colloidal quantum dots as platforms for quantum information science[J]. Chemical reviews, 2020, 121(5): 3186-3233.
[4] Lv Z, Wang Y, Chen J, et al. Semiconductor quantum dots for memories and neuromorphic computing systems[J]. Chemical reviews, 2020, 120(9): 3941-4006.
[5] Klimov V I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals[J]. Annu. Rev. Phys. Chem., 2007, 58: 635-673.
[6] Pietryga J M, Park Y S, Lim J, et al. Spectroscopic and device aspects of nanocrystal quantum dots[J]. Chemical reviews, 2016, 116(18): 10513-10622.
[7] Dai X, Deng Y, Peng X, et al. Quantum‐dot light‐emitting diodes for large‐area displays: towards the dawn of commercialization[J]. Advanced materials, 2017, 29(14): 1607022.
[8] Lim J, Jun S, Jang E, et al. Preparation of highly luminescent nanocrystals and their application to light‐emitting diodes[J]. Advanced Materials, 2007, 19(15): 1927-1932.
[9] Tian D, Ma H, Huang G, et al. A Review on Quantum Dot Light‐Emitting Diodes: From Materials to Applications[J]. Advanced Optical Materials, 2023, 11(2): 2201965.
[10] Peng X, Schlamp M C, Kadavanich A V, et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J]. Journal of the American Chemical Society, 1997, 119(30): 7019-7029.
[11] Hines M A, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals[J]. The Journal of Physical Chemistry, 1996, 100(2): 468-471.
[12] Bae W K, Padilha L A, Park Y S, et al. Controlled alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of Auger recombination[J]. ACS nano, 2013, 7(4): 3411-3419.
[13] Bae W K, Park Y S, Lim J, et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes[J]. Nature communications, 2013, 4(1): 2661.
[14] Lee K H, Lee J H, Song W S, et al. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices[J]. ACS nano, 2013, 7(8): 7295-7302.
[15] Liu Z, Lin C H, Hyun B R, et al. Micro-light-emitting diodes with quantum dots in display technology[J]. Light: Science & Applications, 2020, 9(1): 83.
[16] Shen H, Gao Q, Zhang Y, et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency[J]. Nature Photonics, 2019, 13(3): 192-197.
[17] Kim T, Kim K H, Kim S, et al. Efficient and stable blue quantum dot light-emitting diode[J]. Nature, 2020, 586(7829): 385-389.
[18] Sun Y, Su Q, Zhang H, et al. Investigation on thermally induced efficiency roll-off: toward efficient and ultrabright quantum-dot light-emitting diodes[J]. ACS nano, 2019, 13(10): 11433-11442.
[19] Lee T, Kim B J, Lee H, et al. Bright and Stable Quantum Dot Light‐Emitting Diodes[J]. Advanced Materials, 2022, 34(4): 2106276.
[20] Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994, 370(6488): 354-357.
[21] Coe S, Woo W K, Bawendi M, et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices[J]. Nature, 2002, 420(6917): 800-803.
[22] Mueller A H, Petruska M A, Achermann M, et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers[J]. Nano Letters, 2005, 5(6): 1039-1044.
[23] Chen L, Wang S, Li D, et al. Simultaneous improvement of efficiency and lifetime of quantum dot light-emitting diodes with a bilayer hole injection layer consisting of PEDOT: PSS and solution-processed WO3[J]. ACS applied materials & interfaces, 2018, 10(28): 24232-24241.
[24] Zhuo M P, Liang F, Shi Y L, et al. WO3 nanobelt doped PEDOT: PSS layers for efficient hole-injection in quantum dot light-emitting diodes[J]. Journal of Materials Chemistry C, 2017, 5(47): 12343-12348.
[25] Zhang Y. Glycine-assisted fabrication of NiO-based quantum dots light-emitting diodes[J]. Journal of Luminescence, 2017, 192: 1015-1019.
[26] Zhang Y, Wang S, Chen L, et al. Solution-processed quantum dot light-emitting diodes based on NiO nanocrystals hole injection layer[J]. Organic Electronics, 2017, 44: 189-197.
[27] Pan J, Chen J, Huang Q, et al. Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs[J]. ACS photonics, 2016, 3(2): 215-222.
[28] Chen Z, Chen S. Efficient and stable quantum‐dot light‐emitting diodes enabled by tin oxide multifunctional electron transport layer[J]. Advanced Optical Materials, 2022, 10(5): 2102404.
[29] Chen M, Chen X, Ma W, et al. Highly stable SnO2-based quantum-dot light-emitting diodes with the conventional device structure[J]. ACS nano, 2022, 16(6): 9631-9639.
[30] Kim M, Lee N, Yang J H, et al. High-efficiency quantum dot light-emitting diodes based on Li-doped TiO2 nanoparticles as an alternative electron transport layer[J]. Nanoscale, 2021, 13(5): 2838-2842.
[31] Qasim K, Chen J, Wang B, et al. P‐90: Highly Efficient Quantum‐dot Light‐emitting Devices with Enhanced Charge Injection in the Simplest Trilayer Structure[C]//SID Symposium Digest of Technical Papers. 2016, 47(1): 1462-1464.
[32] Caruge J M, Halpert J E, Bulović V, et al. NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices[J]. Nano letters, 2006, 6(12): 2991-2994.
[33] Stouwdam J W, Janssen R A J. Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers[J]. Journal of Materials Chemistry, 2008, 18(16): 1889-1894.
[34] Qian L, Zheng Y, Xue J, et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures[J]. Nature photonics, 2011, 5(9): 543-548.
[35] Shen H, Lin Q, Cao W, et al. Efficient and long-lifetime full-color light-emitting diodes using high luminescence quantum yield thick-shell quantum dots[J]. Nanoscale, 2017, 9(36): 13583-13591.
[36] Mashford B S, Stevenson M, Popovic Z, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection[J]. Nature photonics, 2013, 7(5): 407-412.
[37] Luo H, Zhang W, Li M, et al. Origin of subthreshold turn-on in quantum-dot light-emitting diodes[J]. ACS nano, 2019, 13(7): 8229-8236.
[38] Lin X, Dai X, Ye Z, et al. Highly-efficient thermoelectric-driven light-emitting diodes based on colloidal quantum dots[J]. Nano Research, 2022, 15(10): 9402-9409.
[39] Lian Y, Lan D, Xing S, et al. Ultralow-voltage operation of light-emitting diodes[J]. Nature Communications, 2022, 13(1): 3845.
[40] Su Q, Chen S. Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes[J]. Nature Communications, 2022, 13(1): 369.
[41] Song J, Wang O, Shen H, et al. Over 30% external quantum efficiency light‐emitting diodes by engineering quantum dot‐assisted energy level match for hole transport layer[J]. Advanced Functional Materials, 2019, 29(33): 1808377.
[42] Deng Y, Peng F, Lu Y, et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage[J]. Nature Photonics, 2022, 16(7): 505-511.
[43] Jin W, Deng Y, Guo B, et al. On the accurate characterization of quantum-dot light-emitting diodes for display applications[J]. npj Flexible Electronics, 2022, 6(1): 35.
[44] Dai X, Zhang Z, Jin Y, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature, 2014, 515(7525): 96-99.
[45] Lee H, Jeong B G, Bae W K, et al. Surface state-induced barrierless carrier injection in quantum dot electroluminescent devices[J]. Nature Communications, 2021, 12(1): 5669.
[46] Zhang Z, Ye Y, Pu C, et al. High‐performance, solution‐processed, and insulating‐layer‐free light‐emitting diodes based on colloidal quantum dots[J]. Advanced Materials, 2018, 30(28): 1801387.
[47] Cao W, Xiang C, Yang Y, et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring[J]. Nature communications, 2018, 9(1): 2608.
[48] Liu B, Guo Y, Su Q, et al. Cadmium‐Doped Zinc Sulfide Shell as a Hole Injection Springboard for Red, Green, and Blue Quantum Dot Light‐Emitting Diodes[J]. Advanced Science, 2022, 9(15): 2104488.
[49] Jing J, Lin L, Yang K, et al. Highly efficient inverted quantum dot light-emitting diodes employing sol-gel derived Li-doped ZnO as electron transport layer[J]. Organic Electronics, 2022, 103: 106466.
[50] Guo S, Wu Q, Wang L, et al. Boosting efficiency of InP quantum dots-based light-emitting diodes by an In-doped ZnO electron transport layer[J]. IEEE Electron Device Letters, 2021, 42(12): 1806-1809.
[51] Kim H M, Cho S, Kim J, et al. Li and Mg Co-doped zinc oxide electron transporting layer for highly efficient quantum dot light-emitting diodes[J]. ACS applied materials & interfaces, 2018, 10(28): 24028-24036.
[52] Alexandrov A, Zvaigzne M, Lypenko D, et al. Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes[J]. Scientific Reports, 2020, 10(1): 7496.
[53] Ji W, Lv Y, Jing P, et al. Highly efficient and low turn-on voltage quantum dot light-emitting diodes by using a stepwise hole-transport layer[J]. ACS applied materials & interfaces, 2015, 7(29): 15955-15960.
[54] Wu S E, Sharma S, Chen H L, et al. Single conjugated polymer with four stepwise HOMO levels for effective hole injection across large barrier 1.4 eV to core–shell quantum dot layer for electroluminescence in inverted QLED[J]. Advanced Optical Materials, 2022, 10(10): 2102508.
[55] Chen D, Chen D, Dai X, et al. Shelf‐Stable Quantum‐Dot Light‐Emitting Diodes with High Operational Performance[J]. Advanced Materials, 2020, 32(52): 2006178.
[56] Deng Y, Lin X, Fang W, et al. Deciphering exciton-generation processes in quantum-dot electroluminescence[J]. Nature Communications, 2020, 11(1): 2309.
[57] Chang J H, Park P, Jung H, et al. Unraveling the origin of operational instability of quantum dot-based light-emitting diodes[J]. ACS nano, 2018, 12(10): 10231-10239.
[58] Kim J, Hahm D, Bae W K, et al. Transient Dynamics of Charges and Excitons in Quantum Dot Light‐Emitting Diodes[J]. Small, 2022, 18(29): 2202290.
[59] Pu C, Peng X. To battle surface traps on CdSe/CdS core/shell nanocrystals: shell isolation versus surface treatment[J]. Journal of the American Chemical Society, 2016, 138(26): 8134-8142.
[60] Xiang C, Wu L, Lu Z, et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes[J]. Nature Communications, 2020, 11(1): 1646.
[61] Shirasaki Y, Supran G J, Tisdale W A, et al. Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes[J]. Physical review letters, 2013, 110(21): 217403.
[62] Zhang H, Su Q, Chen S. Suppressing Förster resonance energy transfer in close‐packed quantum‐dot thin film: Toward efficient quantum‐dot light‐emitting diodes with external quantum efficiency over 21.6%[J]. Advanced Optical Materials, 2020, 8(10): 1902092.
[63] Ding K, Chen H, Fan L, et al. Polyethylenimine insulativity-dominant charge-injection balance for highly efficient inverted quantum dot light-emitting diodes[J]. ACS applied materials & interfaces, 2017, 9(23): 20231-20238.
[64] Zhang H, Chen S. An ZnMgO: PVP inorganic–organic hybrid electron transport layer: Towards efficient bottom-emission and transparent quantum dot light-emitting diodes[J]. Journal of Materials Chemistry C, 2019, 7(8): 2291-2298.
[65] Sun K, Li F, Zeng Q, et al. Blue quantum dot light emitting diodes with polyvinylpyrrolidone-doped electron transport layer[J]. Organic Electronics, 2018, 63: 65-70.
[66] Pan J, Chen J, Huang Q, et al. Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs[J]. ACS photonics, 2016, 3(2): 215-222.
[67] Moyen E, Kim J H, Kim J, et al. ZnO nanoparticles for quantum-dot-based light-emitting diodes[J]. ACS Applied Nano Materials, 2020, 3(6): 5203-5211.
[68] Zhang D, Liu Y H, Zhu L. Surface engineering of ZnO nanoparticles with diethylenetriamine for efficient red quantum-dot light-emitting diodes[J]. Iscience, 2022, 25(10): 105111.
[69] Chen H, Ding K, Fan L, et al. Controlling electron transport towards efficient all-solution-processed quantum dot light emitting diodes[J]. Journal of Materials Chemistry C, 2022, 10(21): 8373-8380.
[70] Qu X, Ma J, Jia S, et al. Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer[J]. Chinese Physics B, 2021, 30(11): 118503.
[71] Chung D S, Davidson-Hall T, Cotella G, et al. Significant Lifetime Enhancement in QLEDs by Reducing Interfacial Charge Accumulation via Fluorine Incorporation in the ZnO Electron Transport Layer[J]. Nano-Micro Letters, 2022, 14(1): 212.
[72] Chen D, Ma L, Chen Y, et al. Electrochemically Stable Ligands of ZnO Electron-Transporting Layers for Quantum-Dot Light-Emitting Diodes[J]. Nano Letters, 2023.
[73] Xie L, Yang J, Zhao W, et al. High‐Performance Inkjet‐Printed Blue QLED Enabled by Crosslinked and Intertwined Hole Transport Layer[J]. Advanced Optical Materials, 2022, 10(21): 2200935.
[74] Wang F, Hua Q, Lin Q, et al. High‐Performance Blue Quantum‐Dot Light‐Emitting Diodes by Alleviating Electron Trapping[J]. Advanced Optical Materials, 2022, 10(13): 2200319.
[75] Rowland C E, Susumu K, Stewart M H, et al. Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes[J]. Nano letters, 2015, 15(10): 6848-6854.
[76] Xie S, Zhu H, Li M, et al. Voltage-controlled reversible modulation of colloidal quantum dot thin film photoluminescence[J]. Applied Physics Letters, 2022, 120(21): 211104.
[77] Pu C, Dai X, Shu Y, et al. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots[J]. Nature Communications, 2020, 11(1): 937.
[78] Chen S, Cao W, Liu T, et al. On the degradation mechanisms of quantum-dot light-emitting diodes[J]. Nature Communications, 2019, 10(1): 765.
[79] Su Q, Sun Y, Zhang H, et al. Origin of Positive Aging in Quantum‐Dot Light‐Emitting Diodes[J]. Advanced Science, 2018, 5(10): 1800549.
[80] Chen Z, Su Q, Qin Z, et al. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes[J]. Nano Research, 2021, 14: 320-327.
[81] Zhang W, Chen X, Ma Y, et al. Positive aging effect of ZnO nanoparticles induced by surface stabilization[J]. The Journal of Physical Chemistry Letters, 2020, 11(15): 5863-5870.
[82] Ding W C, Chen C H, Huang L J, et al. P‐108: Positive Aging Mechanisms for High‐efficiency Blue Quantum Dot Light‐emitting Diodes[C]//SID Symposium Digest of Technical Papers. 2018, 49(1): 1622-1624.
[83] Ding S, Wu Z, Qu X, et al. Impact of the resistive switching effects in ZnMgO electron transport layer on the aging characteristics of quantum dot light-emitting diodes[J]. Applied Physics Letters, 2020, 117(9): 093501.
[84] Ye Z, Chen M, Chen X, et al. Solution-processed quantum-dot light-emitting diodes combining ultrahigh operational stability, shelf stability, and luminance[J]. npj Flexible Electronics, 2022, 6(1): 96.
[85] Chrzanowski M, Zatryb G, Sitarek P, et al. Effect of air exposure of ZnMgO nanoparticle electron transport layer on efficiency of quantum-dot light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20305-20312.
[86] Kim O S, Kang B H, Lee J S, et al. Efficient quantum dots light-emitting devices using polyvinyl pyrrolidone-capped ZnO nanoparticles with enhanced charge transport[J]. IEEE Electron Device Letters, 2016, 37(8): 1022-1024.
[87] Blauth C, Mulvaney P, Hirai T. Transient overshoot and storage of charge carriers on ligands in quantum dot LEDs[J]. Journal of Applied Physics, 2019, 126(7): 075501.
[88] Kim S K, Kim Y S. Charge carrier injection and transport in QLED layer with dynamic equilibrium of trapping/de-trapping carriers[J]. Journal of Applied Physics, 2019, 126(3): 035704.
[89] Kirkwood N, Singh B, Mulvaney P. Enhancing quantum dot LED efficiency by tuning electron mobility in the ZnO electron transport layer[J]. Advanced Materials Interfaces, 2016, 3(22): 1600868.
[90] Chen Z, Qin Z, Su S, et al. The influence of H2O and O2 on the optoelectronic properties of inverted quantum-dot light-emitting diodes[J]. Nano Research, 2021: 1-6.
[91] Liu D, Cao S, Wang S, et al. Highly stable red quantum dot light-emitting diodes with long T95 operation lifetimes[J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 3111-3115.
[92] Chen X, Lin X, Zhou L, et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling[J]. Nature Communications, 2023, 14(1): 284.
[93] Wu Z, Liu P, Qu X, et al. Identifying the Surface Charges and their Impact on Carrier Dynamics in Quantum‐Dot Light‐Emitting Diodes by Impedance Spectroscopy[J]. Advanced Optical Materials, 2021, 9(17): 2100389.
[94] Weichsel C, Burtone L, Reineke S, et al. Storage of charge carriers on emitter molecules in organic light-emitting diodes[J]. Physical Review B, 2012, 86(7): 075204.
[95] Ye S, Wang Y, Guo R, et al. Asymmetric anthracene derivatives as multifunctional electronic materials for constructing simplified and efficient non-doped homogeneous deep blue fluorescent OLEDs[J]. Chemical Engineering Journal, 2020, 393: 124694.
[96] Nowy S, Ren W, Elschner A, et al. Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes[J]. Journal of Applied Physics, 2010, 107(5): 054501.
[97] Zhang L, Nakanotani H, Adachi C. Capacitance-voltage characteristics of a 4, 4′-bis [(N-carbazole) styryl] biphenyl based organic light-emitting diode: Implications for characteristic times and their distribution[J]. Applied Physics Letters, 2013, 103(9): 162_1.
[98] Lee J, Lee K J, Kim M, et al. 68.1: Capacitance‐Voltage Characteristics of Top Emitting Organic Light Emitting Diodes for Mobile Display Application[C]//SID Symposium Digest of Technical Papers. Oxford, UK: Blackwell Publishing Ltd, 2011, 42(1): 1002-1005.
[99] Kim J M, Lee C H, Kim J J. Mobility balance in the light-emitting layer governs the polaron accumulation and operational stability of organic light-emitting diodes[J]. Applied Physics Letters, 2017, 111(20): 203301.
[100] Ray B, Baradwaj A G, Boudouris B W, et al. Defect characterization in organic semiconductors by forward bias capacitance–voltage (FB-CV) analysis[J]. The Journal of Physical Chemistry C, 2014, 118(31): 17461-17466.
[101] Huang X, Zhang H, Xu D, et al. Investigation of exciton recombination zone in quantum dot light-emitting diodes using a fluorescent probe[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 27809-27816.
[102] Kozlov O V, Park Y S, Roh J, et al. Sub–single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity[J]. Science, 2019, 365(6454): 672-675.
[103] Roh J, Park Y S, Lim J, et al. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity[J]. Nature communications, 2020, 11(1): 271.
[104] Qin Z, Su Q, Chen S. Unraveling the Energy Transfer Mechanisms in Bi‐Color and Tri‐Color Quantum Dots: toward Efficient White Quantum Dot Light‐Emitting Diodes[J]. Advanced Optical Materials, 2022: 2202451.
[105] Qu X, Zhang N, Cai R, et al. Improving blue quantum dot light-emitting diodes by a lithium fluoride interfacial layer[J]. Applied physics letters, 2019, 114(7): 071101.
[106] Zhong Z, Zou J, Jiang C, et al. Improved color purity and efficiency of blue quantum dot light-emitting diodes[J]. Organic Electronics, 2018, 58: 245-249.
[107] Wang L, Lin J, Hu Y, et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency[J]. ACS applied materials & interfaces, 2017, 9(44): 38755-38760.
[108] Biswas S, Kar S, Chaudhuri S. Optical and magnetic properties of manganese-incorporated zinc sulfide nanorods synthesized by a solvothermal process[J]. The Journal of Physical Chemistry B, 2005, 109(37): 17526-17530.
[109] Wang X, Shi J, Feng Z, et al. Visible emission characteristics from different defects of ZnS nanocrystals[J]. Physical chemistry chemical physics, 2011, 13(10): 4715-4723.
[110] Lu M, de Bruyn P, Nicolai H T, et al. Hole-enhanced electron injection from ZnO in inverted polymer light-emitting diodes[J]. Organic Electronics, 2012, 13(9): 1693-1699.
[111] Blauth C, Mulvaney P, Hirai T. Negative capacitance as a diagnostic tool for recombination in purple quantum dot LEDs[J]. Journal of Applied Physics, 2019, 125(19): 195501.
[112] Walter T, Herberholz R, Müller C, et al. Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions[J]. Journal of applied physics, 1996, 80(8): 4411-4420.
[113] Herberholz R, Igalson M, Schock H W. Distinction between bulk and interface states in CuInSe2/CdS/ZnO by space charge spectroscopy[J]. Journal of Applied Physics, 1998, 83(1): 318-325.
[114] Kirkwood N, Singh B, Mulvaney P. Enhancing quantum dot LED efficiency by tuning electron mobility in the ZnO electron transport layer[J]. Advanced Materials Interfaces, 2016, 3(22): 1600868.
[115] Özgür Ü, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices[J]. Journal of applied physics, 2005, 98(4): 11.
[116] Liu X, Wu X, Cao H, et al. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition[J]. Journal of Applied Physics, 2004, 95(6): 3141-3147.
[117] Rauwel E, Galeckas A, Rauwel P, et al. Precursor-dependent blue-green photoluminescence emission of ZnO nanoparticles[J]. The Journal of Physical Chemistry C, 2011, 115(51): 25227-25233.
[118] Ma Y, Choi T W, Cheung S H, et al. Charge transfer-induced photoluminescence in ZnO nanoparticles[J]. Nanoscale, 2019, 11(18): 8736-8743.
[119] Zidek K, Zheng K, Abdellah M, et al. Ultrafast dynamics of multiple exciton harvesting in the CdSe–ZnO system: electron injection versus Auger recombination[J]. Nano letters, 2012, 12(12): 6393-6399.
[120] Robel I, Subramanian V, Kuno M, et al. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films[J]. Journal of the American Chemical Society, 2006, 128(7): 2385-2393.
[121] Tvrdy K, Frantsuzov P A, Kamat P V. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles[J]. Proceedings of the National Academy of Sciences, 2011, 108(1): 29-34.
[122] Tvrdy K, Kamat P V. Substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces[J]. The Journal of Physical Chemistry A, 2009, 113(16): 3765-3772.
[123] Žídek K, Zheng K, Chábera P, et al. Quantum dot photodegradation due to CdSe-ZnO charge transfer: Transient absorption study[J]. Applied Physics Letters, 2012, 100(24): 243111.
[124] Jia S, Tang H, Ma J, et al. High performance inkjet‐printed quantum‐dot light‐emitting diodes with high operational stability[J]. Advanced Optical Materials, 2021, 9(22): 2101069.
[125] Hu C, Wang Q, Bai S, et al. The effect of oxygen vacancy on switching mechanism of ZnO resistive switching memory[J]. Applied Physics Letters, 2017, 110(7): 073501.
[126] Chen J Y, Hsin C L, Huang C W, et al. Dynamic evolution of conducting nanofilament in resistive switching memories[J]. Nano letters, 2013, 13(8): 3671-3677.
[127] Chang W Y, Huang H W, Wang W T, et al. High uniformity of resistive switching characteristics in a Cr/ZnO/Pt device[J]. Journal of the Electrochemical Society, 2012, 159(3): G29.
[128] Xu N, Liu L, Sun X, et al. Characteristics and mechanism of conduction/set process in TiN∕ZnO∕Pt resistance switching random-access memories[J]. Applied Physics Letters, 2008, 92(23): 232112.
[129] Simanjuntak F M, Ohno T, Samukawa S. Neutral oxygen beam treated ZnO-based resistive switching memory device[J]. ACS Applied Electronic Materials, 2018, 1(1): 18-24.
修改评论