[1] DING Y, WANG Y, ZHOU D. Mortality prediction for ICU patients combining just-in-time learning and extreme learning machine[J]. Neurocomputing, 2018, 281: 12-19.
[2] CHEN K, GAO C, ZHOU Q, et al. Predictors of in-hospital mortality for sepsis patients in intensive care units[J]. International Journal of Clinical and Experimental Medicine, 2016, 9(2): 4029-34.
[3] THAO P T N, TRA T T, SON N T, et al. Reduction in the IL-6 level at 24 h after admission to the intensive care unit is a survival predictor for Vietnamese patients with sepsis and septic shock: a prospective study[J]. BMC Emergency Medicine, 2018, 18: 1-7.
[4] ROS M M, VAN DER ZAAG-LOONEN H J, HOFHUIS J G, et al. Survival prediction inseverely ill patients study—the prediction of survival in critically ill patients by ICU physicians[J]. Critical Care Explorations, 2021, 3(1).
[5] WEN W, YANG L, ZHANG X. Prognostic value of National Early Warning Scores combined with arterial lactate level in critical elderly ill patients[J]. Chinese Journal of Emergency Medicine, 2017: 441-445.
[6] TAN L, XU Q, SHI R. A nomogram for predicting hospital mortality in intensive care unit patients with acute myocardial infarction[J]. International Journal of General Medicine, 2021:5863-5877.
[7] ZIMMERMAN J E, KRAMER A A, MCNAIR D S, et al. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients[J]. Critical Care Medicine, 2006, 34(5): 1297-1310.
[8] LE GALL J R, LEMESHOW S, SAULNIER F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study[J]. Jama, 1993, 270(24): 2957-2963.
[9] LEMESHOW S, TERES D, KLAR J, et al. Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients[J]. Jama, 1993, 270(20): 2478-2486.
[10] HUSSAIN A J, FERGUS P, AL-ASKAR H, et al. Dynamic neural network architecture inspired by the immune algorithm to predict preterm deliveries in pregnant women[J]. Neurocomputing, 2015, 151: 963-974.
[11] KIM K J, CHO S B. Prediction of colon cancer using an evolutionary neural network[J]. Neurocomputing, 2004, 61: 361-379.
[12] CHEN P, YUAN L, HE Y, et al. An improved SVM classifier based on double chains quantum genetic algorithm and its application in analogue circuit diagnosis[J]. Neurocomputing, 2016, 211: 202-211.
[13] AZAR A T, EL-SAID S A. Performance analysis of support vector machines classifiers in breast cancer mammography recognition[J]. Neural Computing and Applications, 2014, 24(5): 1163-1177
[14] AZAR A T, EL-METWALLY S M. Decision tree classifiers for automated medical diagnosis[J]. Neural Computing and Applications, 2013, 23(7): 2387-2403.
[15] RYYNÄNEN O P, SOINI E J, LINDQVIST A, et al. Bayesian predictors of very poor health related quality of life and mortality in patients with COPD[J]. BMC Medical Informatics and Decision Making, 2013, 13(1): 1-10.
[16] CUI Z, WANG Y, GAO X, et al. Multispectral image classification based on improved weighted MRF Bayesian[J]. Neurocomputing, 2016, 212: 75-87.
[17] ACZON M, LEDBETTER D, HO L, et al. Dynamic mortality risk predictions in pediatric critical care using recurrent neural networks[A]. 2017.
[18] ALVES T, LAENDER A, VELOSO A, et al. Dynamic prediction of ICU mortality risk using domain adaptation[C]//2018 IEEE International Conference on Big Data (Big Data). 2018: 1328-1336.
[19] LAST M, TOSAS O, CASSARINO T G, et al. Evolving classification of intensive care patients from event data[J]. Artificial Intelligence in Medicine, 2016, 69: 22-32.
[20] KLANN J G, SZOLOVITS P, DOWNS S M, et al. Decision support from local data: creating adaptive order menus from past clinician behavior[J]. Journal of Biomedical Informatics, 2014, 48: 84-93.
[21] ZHANG Y, SZOLOVITS P. Patient-specific learning in real time for adaptive monitoring in critical care[J]. Journal of Biomedical Informatics, 2008, 41(3): 452-460.
[22] ENRIGHT C G, MADDEN M G. Modelling and monitoring the individual patient in real time[M]//Foundations of Biomedical Knowledge Representation. Springer, 2015: 107-136.
[23] KASABOV N, HU Y. Integrated optimisation method for personalised modelling and case studies for medical decision support[J]. International Journal of Functional Informatics and Personalised Medicine, 2010, 3(3): 236-256.
[24] LI X, WANG Y. Adaptive online monitoring for ICU patients by combining just-in-time learning and principal component analysis[J]. Journal of Clinical Monitoring and Computing, 2016, 30(6): 807-820.
[25] GUO C, LIU M, LU M. A Dynamic Ensemble Learning Algorithm based on K-means for ICU mortality prediction[J]. Applied Soft Computing, 2021, 103: 107166.
[26] EL-RASHIDY N, EL-SAPPAGH S, ABUHMED T, et al. Intensive Care Unit Mortality Prediction: An Improved Patient-Specific Stacking Ensemble Model[J]. IEEE Access, 2020, 8: 133541-133564.
[27] REN N, ZHAO X, ZHANG X, et al. Mortality prediction in ICU Using a Stacked Ensemble Model[J]. Computational and Mathematical Methods in Medicine, 2022, 2022.
[28] WILSON D L. Asymptotic properties of nearest neighbor rules using edited data[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1972(3): 408-421.
[29] LAURIKKALA J. Improving identification of difficult small classes by balancing class distribution[C]//Conference on artificial intelligence in medicine in Europe. Springer, 2001: 63-66.
[30] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357
[31] HAN H, WANG W Y, MAO B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]//International Conference on Intelligent Computing. Springer, 2005: 878-887.
[32] HE H, BAI Y, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]//2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE, 2008: 1322-1328.
[33] BATISTA G E, BAZZAN A L, MONARD M C, et al. Balancing Training Data for Automated Annotation of Keywords: a Case Study.[C]//WOB. 2003: 10-18.
[34] BATISTA G E, PRATI R C, MONARD M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 20-29.
[35] FAN W, STOLFO S J, ZHANG J, et al. AdaCost: misclassification cost-sensitive boosting[C]//International Conference on Machine Learning: volume 99. 1999: 97-105.
[36] TING K M. A comparative study of cost-sensitive boosting algorithms[C]//In Proceedings of the 17th International Conference on Machine Learning. Citeseer, 2000.
[37] BREIMAN L. Bagging predictors Machine Learning 24 (2), 123-140 (1996) 10.1023[J]. Machine Learning, 1996.
[38] GANAIE M A, HU M, et al. Ensemble deep learning: A review[A]. 2021.
[39] MOHSENI S, ZAREI N, RAGAN E D. A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems[J]. ACM Transactions on Interactive Intelligent Systems, 2018, 11: 24:1-24:45.
[40] MOLNAR C, CASALICCHIO G, BISCHL B. Interpretable Machine Learning – A Brief History, State-of-the-Art and Challenges[M]//ECML PKDD 2020 Workshops. Springer International Publishing, 2020: 417-431.
[41] CHAKRABORTY S, TOMSETT R J, RAGHAVENDRA R, et al. Interpretability of deeplearning models: A survey of results[J]. 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2017: 1-6.
[42] CARVALHO D V, PEREIRA E M, CARDOSO J S. Machine Learning Interpretability: A Survey on Methods and Metrics[J]. Electronics, 2019.
[43] DU M, LIU N, HU X. Techniques for interpretable machine learning[J]. Communications of the ACM, 2018, 63: 68 - 77.
[44] GUIDOTTI R, MONREALE A, TURINI F, et al. A Survey of Methods for Explaining Black Box Models[J]. ACM Computing Surveys (CSUR), 2018, 51: 1 - 42.
[45] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Nets[C]//Neural Information Processing Systems. 2014.
[46] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]//Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. 2016: 785-794.
[47] CURLEY C, KRAUSE R M, FEIOCK R, et al. Dealing with missing data: A comparative exploration of approaches using the integrated city sustainability database[J]. Urban affairs review, 2019, 55(2): 591-615.
[48] BRADLEY A P. The use of the area under the ROC curve in the evaluation of machine learning algorithms[J]. Pattern Recognition, 1997, 30(7): 1145-1159.
[49] LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[J]. Advances in Neural Information Processing Systems, 2017, 30.
修改评论