[1] ALLEY W M, HEALY R W, LABAUGH J W, et al. Flow and Storage in Groundwater Systems[J]. Science, 2002, 296(5575): 1985-1990.
[2] TAYLOR R G, SCANLON B, DÖLL P, et al. Ground water and climate change[J]. Nature Climate Change, 2013, 3(4): 322-329.
[3] WADA Y, VAN BEEK L P H, VAN KEMPEN C M, et al. Global depletion of groundwater resources[J]. Geophysical Research Letters, 2010, 37(20): L20402.
[4] GLEESON T, WADA Y, BIERKENS M F P, et al. Water balance of global aquifers revealed by groundwater footprint[J]. Nature, 2012, 488(7410): 197-200.
[5] LIU P W, FAMIGLIETTI J S, PURDY A J, et al. Groundwater depletion in California’s Central Valley accelerates during megadrought[J]. Nature Communications, 2022, 13(1): 7825.
[6] SCANLON B R, FAKHREDDINE S, RATEB A, et al. Global water resources and the role of groundwater in a resilient water future[J]. Nature Reviews Earth & Environment, 2023, 4(2): 87-101.
[7] IMMERZEEL W W, VAN BEEK L P H, BIERKENS M F P. Climate Change Will Affect the Asian Water Towers[J]. Science, 2010, 328(5984): 1382-1385.
[8] YAO T, BOLCH T, CHEN D, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 2022, 3(10): 618-632.
[9] 姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209.
[10] LIU X, CHEN B. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology, 2000, 20(14): 1729-1742.
[11] YAO T, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
[12] KRAAIJENBRINK P D A, STIGTER E E, YAO T, et al. Climate change decisive for Asia’s snow meltwater supply[J]. Nature Climate Change, 2021, 11(7): 591-597.
[13] 赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34(11): 1233-1246.
[14] ZHANG G, LUO W, CHEN W, et al. A robust but variable lake expansion on the Tibetan Plateau[J]. Science Bulletin, 2019, 64(18): 1306-1309.
[15] 张建云, 刘九夫, 金君良, 等. 青藏高原水资源演变与趋势分析[J]. 中国科学院院刊, 2019, 34(11): 1264-1273.
[16] BOOKHAGEN B. Himalayan groundwater[J]. Nature Geoscience, 2012, 5(2): 97-98.
[17] POHL E, KNOCHE M, GLOAGUEN R, et al. Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains[J]. Earth Surface Dynamics, 2015, 3(3): 333-362.
[18] TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE Measurements of Mass Variability in the Earth System[J]. Science, 2004, 305(5683): 503-505.
[19] TAPLEY B D, WATKINS M M, FLECHTNER F, et al. Contributions of GRACE to understanding climate change[J]. Nature Climate Change, 2019, 9(5): 358-369.
[20] RODELL M, FAMIGLIETTI J S. The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US[J]. Journal of Hydrology, 2002, 263(1-4): 245-256.
[21] 张镱锂, 李炳元, 刘林山, 等. 再论青藏高原范围[J]. 地理研究, 2021, 40(6): 1543-1553.
[22] ZHANG G, YAO T, XIE H, et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms[J]. Earth-Science Reviews, 2020, 208: 103269.
[23] RODELL M, VELICOGNA I, FAMIGLIETTI J S. Satellite-based estimates of groundwater depletion in India[J]. Nature, 2009, 460(7258): 999-1002.
[24] MACALLISTER D J, KRISHAN G, BASHARAT M, et al. A century of groundwater accumulation in Pakistan and northwest India[J]. Nature Geoscience, 2022, 15(5): 390-396.
[25] MACDONALD A M, BONSOR H C, AHMED K M, et al. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations[J]. Nature Geoscience, 2016, 9(10): 762-766.
[26] FENG W, ZHONG M, LEMOINE J M, et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements[J]. Water Resources Research, 2013, 49(4): 2110-2118.
[27] SCANLON B R, FAUNT C C, LONGUEVERGNE L, et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley[J]. Proceedings of the National Academy of Sciences, 2012, 109(24): 9320-9325.
[28] JOODAKI G, WAHR J, SWENSON S. Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations[J]. Water Resources Research, 2014, 50(3): 2679-2692.
[29] CHEN J L, WILSON C R, TAPLEY B D, et al. Long-term groundwater storage change in Victoria, Australia from satellite gravity and in situ observations[J]. Global and Planetary Change, 2016, 139: 56-65.
[30] BRUTSAERT W. Long-term groundwater storage trends estimated from streamflow records: Climatic perspective[J]. Water Resources Research, 2008, 44(2): W02409.
[31] BRUTSAERT W, NIEBER J L. Regionalized drought flow hydrographs from a mature glaciated plateau[J]. Water Resources Research, 1977, 13(3): 637-643.
[32] BRUTSAERT W. Annual drought flow and groundwater storage trends in the eastern half of the United States during the past two-third century[J]. Theoretical and Applied Climatology, 2010, 100(1): 93-103.
[33] GAO Z, ZHANG L, CHENG L, et al. Groundwater storage trends in the Loess Plateau of China estimated from streamflow records[J]. Journal of Hydrology, 2015, 530: 281-290.
[34] SCHMIDT A H, LÜDTKE S, ANDERMANN C. Multiple measures of monsoon-controlled water storage in Asia[J]. Earth and Planetary Science Letters, 2020, 546: 116415.
[35] LANCIA M, YAO Y, ANDREWS C B, et al. The China groundwater crisis: A mechanistic analysis with implications for global sustainability[J]. Sustainable Horizons, 2022, 4: 100042.
[36] CONDON L E, KOLLET S, BIERKENS M F P, et al. Global Groundwater Modeling and Monitoring: Opportunities and Challenges[J]. Water Resources Research, 2021, 57(12): e2020WR029500.
[37] RODELL M, CHEN J, KATO H, et al. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE[J]. Hydrogeology Journal, 2007, 15(1): 159-166.
[38] RATEB A, SCANLON B R, POOL D R, et al. Comparison of Groundwater Storage Changes From GRACE Satellites With Monitoring and Modeling of Major U.S. Aquifers[J]. Water Resources Research, 2020, 56(12): e2020WR027556.
[39] JIN S, FENG G. Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012[J]. Global and Planetary Change, 2013, 106: 20-30.
[40] YAO T, XUE Y, CHEN D, et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
[41] QIN J, HE M, YANG W, et al. Temporally extended satellite-derived surface air temperatures reveal a complete warming picture on the Tibetan Plateau[J]. Remote Sensing of Environment, 2023, 285: 113410.
[42] YOU Q, CHEN D, WU F, et al. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives[J]. Earth-Science Reviews, 2020, 210: 103349.
[43] WANG X, PANG G, YANG M. Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations[J]. International Journal of Climatology, 2018, 38(3): 1116-1131.
[44] MA N, ZHANG Y. Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation[J]. Agricultural an d Forest Meteorology, 2022, 317: 108887.
[45] WANG L, HAN S, TIAN F, et al. The Evaporation on the Tibetan Plateau Stops Increasing in the Recent Two Decades[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(23): e2022JD037377.
[46] HUGONNET R, MCNABB R, BERTHIER E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592(7856): 726-731.
[47] XU X, WU Q. Active Layer Thickness Variation on the Qinghai-Tibetan Plateau: Historical and Projected Trends[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(23): e2021JD034841.
[48] LIN L, GAO M, LIU J, et al. Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: the upper Lhasa River[J]. Hydrology and Earth System Sciences, 2020, 24(3): 1145-1157.
[49] XU Z, CHENG L, LUO P, et al. A Climatic Perspective on the Impacts of Global Warming on Water Cycle of Cold Mountainous Catchments in the Tibetan Plateau: A Case Study in Yarlung Zangbo River Basin[J]. Water, 2020, 12(9): 2338.
[50] YI W, FENG Y, LIANG S, et al. Increasing annual streamflow and groundwater storage in response to climate warming in the Yangtze River source region[J]. Environmental Research Letters, 2021, 16(8): 084011.
[51] JIAO J J, ZHANG X, LIU Y, et al. Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data[J]. PLOS ONE, 2015, 10(10): e0141442.
[52] ZHANG G, YAO T, SHUM C K, et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin[J]. Geophysical Research Letters, 2017, 44(11): 5550-5560.
[53] BIBI S, WANG L, LI X, et al. Response of Groundwater Storage and Recharge in the Qaidam Basin (Tibetan Plateau) to Climate Variations From 2002 to 2016[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(17-18): 9918-9934.
[54] QIAO B, NIE B, LIANG C, et al. Spatial Difference of Terrestrial Water Storage Change and Lake Water Storage Change in the Inner Tibetan Plateau[J]. Remote Sensing, 2021, 13(10): 1984.
[55] XIANG L, WANG H, STEFFEN H, et al. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data[J]. Earth and Planetary Science Letters, 2016, 449: 228-239.
[56] CHAO N, CHEN G, LI J, et al. Groundwater Storage Change in the Jinsha River Basin from GRACE, Hydrologic Models, and In Situ Data[J]. Groundwater, 2020, 58(5): 735-748.
[57] 张浩哲, 常晓涛, 朱广彬, 等. 三江源2003~2020年地下水储量变化分析[J]. 大地测量与地球动力学, 2022, 42(3): 312-317+325.
[58] ZHANG G, YAO T, XIE H, et al. Increased mass over the Tibetan Plateau: From lakes or glaciers?[J]. Geophysical Research Letters, 2013, 40(10): 2125-2130.
[59] HUMPHREY V, RODELL M, EICKER A. Using Satellite-Based Terrestrial Water Storage Data: A Review[J]. Surveys in Geophysics, 2023.
[60] WAHR J, MOLENAAR M, BRYAN F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229.
[61] SCANLON B R, ZHANG Z, SAVE H, et al. Global evaluation of new GRACE mascon products for hydrologic applications[J]. Water Resources Research, 2016, 52(12): 9412-9429.
[62] WATKINS M M, WIESE D N, YUAN D N, et al. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(4): 2648-2671.
[63] SAVE H, BETTADPUR S, TAPLEY B D. High-resolution CSR GRACE RL05 mascons[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7547-7569.
[64] SAKUMURA C, BETTADPUR S, BRUINSMA S. Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models[J]. Geophysical Research Letters, 2014, 41(5): 1389-1397.
[65] WANG J, SONG C, REAGER J T, et al. Recent global decline in endorheic basin water storages[J]. Nature Geoscience, 2018, 11(12): 926-932.
[66] LI X, LONG D, HUANG Q, et al. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions[J]. Earth System Science Data, 2019, 11(4): 1603-1627.
[67] WANG J, WANG L, LI M, et al. Lake volume variation in the endorheic basin of the Tibetan Plateau from 1989 to 2019[J]. Scientific Data, 2022, 9(1): 611.
[68] ZHANG G, BOLCH T, CHEN W, et al. Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976–2019 and basin-wide glacier contribution[J]. Science of The Total Environment, 2021, 772: 145463.
[69] KE L, XU J, FAN C, et al. Remote sensing reconstruction of long-term water level and storage variations of a poorly-gauged river in the Tibetan Plateau[J]. Journal of Hydrology: Regional Studies, 2022, 40: 101020.
[70] XING Z, FAN L, ZHAO L, et al. A first assessment of satellite and reanalysis estimates of surface and root-zone soil moisture over the permafrost region of Qinghai-Tibet Plateau[J]. Remote Sensing of Environment, 2021, 265: 112666.
[71] DORIGO W, HIMMELBAUER I, ABERER D, et al. The International Soil Moisture Network: serving Earth system science for over a decade[J]. Hydrology and Earth System Sciences, 2021, 25(11): 5749-5804.
[72] ZHANG P, ZHENG D, VAN DER VELDE R, et al. Status of the Tibetan Plateau observatory (Tibet-Obs) and a 10-year (2009–2019) surface soil moisture dataset[J]. Earth System Science Data, 2021, 13(6): 3075-3102.
[73] JACKSON T J, BINDLISH R, COSH M H, et al. Validation of Soil Moisture and Ocean Salinity (SMOS) Soil Moisture Over Watershed Networks in the U.S.[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1530-1543.
[74] LAWRENCE D M, FISHER R A, KOVEN C D, et al. The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12): 4245-4287.
[75] RAN Y, LI X, CHENG G, et al. New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere[J]. Earth System Science Data, 2022, 14(2): 865-884.
[76] OBU J, WESTERMANN S, BARTSCH A, et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale[J]. Earth-Science Reviews, 2019, 193: 299-316.
[77] CAO B, ZHANG T, PENG X, et al. Thermal Characteristics and Recent Changes of Permafrost in the Upper Reaches of the Heihe River Basin, Western China[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(15): 7935-7949.
[78] CHEN H, NAN Z, ZHAO L, et al. Noah Modelling of the Permafrost Distribution and Characteristics in the West Kunlun Area, Qinghai-Tibet Plateau, China[J]. Permafrost and Periglacial Processes, 2015, 26(2): 160-174.
[79] CHEN J, ZHAO L, SHENG Y, et al. Some Characteristics of Permafrost and Its Distribution in the Gaize Area on the Qinghai—Tibet Plateau, China[J]. Arctic, Antarctic, and Alpine Research, 2016, 48(2): 395-409.
[80] 李韧, 赵林, 丁永建, 等. 青藏公路沿线多年冻土区活动层动态变化及区域差异特征[J]. 科学通报, 2012, 57(30): 2864-2871.
[81] 罗栋梁, 金会军, 林琳, 等. 黄河源区多年冻土温度及厚度研究新进展[J]. 地理科学, 2012, 32(7): 898-904.
[82] ZHAO L, ZOU D, HU G, et al. A synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau, China[J]. Earth System Science Data, 2021, 13(8): 4207-4218.
[83] 赵林. 青藏高原多年冻土及变化[M]. 北京: 科学出版社, 2019.
[84] WU Q, ZHANG T, LIU Y. Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010[J]. The Cryosphere, 2012, 6(3): 607-612.
[85] QIN Y, WU T, ZHAO L, et al. Numerical Modeling of the Active Layer Thickness and Permafrost Thermal State Across Qinghai-Tibetan Plateau: Numerical Model of Permafrost Dynamics[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(21): 11,604-11,620.
[86] DUPUIT J E. Etudes théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables avec des considérations relatives au régime des grandes eaux, au débouché à leur donner, et à la marche des des alluvions dans les rivières à fond mobile[M]. Dunod, éditeur, 1863.
[87] BOUSSINESQ J. Recherches théoriques sur l’écoulement des nappes d’eau infiltrées dans le sol et sur le débit des sources[J]. Journal de mathématiques pures et appliquées, 1904, 10: 5-78.
[88] DAHRI Z H, LUDWIG F, MOORS E, et al. Climate change and hydrological regime of the high-altitude Indus basin under extreme climate scenarios[J]. Science of The Total Environment, 2021, 768: 144467.
[89] LI B, RODELL M, FAMIGLIETTI J S. Groundwater variability across temporal and spatial scales in the central and northeastern U.S.[J]. Journal of Hydrology, 2015, 525: 769-780.
[90] YUAN X, YANG K, LU H, et al. Characterizing the features of precipitation for the Tibetan Plateau among four gridded datasets: Detection accuracy and spatio-temporal variabilities[J]. Atmospheric Research, 2021, 264: 105875.
[91] MARTENS B, MIRALLES D G, LIEVENS H, et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1903-1925.
[92] 袁令, 马耀明, 陈学龙, 等. 青藏高原六套陆面蒸散发产品的评估[J]. 大气科学, 2023, 47(3): 893-906.
[93] HUMPHREY V, GUDMUNDSSON L, SENEVIRATNE S I. Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes[J]. Surveys in Geophysics, 2016, 37(2): 357-395.
[94] CLEVELAND R B, CLEVELAND W S, MCRAE J E, et al. STL: A seasonal-trend decomposition procedure based on loess[J]. Journal of Official Statistics, 1990, 6(1): 3-73.
[95] SEN P K. Estimates of the Regression Coefficient Based on Kendall’s Tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389.
[96] KIM H, YEH P J F, OKI T, et al. Role of rivers in the seasonal variations of terrestrial water storage over global basins[J]. Geophysical Research Letters, 2009, 36(17): L17402.
[97] SCANLON B R, ZHANG Z, SAVE H, et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data[J]. Proceedings of the National Academy of Sciences, 2018, 115(6): E1080-E1089.
[98] XU L, CHEN N, ZHANG X, et al. Spatiotemporal Changes in China’s Terrestrial Water Storage From GRACE Satellites and Its Possible Drivers[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(22): 11976-11993.
[99] JIANG L, NIELSEN K, ANDERSEN O B, et al. A Bigger Picture of how the Tibetan Lakes Have Changed Over the Past Decade Revealed by CryoSat-2 Altimetry[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(23): e2020JD033161.
[100] YONG B, WANG C Y, CHEN J, et al. Missing water from the Qiangtang Basin on the Tibetan Plateau[J]. Geology, 2021, 49(7): 867-872.
[101] WANG Y, WANG L, ZHOU J, et al. Vanishing Glaciers at Southeast Tibetan Plateau Have Not Offset the Declining Runoff at Yarlung Zangbo[J]. Geophysical Research Letters, 2021, 48(21): e2021GL094651.
[102] KONG Y, WANG K, PU T, et al. Nonmonsoon Precipitation Dominates Groundwater Recharge Beneath a Monsoon‐Affected Glacier in Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(20): 10913-10930.
[103] LONE S A, JEELANI G, DESHPANDE R D, et al. Meltwaters dominate groundwater recharge in cold arid desert of Upper Indus River Basin (UIRB), western Himalayas[J]. Science of The Total Environment, 2021, 786: 147514.
[104] CHEN J, WANG C Y, TAN H, et al. New lakes in the Taklamakan Desert[J]. Geophysical Research Letters, 2012, 39(22): L22402.
[105] CASTELLAZZI P, BURGESS D, RIVERA A, et al. Glacial Melt and Potential Impacts on Water Resources in the Canadian Rocky Mountains[J]. Water Resources Research, 2019, 55(12): 10191-10217.
[106] LI B, RODELL M, KUMAR S, et al. Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges[J]. Water Resources Research, 2019, 55(9): 7564-7586.
[107] GE S, WU Q B, LU N, et al. Groundwater in the Tibet Plateau, western China[J]. Geophysical Research Letters, 2008, 35(18): L18403.
修改评论