中文版 | English
题名

青藏高原地下水储量对气候变化 响应的研究

其他题名
STUDY ON THE RESPONSE OF GROUNDWATER STORAGE TO CLIMATE CHANG IN THE TIBETAN PLATEAU
姓名
姓名拼音
ZOU Yiguang
学号
12032354
学位类型
硕士
学位专业
080104 工程力学
学科门类/专业学位类别
08 工学
导师
匡星星
导师单位
环境科学与工程学院
论文答辩日期
2023-05-19
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

青藏高原地区是亚洲众多大江大河的发源地,被称为亚洲水塔,关系着下游十余个国家、近20亿人口的水安全和粮食安全。在全球持续变暖背景下,青藏高原正在发生一系列以失衡为特征的剧烈变化,例如冰川退缩、积雪消融、冻土退化、湖泊扩张、径流变化等。青藏高原干旱期河流的水量以及脆弱的生态系统主要由地下水维系,因此监测地下水储量对青藏高原水资源管理至关重要。气候变化深刻影响着青藏高原地下水流系统的补给、径流和排泄以及储存空间,导致地下水储量发生变化。由于青藏高原地形险峻、生存环境恶劣,实地观测数据匮乏,限制了地下水储量对气候变化响应的相关研究,地下水储量变化的驱动因素尚不清晰。为解决上述科学问题,本研究以重力恢复与气候实验(Gravity Recovery and Climate ExperimentGRACE)卫星重力测量为主,结合实地测量、遥感观测、全球模型和再分析等多源数据,定量解析了青藏高原陆地水储量变化,进而揭示地下水储量的时空演变特征及驱动因素,并与其他独立估计地下水储量的方法作对比。研究发现在2002~2017年间,青藏高原地下水储量整体呈增加趋势(2.85±1.55 Gt/yr),但在空间上呈现出一定差异,在东北部和大部分冰川区呈增加趋势,而在南部和塔里木河上游西部呈减少趋势。导致地下水储量整体呈增加趋势的主要原因可能是气温上升使得固态水(冰川、积雪和多年冻土冰)以17.72±1.53 Gt/yr的速率向液态水加速转化,为地下水提供了更多补给。基流衰退分析和地下水监测井计算的地下水储量变化与基于GRACE卫星重力观测反演的结果在趋势方向上较为一致,但变化速率存在较大差异。对比本研究结果,目前大多数全球水文模型和陆面模式由于未考虑冰川或冻土融水的影响,无法模拟出青藏高原地下水储量增加的趋势。在未来气温可能持续上升的情景下,青藏高原冰冻圈加速退化将会使得地下水储量可能在未来一段时间内继续增加,然而有限的固态水资源使得这种增加不可持续。本研究揭示了在全球变暖背景下青藏高原冰冻圈退化对地下水系统的重要影响,为预测未来不同情景下青藏高原水资源演变提供了关键科学信息。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] ALLEY W M, HEALY R W, LABAUGH J W, et al. Flow and Storage in Groundwater Systems[J]. Science, 2002, 296(5575): 1985-1990.
[2] TAYLOR R G, SCANLON B, DÖLL P, et al. Ground water and climate change[J]. Nature Climate Change, 2013, 3(4): 322-329.
[3] WADA Y, VAN BEEK L P H, VAN KEMPEN C M, et al. Global depletion of groundwater resources[J]. Geophysical Research Letters, 2010, 37(20): L20402.
[4] GLEESON T, WADA Y, BIERKENS M F P, et al. Water balance of global aquifers revealed by groundwater footprint[J]. Nature, 2012, 488(7410): 197-200.
[5] LIU P W, FAMIGLIETTI J S, PURDY A J, et al. Groundwater depletion in California’s Central Valley accelerates during megadrought[J]. Nature Communications, 2022, 13(1): 7825.
[6] SCANLON B R, FAKHREDDINE S, RATEB A, et al. Global water resources and the role of groundwater in a resilient water future[J]. Nature Reviews Earth & Environment, 2023, 4(2): 87-101.
[7] IMMERZEEL W W, VAN BEEK L P H, BIERKENS M F P. Climate Change Will Affect the Asian Water Towers[J]. Science, 2010, 328(5984): 1382-1385.
[8] YAO T, BOLCH T, CHEN D, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 2022, 3(10): 618-632.
[9] 姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209.
[10] LIU X, CHEN B. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology, 2000, 20(14): 1729-1742.
[11] YAO T, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
[12] KRAAIJENBRINK P D A, STIGTER E E, YAO T, et al. Climate change decisive for Asia’s snow meltwater supply[J]. Nature Climate Change, 2021, 11(7): 591-597.
[13] 赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34(11): 1233-1246.
[14] ZHANG G, LUO W, CHEN W, et al. A robust but variable lake expansion on the Tibetan Plateau[J]. Science Bulletin, 2019, 64(18): 1306-1309.
[15] 张建云, 刘九夫, 金君良, 等. 青藏高原水资源演变与趋势分析[J]. 中国科学院院刊, 2019, 34(11): 1264-1273.
[16] BOOKHAGEN B. Himalayan groundwater[J]. Nature Geoscience, 2012, 5(2): 97-98.
[17] POHL E, KNOCHE M, GLOAGUEN R, et al. Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains[J]. Earth Surface Dynamics, 2015, 3(3): 333-362.
[18] TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE Measurements of Mass Variability in the Earth System[J]. Science, 2004, 305(5683): 503-505.
[19] TAPLEY B D, WATKINS M M, FLECHTNER F, et al. Contributions of GRACE to understanding climate change[J]. Nature Climate Change, 2019, 9(5): 358-369.
[20] RODELL M, FAMIGLIETTI J S. The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US[J]. Journal of Hydrology, 2002, 263(1-4): 245-256.
[21] 张镱锂, 李炳元, 刘林山, 等. 再论青藏高原范围[J]. 地理研究, 2021, 40(6): 1543-1553.
[22] ZHANG G, YAO T, XIE H, et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms[J]. Earth-Science Reviews, 2020, 208: 103269.
[23] RODELL M, VELICOGNA I, FAMIGLIETTI J S. Satellite-based estimates of groundwater depletion in India[J]. Nature, 2009, 460(7258): 999-1002.
[24] MACALLISTER D J, KRISHAN G, BASHARAT M, et al. A century of groundwater accumulation in Pakistan and northwest India[J]. Nature Geoscience, 2022, 15(5): 390-396.
[25] MACDONALD A M, BONSOR H C, AHMED K M, et al. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations[J]. Nature Geoscience, 2016, 9(10): 762-766.
[26] FENG W, ZHONG M, LEMOINE J M, et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements[J]. Water Resources Research, 2013, 49(4): 2110-2118.
[27] SCANLON B R, FAUNT C C, LONGUEVERGNE L, et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley[J]. Proceedings of the National Academy of Sciences, 2012, 109(24): 9320-9325.
[28] JOODAKI G, WAHR J, SWENSON S. Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations[J]. Water Resources Research, 2014, 50(3): 2679-2692.
[29] CHEN J L, WILSON C R, TAPLEY B D, et al. Long-term groundwater storage change in Victoria, Australia from satellite gravity and in situ observations[J]. Global and Planetary Change, 2016, 139: 56-65.
[30] BRUTSAERT W. Long-term groundwater storage trends estimated from streamflow records: Climatic perspective[J]. Water Resources Research, 2008, 44(2): W02409.
[31] BRUTSAERT W, NIEBER J L. Regionalized drought flow hydrographs from a mature glaciated plateau[J]. Water Resources Research, 1977, 13(3): 637-643.
[32] BRUTSAERT W. Annual drought flow and groundwater storage trends in the eastern half of the United States during the past two-third century[J]. Theoretical and Applied Climatology, 2010, 100(1): 93-103.
[33] GAO Z, ZHANG L, CHENG L, et al. Groundwater storage trends in the Loess Plateau of China estimated from streamflow records[J]. Journal of Hydrology, 2015, 530: 281-290.
[34] SCHMIDT A H, LÜDTKE S, ANDERMANN C. Multiple measures of monsoon-controlled water storage in Asia[J]. Earth and Planetary Science Letters, 2020, 546: 116415.
[35] LANCIA M, YAO Y, ANDREWS C B, et al. The China groundwater crisis: A mechanistic analysis with implications for global sustainability[J]. Sustainable Horizons, 2022, 4: 100042.
[36] CONDON L E, KOLLET S, BIERKENS M F P, et al. Global Groundwater Modeling and Monitoring: Opportunities and Challenges[J]. Water Resources Research, 2021, 57(12): e2020WR029500.
[37] RODELL M, CHEN J, KATO H, et al. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE[J]. Hydrogeology Journal, 2007, 15(1): 159-166.
[38] RATEB A, SCANLON B R, POOL D R, et al. Comparison of Groundwater Storage Changes From GRACE Satellites With Monitoring and Modeling of Major U.S. Aquifers[J]. Water Resources Research, 2020, 56(12): e2020WR027556.
[39] JIN S, FENG G. Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012[J]. Global and Planetary Change, 2013, 106: 20-30.
[40] YAO T, XUE Y, CHEN D, et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
[41] QIN J, HE M, YANG W, et al. Temporally extended satellite-derived surface air temperatures reveal a complete warming picture on the Tibetan Plateau[J]. Remote Sensing of Environment, 2023, 285: 113410.
[42] YOU Q, CHEN D, WU F, et al. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives[J]. Earth-Science Reviews, 2020, 210: 103349.
[43] WANG X, PANG G, YANG M. Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations[J]. International Journal of Climatology, 2018, 38(3): 1116-1131.
[44] MA N, ZHANG Y. Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation[J]. Agricultural an d Forest Meteorology, 2022, 317: 108887.
[45] WANG L, HAN S, TIAN F, et al. The Evaporation on the Tibetan Plateau Stops Increasing in the Recent Two Decades[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(23): e2022JD037377.
[46] HUGONNET R, MCNABB R, BERTHIER E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592(7856): 726-731.
[47] XU X, WU Q. Active Layer Thickness Variation on the Qinghai-Tibetan Plateau: Historical and Projected Trends[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(23): e2021JD034841.
[48] LIN L, GAO M, LIU J, et al. Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: the upper Lhasa River[J]. Hydrology and Earth System Sciences, 2020, 24(3): 1145-1157.
[49] XU Z, CHENG L, LUO P, et al. A Climatic Perspective on the Impacts of Global Warming on Water Cycle of Cold Mountainous Catchments in the Tibetan Plateau: A Case Study in Yarlung Zangbo River Basin[J]. Water, 2020, 12(9): 2338.
[50] YI W, FENG Y, LIANG S, et al. Increasing annual streamflow and groundwater storage in response to climate warming in the Yangtze River source region[J]. Environmental Research Letters, 2021, 16(8): 084011.
[51] JIAO J J, ZHANG X, LIU Y, et al. Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data[J]. PLOS ONE, 2015, 10(10): e0141442.
[52] ZHANG G, YAO T, SHUM C K, et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin[J]. Geophysical Research Letters, 2017, 44(11): 5550-5560.
[53] BIBI S, WANG L, LI X, et al. Response of Groundwater Storage and Recharge in the Qaidam Basin (Tibetan Plateau) to Climate Variations From 2002 to 2016[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(17-18): 9918-9934.
[54] QIAO B, NIE B, LIANG C, et al. Spatial Difference of Terrestrial Water Storage Change and Lake Water Storage Change in the Inner Tibetan Plateau[J]. Remote Sensing, 2021, 13(10): 1984.
[55] XIANG L, WANG H, STEFFEN H, et al. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data[J]. Earth and Planetary Science Letters, 2016, 449: 228-239.
[56] CHAO N, CHEN G, LI J, et al. Groundwater Storage Change in the Jinsha River Basin from GRACE, Hydrologic Models, and In Situ Data[J]. Groundwater, 2020, 58(5): 735-748.
[57] 张浩哲, 常晓涛, 朱广彬, 等. 三江源2003~2020年地下水储量变化分析[J]. 大地测量与地球动力学, 2022, 42(3): 312-317+325.
[58] ZHANG G, YAO T, XIE H, et al. Increased mass over the Tibetan Plateau: From lakes or glaciers?[J]. Geophysical Research Letters, 2013, 40(10): 2125-2130.
[59] HUMPHREY V, RODELL M, EICKER A. Using Satellite-Based Terrestrial Water Storage Data: A Review[J]. Surveys in Geophysics, 2023.
[60] WAHR J, MOLENAAR M, BRYAN F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229.
[61] SCANLON B R, ZHANG Z, SAVE H, et al. Global evaluation of new GRACE mascon products for hydrologic applications[J]. Water Resources Research, 2016, 52(12): 9412-9429.
[62] WATKINS M M, WIESE D N, YUAN D N, et al. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(4): 2648-2671.
[63] SAVE H, BETTADPUR S, TAPLEY B D. High-resolution CSR GRACE RL05 mascons[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7547-7569.
[64] SAKUMURA C, BETTADPUR S, BRUINSMA S. Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models[J]. Geophysical Research Letters, 2014, 41(5): 1389-1397.
[65] WANG J, SONG C, REAGER J T, et al. Recent global decline in endorheic basin water storages[J]. Nature Geoscience, 2018, 11(12): 926-932.
[66] LI X, LONG D, HUANG Q, et al. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions[J]. Earth System Science Data, 2019, 11(4): 1603-1627.
[67] WANG J, WANG L, LI M, et al. Lake volume variation in the endorheic basin of the Tibetan Plateau from 1989 to 2019[J]. Scientific Data, 2022, 9(1): 611.
[68] ZHANG G, BOLCH T, CHEN W, et al. Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976–2019 and basin-wide glacier contribution[J]. Science of The Total Environment, 2021, 772: 145463.
[69] KE L, XU J, FAN C, et al. Remote sensing reconstruction of long-term water level and storage variations of a poorly-gauged river in the Tibetan Plateau[J]. Journal of Hydrology: Regional Studies, 2022, 40: 101020.
[70] XING Z, FAN L, ZHAO L, et al. A first assessment of satellite and reanalysis estimates of surface and root-zone soil moisture over the permafrost region of Qinghai-Tibet Plateau[J]. Remote Sensing of Environment, 2021, 265: 112666.
[71] DORIGO W, HIMMELBAUER I, ABERER D, et al. The International Soil Moisture Network: serving Earth system science for over a decade[J]. Hydrology and Earth System Sciences, 2021, 25(11): 5749-5804.
[72] ZHANG P, ZHENG D, VAN DER VELDE R, et al. Status of the Tibetan Plateau observatory (Tibet-Obs) and a 10-year (2009–2019) surface soil moisture dataset[J]. Earth System Science Data, 2021, 13(6): 3075-3102.
[73] JACKSON T J, BINDLISH R, COSH M H, et al. Validation of Soil Moisture and Ocean Salinity (SMOS) Soil Moisture Over Watershed Networks in the U.S.[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1530-1543.
[74] LAWRENCE D M, FISHER R A, KOVEN C D, et al. The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12): 4245-4287.
[75] RAN Y, LI X, CHENG G, et al. New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere[J]. Earth System Science Data, 2022, 14(2): 865-884.
[76] OBU J, WESTERMANN S, BARTSCH A, et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale[J]. Earth-Science Reviews, 2019, 193: 299-316.
[77] CAO B, ZHANG T, PENG X, et al. Thermal Characteristics and Recent Changes of Permafrost in the Upper Reaches of the Heihe River Basin, Western China[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(15): 7935-7949.
[78] CHEN H, NAN Z, ZHAO L, et al. Noah Modelling of the Permafrost Distribution and Characteristics in the West Kunlun Area, Qinghai-Tibet Plateau, China[J]. Permafrost and Periglacial Processes, 2015, 26(2): 160-174.
[79] CHEN J, ZHAO L, SHENG Y, et al. Some Characteristics of Permafrost and Its Distribution in the Gaize Area on the Qinghai—Tibet Plateau, China[J]. Arctic, Antarctic, and Alpine Research, 2016, 48(2): 395-409.
[80] 李韧, 赵林, 丁永建, 等. 青藏公路沿线多年冻土区活动层动态变化及区域差异特征[J]. 科学通报, 2012, 57(30): 2864-2871.
[81] 罗栋梁, 金会军, 林琳, 等. 黄河源区多年冻土温度及厚度研究新进展[J]. 地理科学, 2012, 32(7): 898-904.
[82] ZHAO L, ZOU D, HU G, et al. A synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau, China[J]. Earth System Science Data, 2021, 13(8): 4207-4218.
[83] 赵林. 青藏高原多年冻土及变化[M]. 北京: 科学出版社, 2019.
[84] WU Q, ZHANG T, LIU Y. Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010[J]. The Cryosphere, 2012, 6(3): 607-612.
[85] QIN Y, WU T, ZHAO L, et al. Numerical Modeling of the Active Layer Thickness and Permafrost Thermal State Across Qinghai-Tibetan Plateau: Numerical Model of Permafrost Dynamics[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(21): 11,604-11,620.
[86] DUPUIT J E. Etudes théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables avec des considérations relatives au régime des grandes eaux, au débouché à leur donner, et à la marche des des alluvions dans les rivières à fond mobile[M]. Dunod, éditeur, 1863.
[87] BOUSSINESQ J. Recherches théoriques sur l’écoulement des nappes d’eau infiltrées dans le sol et sur le débit des sources[J]. Journal de mathématiques pures et appliquées, 1904, 10: 5-78.
[88] DAHRI Z H, LUDWIG F, MOORS E, et al. Climate change and hydrological regime of the high-altitude Indus basin under extreme climate scenarios[J]. Science of The Total Environment, 2021, 768: 144467.
[89] LI B, RODELL M, FAMIGLIETTI J S. Groundwater variability across temporal and spatial scales in the central and northeastern U.S.[J]. Journal of Hydrology, 2015, 525: 769-780.
[90] YUAN X, YANG K, LU H, et al. Characterizing the features of precipitation for the Tibetan Plateau among four gridded datasets: Detection accuracy and spatio-temporal variabilities[J]. Atmospheric Research, 2021, 264: 105875.
[91] MARTENS B, MIRALLES D G, LIEVENS H, et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1903-1925.
[92] 袁令, 马耀明, 陈学龙, 等. 青藏高原六套陆面蒸散发产品的评估[J]. 大气科学, 2023, 47(3): 893-906.
[93] HUMPHREY V, GUDMUNDSSON L, SENEVIRATNE S I. Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes[J]. Surveys in Geophysics, 2016, 37(2): 357-395.
[94] CLEVELAND R B, CLEVELAND W S, MCRAE J E, et al. STL: A seasonal-trend decomposition procedure based on loess[J]. Journal of Official Statistics, 1990, 6(1): 3-73.
[95] SEN P K. Estimates of the Regression Coefficient Based on Kendall’s Tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389.
[96] KIM H, YEH P J F, OKI T, et al. Role of rivers in the seasonal variations of terrestrial water storage over global basins[J]. Geophysical Research Letters, 2009, 36(17): L17402.
[97] SCANLON B R, ZHANG Z, SAVE H, et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data[J]. Proceedings of the National Academy of Sciences, 2018, 115(6): E1080-E1089.
[98] XU L, CHEN N, ZHANG X, et al. Spatiotemporal Changes in China’s Terrestrial Water Storage From GRACE Satellites and Its Possible Drivers[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(22): 11976-11993.
[99] JIANG L, NIELSEN K, ANDERSEN O B, et al. A Bigger Picture of how the Tibetan Lakes Have Changed Over the Past Decade Revealed by CryoSat-2 Altimetry[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(23): e2020JD033161.
[100] YONG B, WANG C Y, CHEN J, et al. Missing water from the Qiangtang Basin on the Tibetan Plateau[J]. Geology, 2021, 49(7): 867-872.
[101] WANG Y, WANG L, ZHOU J, et al. Vanishing Glaciers at Southeast Tibetan Plateau Have Not Offset the Declining Runoff at Yarlung Zangbo[J]. Geophysical Research Letters, 2021, 48(21): e2021GL094651.
[102] KONG Y, WANG K, PU T, et al. Nonmonsoon Precipitation Dominates Groundwater Recharge Beneath a Monsoon‐Affected Glacier in Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(20): 10913-10930.
[103] LONE S A, JEELANI G, DESHPANDE R D, et al. Meltwaters dominate groundwater recharge in cold arid desert of Upper Indus River Basin (UIRB), western Himalayas[J]. Science of The Total Environment, 2021, 786: 147514.
[104] CHEN J, WANG C Y, TAN H, et al. New lakes in the Taklamakan Desert[J]. Geophysical Research Letters, 2012, 39(22): L22402.
[105] CASTELLAZZI P, BURGESS D, RIVERA A, et al. Glacial Melt and Potential Impacts on Water Resources in the Canadian Rocky Mountains[J]. Water Resources Research, 2019, 55(12): 10191-10217.
[106] LI B, RODELL M, KUMAR S, et al. Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges[J]. Water Resources Research, 2019, 55(9): 7564-7586.
[107] GE S, WU Q B, LU N, et al. Groundwater in the Tibet Plateau, western China[J]. Geophysical Research Letters, 2008, 35(18): L18403.

所在学位评定分委会
力学
国内图书分类号
P641
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544487
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
邹一光. 青藏高原地下水储量对气候变化 响应的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032354-邹一光-环境科学与工程(15679KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[邹一光]的文章
百度学术
百度学术中相似的文章
[邹一光]的文章
必应学术
必应学术中相似的文章
[邹一光]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。