[1] ECKARDT N A, COMINELLI E, GALBIATI M, et al. The future of science: food and water for life [J]. Plant Cell, 2009, 21(2): 368-372.
[2] HOEKSTRA A Y. Water scarcity challenges to business [J]. Nature Climate Change, 2014, 4(5): 318-320.
[3] SCHLOSSER C A, STRZEPEK K, GAO X, et al. The future of global water stress: An integrated assessment [J]. Earth's Future, 2014, 2(8): 341-361.
[4] ELIMELECH M, PHILLIP W A. The Future of Seawater Desalination: Energy, Technology, and the Environment [J]. Science, 2011, 333(6043): 712-717.
[5] ASHOOR B B, MANSOUR S, GIWA A, et al. Principles and applications of direct contact membrane distillation (DCMD): A comprehensive review [J]. Desalination, 2016, 398: 222-246.
[6] ALKHUDHIRI A, DARWISH N, HILAL N. Membrane distillation: A comprehensive review [J]. Desalination, 2012, 287: 2-18.
[7] DRIOLI E, ALI A, MACEDONIO F. Membrane distillation: Recent developments and perspectives [J]. Desalination, 2015, 356: 56-84.
[8] LAWSON K W, LLOYD D R. Membrane distillation [J]. Journal of Membrane Science, 1997, 124(1): 1-25.
[9] SARTI G C, GOSTOLI C. Use of Hydrophobic Membranes in Thermal Separation of Liquid Mixtures: Theory and Experiments [M]. Membranes and Membrane Processes. Boston, MA; Springer US. 1986: 349-360.
[10] ALKLAIBI A M, LIOR N. Membrane-distillation desalination: Status and potential [J]. Desalination, 2005, 171(2): 111-131.
[11] ESSALHI M, KHAYET M. Self-sustained webs of polyvinylidene fluoride electrospun nano-fibers: Effects of polymer concentration and desalination by direct contact membrane distillation [J]. Journal of Membrane Science, 2014, 454: 133-143.
[12] KARODE S. Coupling Reverse Osmosis and Osmotic Dehydration: Further Investigations [J]. Separation Science and Technology, 2001, 36(14): 3091-3103.
[13] CHEN Y, LU K J, GAI W, et al. Nanofiltration-Inspired Janus Membranes with Simultaneous Wetting and Fouling Resistance for Membrane Distillation [J]. Environmental Science & Technology, 2021, 55(11): 7654-7664.
[14] DESHMUKH A, BOO C, KARANIKOLA V, et al. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges [J]. Energy & Environmental Science, 2018, 11(5): 1177-1196.
[15] WANG P, CHUNG T-S. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring [J]. Journal of Membrane Science, 2015, 474: 39-56.
[16] SMOLDERS K, FRANKEN A C M. Terminology for Membrane Distillation [J]. Desalination, 1989, 72(3): 249-262.
[17] SARTI G C, GOSTOLI C, MATULLI S. Low energy cost desalination processes using hydrophobic membranes [J]. Desalination, 1985, 56: 277-286.
[18] QTAISHAT M R, BANAT F. Desalination by solar powered membrane distillation systems [J]. Desalination, 2013, 308: 186-197.
[19] CAMACHO L, DUMéE L, ZHANG J, et al. Advances in Membrane Distillation for Water Desalination and Purification Applications [J]. Water, 2013, 5(1): 94-196.
[20] LAWSON K W, LLOYD D R. Membrane distillation. II. Direct contact MD [J]. Journal of Membrane Science, 1996, 120(1): 123-133.
[21] ZHANG J, GRAY S, LI J-D. Predicting the influence of operating conditions on DCMD flux and thermal efficiency for incompressible and compressible membrane systems [J]. Desalination, 2013, 323: 142-149.
[22] ZHANG J, LI J-D, GRAY S. Effect of applied pressure on performance of PTFE membrane in DCMD [J]. Journal of Membrane Science, 2011, 369(1-2): 514-525.
[23] HE F, GILRON J, LEE H, et al. Potential for scaling by sparingly soluble salts in crossflow DCMD [J]. Journal of Membrane Science, 2008, 311(1-2): 68-80.
[24] HWANG H J, HE K, GRAY S, et al. Direct contact membrane distillation (DCMD): Experimental study on the commercial PTFE membrane and modeling [J]. Journal of Membrane Science, 2011, 371(1-2): 90-98.
[25] GARCı́A-PAYO M C, IZQUIERDO-GIL M A, FERNáNDEZ-PINEDA C. Air gap membrane distillation of aqueous alcohol solutions [J]. Journal of Membrane Science, 2000, 169(1): 61-80.
[26] AL-JUBOORI R A, NAJI O, BOWTELL L, et al. Power effect of ultrasonically vibrated spacers in air gap membrane distillation: Theoretical and experimental investigations [J]. Separation and Purification Technology, 2021, 262: 118319.
[27] ALKHUDHIRI A, DARWISH N, HILAL N. Produced water treatment: Application of Air Gap Membrane Distillation [J]. Desalination, 2013, 309: 46-51.
[28] ALKLAIBI A, LIOR N. Transport analysis of air-gap membrane distillation [J]. Journal of Membrane Science, 2005, 255(1-2): 239-253.
[29] COJOCARU C, KHAYET M. Sweeping gas membrane distillation of sucrose aqueous solutions: Response surface modeling and optimization [J]. Separation and Purification Technology, 2011, 81(1): 12-24.
[30] RIVIER C. Separation of binary mixtures by thermostatic sweeping gas membrane distillation I. Theory and simulations [J]. Journal of Membrane Science, 2002, 201(1-2): 1-16.
[31] TIJING L D, WOO Y C, CHOI J-S, et al. Fouling and its control in membrane distillation—A review [J]. Journal of Membrane Science, 2015, 475: 215-244.
[32] WARSINGER D M, SWAMINATHAN J, GUILLEN-BURRIEZA E, et al. Scaling and fouling in membrane distillation for desalination applications: A review [J]. Desalination, 2015, 356: 294-313.
[33] ZHAO K, HEINZL W, WENZEL M, et al. Experimental study of the memsys vacuum-multi-effect-membrane-distillation (V-MEMD) module [J]. Desalination, 2013, 323: 150-160.
[34] CHAMANI H, MATSUURA T, RANA D, et al. Modeling of pore wetting in vacuum membrane distillation [J]. Journal of Membrane Science, 2019, 572: 332-342.
[35] AL-ASHEH S, BANAT F, QTAISHAT M, et al. Concentration of sucrose solutions via vacuum membrane distillation [J]. Desalination, 2006, 195(1-3): 60-68.
[36] LEE J-G, KIM Y-D, SHIM S-M, et al. Numerical study of a hybrid multi-stage vacuum membrane distillation and pressure-retarded osmosis system [J]. Desalination, 2015, 363: 82-91.
[37] WONG P W, GUO J, KHANZADA N K, et al. In-situ 3D fouling visualization of membrane distillation treating industrial textile wastewater by optical coherence tomography imaging [J]. Water Research, 2021, 205: 117668.
[38] SWAMINATHAN J, LIENHARD J H. Design and operation of membrane distillation with feed recirculation for high recovery brine concentration [J]. Desalination, 2018, 445: 51-62.
[39] SU M, TEOH M M, WANG K Y, et al. Effect of inner-layer thermal conductivity on flux enhancement of dual-layer hollow fiber membranes in direct contact membrane distillation [J]. Journal of Membrane Science, 2010, 364(1-2): 278-289.
[40] MARTINETTI C R, CHILDRESS A E, CATH T Y. High recovery of concentrated RO brines using forward osmosis and membrane distillation [J]. Journal of Membrane Science, 2009, 331(1): 31-39.
[41] HE F, GILRON J, SIRKAR K K. High water recovery in direct contact membrane distillation using a series of cascades [J]. Desalination, 2013, 323: 48-54.
[42] EL-BOURAWI M S, DING Z, MA R, et al. A framework for better understanding membrane distillation separation process [J]. Journal of Membrane Science, 2006, 285(1-2): 4-29.
[43] ZHANG P, PABSTMANN A, GRAY S, et al. Silica fouling during direct contact membrane distillation of coal seam gas brine with high sodium bicarbonate and low hardness [J]. Desalination, 2018, 444: 107-117.
[44] YIN Y, JEONG N, MINJAREZ R, et al. Contrasting Behaviors between Gypsum and Silica Scaling in the Presence of Antiscalants during Membrane Distillation [J]. Environmental Science & Technology, 2021, 55(8): 5335-5346.
[45] YAO M, TIJING L D, NAIDU G, et al. A review of membrane wettability for the treatment of saline water deploying membrane distillation [J]. Desalination, 2020, 479: 114312.
[46] GOH S, ZHANG J, LIU Y, et al. Fouling and wetting in membrane distillation (MD) and MD-bioreactor (MDBR) for wastewater reclamation [J]. Desalination, 2013, 323: 39-47.
[47] SONG L, MA Z, LIAO X, et al. Pilot plant studies of novel membranes and devices for direct contact membrane distillation-based desalination [J]. Journal of Membrane Science, 2008, 323(2): 257-270.
[48] KARAKULSKI K, GRYTA M, MORAWSKI A. Membrane processes used for potable water quality improvement [J]. Desalination, 2002, 145(1): 315-319.
[49] ZARASVAND ASADI R, SUJA F, TARKIAN F, et al. Solar desalination of Gas Refinery wastewater using membrane distillation process [J]. Desalination, 2012, 291: 56-64.
[50] HANEMAAIJER J H. Memstill® — low cost membrane distillation technology for seawater desalination [J]. Desalination, 2004, 168: 355.
[51] KEZIA K, LEE J, WEEKS M, et al. Direct contact membrane distillation for the concentration of saline dairy effluent [J]. Water Research, 2015, 81: 167-177.
[52] JENSEN M B, CHRISTENSEN K V, ANDRéSEN R, et al. A model of direct contact membrane distillation for black currant juice [J]. Journal of Food Engineering, 2011, 107(3): 405-414.
[53] BHATTACHARYA M, DUTTA S K, SIKDER J, et al. Computational and experimental study of chromium (VI) removal in direct contact membrane distillation [J]. Journal of Membrane Science, 2014, 450: 447-456.
[54] QU D, SUN D, WANG H, et al. Experimental study of ammonia removal from water by modified direct contact membrane distillation [J]. Desalination, 2013, 326: 135-140.
[55] PAL P, MANNA A K. Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes [J]. Water Research, 2010, 44(19): 5750-5760.
[56] XIAO Z, ZHENG R, LIU Y, et al. Slippery for scaling resistance in membrane distillation: A novel porous micropillared superhydrophobic surface [J]. Water Research, 2019, 155: 152-161.
[57] LIU J, WANG Y, LI Z, et al. Unraveling relative roles of bulk precipitation and surface growth in developing a scaling layer in membrane distillation [J]. Desalination, 2022, 544: 116133.
[58] REZAEI M, WARSINGER D M, LIENHARD V J, et al. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention [J]. Water Research, 2018, 139: 329-352.
[59] HORSEMAN T, YIN Y, CHRISTIE K S S, et al. Wetting, Scaling, and Fouling in Membrane Distillation: State-of-the-Art Insights on Fundamental Mechanisms and Mitigation Strategies [J]. ACS ES&T Engineering, 2020, 1(1): 117-140.
[60] XIAO Z, LI Z, GUO H, et al. Scaling mitigation in membrane distillation: From superhydrophobic to slippery [J]. Desalination, 2019, 466: 36-43.
[61] SU C, HORSEMAN T, CAO H, et al. Robust Superhydrophobic Membrane for Membrane Distillation with Excellent Scaling Resistance [J]. Environmental Science & Technology, 2019, 53: 11801-11809.
[62] SOUKANE S, ELCIK H, ALPATOVA A, et al. Scaling sets the limits of large scale membrane distillation modules for the treatment of high salinity feeds [J]. Journal of Cleaner Production, 2021, 287: 125-555.
[63] NGHIEM L D, CATH T. A scaling mitigation approach during direct contact membrane distillation [J]. Separation and Purification Technology, 2011, 80(2): 315-322.
[64] LIU J, WANG Y, LI Z, et al. Flux decline induced by scaling of calcium sulfate in membrane distillation: Theoretical analysis on the role of different mechanisms [J]. Journal of Membrane Science, 2021, 628: 119257.
[65] MARTı́NEZ-Dı́EZ L, VáZQUEZ-GONZáLEZ M I. Temperature and concentration polarization in membrane distillation of aqueous salt solutions [J]. Journal of Membrane Science, 1999, 156(2): 265-273.
[66] GILRON J, LADIZANSKY Y, KORIN E. Silica Fouling in Direct Contact Membrane Distillation [J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10521-10529.
[67] TUN C M, FANE A G, MATHEICKAL J T, et al. Membrane distillation crystallization of concentrated salts—flux and crystal formation [J]. Journal of Membrane Science, 2005, 257(1-2): 144-155.
[68] WARSINGER D M, TOW E W, SWAMINATHAN J, et al. Theoretical framework for predicting inorganic fouling in membrane distillation and experimental validation with calcium sulfate [J]. Journal of Membrane Science, 2017, 528: 381-390.
[69] FEIN J B, WALTHER J V. Calcite solubility in supercritical CO2H2O fluids [J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1665-1673.
[70] ULLAH R, KHRAISHEH M, ESTEVES R J, et al. Energy efficiency of direct contact membrane distillation [J]. Desalination, 2018, 433: 56-67.
[71] LIN S, YIP N Y, ELIMELECH M. Direct contact membrane distillation with heat recovery: Thermodynamic insights from module scale modeling [J]. Journal of Membrane Science, 2014, 453: 498-515.
[72] AZIMI G, PAPANGELAKIS V G, DUTRIZAC J E. Modelling of calcium sulphate solubility in concentrated multi-component sulphate solutions [J]. Fluid Phase Equilibria, 2007, 260: 300-315.
[73] HE S, ODDO J E, TOMSON M B. The Nucleation Kinetics of Calcium Sulfate Dihydrate in NaCl Solutions up to 6 m and 90°C [J]. Journal of Colloid and Interface Science, 1994, 162(2): 297-303.
[74] YIN Y, WANG W, KOTA A K, et al. Elucidating mechanisms of silica scaling in membrane distillation: effects of membrane surface wettability [J]. Environmental Science: Water Research & Technology, 2019, 5(11): 2004-2014.
[75] LEE S, KIM Y, HONG S. Treatment of industrial wastewater produced by desulfurization process in a coal-fired power plant via FO-MD hybrid process [J]. Chemosphere, 2018, 210: 44-51.
[76] MCGAUGHEY A L, GUSTAFSON R D, CHILDRESS A E. Effect of long-term operation on membrane surface characteristics and performance in membrane distillation [J]. Journal of Membrane Science, 2017, 543: 143-150.
[77] RAMEZANIANPOUR M, SIVAKUMAR M. An analytical flux decline model for membrane distillation [J]. Desalination, 2014, 345: 1-12.
[78] GOH S, ZHANG Q, ZHANG J, et al. Impact of a biofouling layer on the vapor pressure driving force and performance of a membrane distillation process [J]. Journal of Membrane Science, 2013, 438: 140-152.
[79] FISHER L R, ISRAELACHVILI J N. Experimental studies on the applicability of the Kelvin equation to highly curved concave menisci [J]. Journal of Colloid and Interface Science, 1981, 80(2): 528-541.
[80] CHEW J W, KRANTZ W B, FANE A G. Effect of a macromolecular- or bio-fouling layer on membrane distillation [J]. Journal of Membrane Science, 2014, 456: 66-76.
[81] TAN Y Z, CHEW J W, KRANTZ W B. Effect of humic-acid fouling on membrane distillation [J]. Journal of Membrane Science, 2016, 504: 263-273.
[82] LIU J, LI Z, WANG Y, et al. Analyzing scaling behavior of calcium sulfate in membrane distillation via optical coherence tomography [J]. Water Research, 2021, 191: 116809.
[83] MENG S, YE Y, MANSOURI J, et al. Crystallization behavior of salts during membrane distillation with hydrophobic and superhydrophobic capillary membranes [J]. Journal of Membrane Science, 2015, 473: 165-176.
[84] GRYTA M. Calcium sulphate scaling in membrane distillation process [J]. Chemical Papers, 2009, 63(2): 146-151.
[85] FARID M U, KHANZADA N K, AN A K. Understanding fouling dynamics on functionalized CNT-based membranes: Mechanisms and reversibility [J]. Desalination, 2019, 456: 74-84.
[86] MARSELINA Y, LE-CLECH P, STUETZ R, et al. Detailed characterisation of fouling deposition and removal on a hollow fibre membrane by direct observation technique [J]. Desalination, 2008, 231(1): 3-11.
[87] MARSELINA Y, LIFIA, LE-CLECH P, et al. Characterisation of membrane fouling deposition and removal by direct observation technique [J]. Journal of Membrane Science, 2009, 341(1-2): 163-171.
[88] WANG Y-N, WEI J, SHE Q, et al. Microscopic Characterization of FO/PRO Membranes – A Comparative Study of CLSM, TEM and SEM [J]. Environmental Science & Technology, 2012, 46(18): 9995-10003.
[89] LI W, LIU X, WANG Y N, et al. Analyzing the Evolution of Membrane Fouling via a Novel Method Based on 3D Optical Coherence Tomography Imaging [J]. Environmental Science & Technology, 2016, 50(13): 6930-6939.
[90] PODOLEANU A G. Optical coherence tomography [J]. Journal of Microscopy, 2012, 247(3): 209-219.
[91] FERCHER A F. Optical coherence tomography - development, principles, applications [J]. Zeitschrift für Medizinische Physik, 2010, 20(4): 251-276.
[92] WOJTKOWSKI M. High-speed optical coherence tomography: basics and applications [J]. Applied Optics, 2010, 49(16): D30-61.
[93] FORTUNATO L, JANG Y, LEE J G, et al. Fouling development in direct contact membrane distillation: Non-invasive monitoring and destructive analysis [J]. Water Research, 2018, 132: 34-41.
[94] BAUER A, WAGNER M, SARAVIA F, et al. In-situ monitoring and quantification of fouling development in membrane distillation by means of optical coherence tomography [J]. Journal of Membrane Science, 2019, 577: 145-152.
[95] WANG Z, CHEN Y, SUN X, et al. Mechanism of pore wetting in membrane distillation with alcohol vs. surfactant [J]. Journal of Membrane Science, 2018, 559: 183-195.
[96] CHANG H, LIU B, ZHANG Z, et al. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions [J]. Environmental Science & Technology, 2021, 55(3): 1395-1418.
[97] LIN S, NEJATI S, BOO C, et al. Omniphobic Membrane for Robust Membrane Distillation [J]. Environmental Science & Technology Letters, 2014, 1(11): 443-447.
[98] FRANKEN A C M, NOLTEN J A M, MULDER M H V, et al. Wetting criteria for the applicability of membrane distillation [J]. Journal of Membrane Science, 1987, 33(3): 315-328.
[99] REZAEI M, WARSINGER D M, LIENHARD V J H, et al. Wetting prevention in membrane distillation through superhydrophobicity and recharging an air layer on the membrane surface [J]. Journal of Membrane Science, 2017, 530: 42-52.
[100]SHAO S, SHI D, HU J, et al. Unraveling the Kinetics and Mechanism of Surfactant-Induced Wetting in Membrane Distillation: An In Situ Observation with Optical Coherence Tomography [J]. Environmental Science & Technology, 2021, 56(1): 556-563.
[101]GOH P S, LAU W J, OTHMAN M H D, et al. Membrane fouling in desalination and its mitigation strategies [J]. Desalination, 2018, 425: 130-155.
[102]CHRISTIE K S S, YIN Y, LIN S, et al. Distinct Behaviors between Gypsum and Silica Scaling in Membrane Distillation [J]. Environmental Science & Technology, 2020, 54(1): 568-576.
[103]CHRISTENSON H K. Two-step crystal nucleation via capillary condensation [J]. CrystEngComm, 2013, 15(11): 2030-2039.
[104]WU W, NANCOLLAS G H. Interfacial Free Energies and Crystallization in Aqueous Media [J]. Journal of Colloid and Interface Science, 1996, 182(2): 365-373.
[105]MBOGORO M M, PERUFFO M, ADOBES-VIDAL M, et al. Quantitative 3D Visualization of the Growth of Individual Gypsum Microcrystals: Effect of Ca2+:SO42– Ratio on Kinetics and Crystal Morphology [J]. The Journal of Physical Chemistry C, 2017, 121(23): 12726-12734.
[106]GRYTA M. Alkaline scaling in the membrane distillation process [J]. Desalination, 2008, 228(1-3): 128-134.
[107]LI W, CHEN K K, WANG Y-N, et al. A conceptual design of spacers with hairy structures for membrane processes [J]. Journal of Membrane Science, 2016, 510: 314-325.
[108]HOANG T A, ANG H M, ROHL A L. Effects of temperature on the scaling of calcium sulphate in pipes [J]. Powder Technology, 2007, 179(1-2): 31-37.
[109]ANTONY A, LOW J H, GRAY S, et al. Scale formation and control in high pressure membrane water treatment systems: A review [J]. Journal of Membrane Science, 2011, 383(1-2): 1-16.
[110]BARBIER E, COSTE M, GENIN A, et al. Simultaneous determination of nucleation and crystal growth kinetics of gypsum [J]. Chemical Engineering Science, 2009, 64(2): 363-369.
[111]KOBARI M, KUBOTA N, HIRASAWA I. Simulation of metastable zone width and induction time for a seeded aqueous solution of potassium sulfate [J]. Journal of Crystal Growth, 2010, 312(19): 2734-2739.
[112]CHARLES N T, JOHNSON D W. The occurrence and characterization of fouling during membrane evaporative cooling [J]. Journal of Membrane Science, 2008, 319(1-2): 44-53.
[113]LAPIDOT T, SEDRANSK CAMPBELL K L, HENG J Y Y. Model for Interpreting Surface Crystallization Using Quartz Crystal Microbalance: Theory and Experiments [J]. Analytical Chemistry, 2016, 88(9): 4886-4893.
[114]LIN N H, SHIH W Y, LYSTER E, et al. Crystallization of calcium sulfate on polymeric surfaces [J]. Journal of Colloid and Interface Science, 2011, 356(2): 790-797.
[115]TANG C Y, CHONG T H, FANE A G. Colloidal interactions and fouling of NF and RO membranes: a review [J]. Advances in colloid and interface science, 2011, 164(1-2): 126-143.
[116]CHRISTIE K S S, HORSEMAN T, WANG R, et al. Gypsum scaling in membrane distillation: Impacts of temperature and vapor flux [J]. Desalination, 2022, 525.
[117]MESSNAOUI B, BOUNAHMIDI T. On the modeling of calcium sulfate solubility in aqueous solutions [J]. Fluid Phase Equilibria, 2006, 244(2): 117-127.
[118]ABDEL-AAL E A, RASHAD M M, EL-SHALL H. Crystallization of calcium sulfate dihydrate at different supersaturation ratios and different free sulfate concentrations [J]. Crystal Research and Technology, 2004, 39(4): 313-321.
[119]XIE M, GRAY S R. Gypsum scaling in forward osmosis: Role of membrane surface chemistry [J]. Journal of Membrane Science, 2016, 513: 250-259.
[120]MOULIN A M, O'SHEA S J, BADLEY R A, et al. Measuring Surface-Induced Conformational Changes in Proteins [J]. Langmuir, 1999, 15(26): 8776-8779.
[121]STONEY G G, PARSONS C A. The tension of metallic films deposited by electrolysis [J]. 1909, 82(553): 172-175.
[122]SCHERER G W. Crystallization in pores [J]. Cement and Concrete Research, 1999, 29(8): 1347-1358.
[123]STEIGER M. Crystal growth in porous materials—I: The crystallization pressure of large crystals [J]. Journal of Crystal Growth, 2005, 282(3-4): 455-469.
[124]HUANG X, LI C, ZUO K, et al. Predominant Effect of Material Surface Hydrophobicity on Gypsum Scale Formation [J]. Environmental Science & Technology, 2020, 54(23): 15395-15404.
[125]HE F, SIRKAR K K, GILRON J. Studies on scaling of membranes in desalination by direct contact membrane distillation: CaCO3 and mixed CaCO3/CaSO4 systems [J]. Chemical Engineering Science, 2009, 64(8): 1844-1859.
[126]SRISURICHAN S, JIRARATANANON R, FANE A. Mass transfer mechanisms and transport resistances in direct contact membrane distillation process [J]. Journal of Membrane Science, 2006, 277(1-2): 186-194.
[127]KARANIKOLA V, BOO C, ROLF J, et al. Engineered Slippery Surface to Mitigate Gypsum Scaling in Membrane Distillation for Treatment of Hypersaline Industrial Wastewaters [J]. Environmental Science & Technology, 2018, 52(24): 14362-14370.
[128]PENG Y, GE J, LI Z, et al. Effects of anti-scaling and cleaning chemicals on membrane scale in direct contact membrane distillation process for RO brine concentrate [J]. Separation and Purification Technology, 2015, 154: 22-26.
[129]LI Z, DEMOPOULOS G P. Effect of NaCl, MgCl2, FeCl2, FeCl3, and AlCl3 on Solubility of CaSO4 Phases in Aqueous HCl or HCl + CaCl2 Solutions at 298 to 353 K [J]. Journal of Chemical & Engineering Data, 2005, 51(2): 569-576.
[130]SCHOCK G, MIQUEL A. Mass transfer and pressure loss in spiral wound modules [J]. Desalination, 1987, 64: 339-352.
[131]GUO Q, HUANG Y, XU M, et al. PTFE porous membrane technology: A comprehensive review [J]. Journal of Membrane Science, 2022, 664: 121115.
[132]LYNN A S, MOORE B S, GRIFFIN C A, et al. Evaluating the performance of a configurable finite element model as a tool in composite catheter design [J]. Procedia Manufacturing, 2020, 51: 981-988.
[133]KRANTZ W B. Systematic Method for Scaling Analysis [M]. Scaling Analysis in Modeling Transport and Reaction Processes. 2007: 7-18.
修改评论