中文版 | English
题名

膜蒸馏中结垢诱发润湿现象的表征与分析

其他题名
CHARACTERIZATION AND ANALYSIS OF SCALING-INDUCED WETTING IN MEMBRANE DISTILLATION
姓名
姓名拼音
WANG Yewei
学号
12032349
学位类型
硕士
学位专业
080101 一般力学与力学基础
学科门类/专业学位类别
08 工学
导师
李炜怡
导师单位
环境科学与工程学院
论文答辩日期
2023-05-17
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

膜蒸馏技术(membrane distillation,MD)在处理高盐废水的应用中极 具潜力。尽管膜蒸馏能够实现较高的纯水回收率,但微溶盐的结垢现象会 导致蒸汽通量的下降,甚至造成疏水膜孔的润湿。开发有效的策略来缓解 结垢引起的润湿亟需应用新型技术对膜蒸馏中的界面现象进行原位表征分 析 。 因 此 , 本 研 究 旨 在 探 索 基 于 光 学 相 干 断 层 成 像 ( optical coherence tomography,OCT)技术的表征方法,以原位非侵入的可视化手段深入解 析膜蒸馏过程。 基于 OCT 的表征被用于同时监测进料液和进料-分离膜界面的结晶现象。 表征结果揭示了晶体的表面生长在结垢的初始阶段中发挥着关键作用,而 晶体的主体沉积则主导着结垢层的长期演化。基于 OCT 的表征还被用来追 踪含有晶体的分离膜中应力再分布所引起的分离膜变形;根据 Stoney 方程, 初始沉积会在含晶层中产生拉伸应力而造成分离膜向进料侧方向的弯曲, 随后发生的分离膜弯曲方向的反转表明了在晶体达到高表面覆盖率的情况 下会诱发晶体-分离膜之间的挤压作用。为了建立晶体-分离膜相互作用与膜 蒸馏操作条件之间的关联,本研究对结晶和蒸发的耦合现象进行了模型分 析,以数值模拟的方式揭示膜蒸馏的浓缩速率如何改变进料液中微溶盐所 能达到的最大过饱和度,从而在理论上评估受限生长中晶体对分离膜结构 所施加的结晶压力。实验表征和理论分析都表明,从考虑如何减轻膜蒸馏 中结垢造成的润湿或分离膜结构损伤的角度出发,调控晶体生长(与调控 微溶盐的成核相比)会是更有效的方法。本研究对提升膜蒸馏工艺的抗结 垢性能具有重要的指导意义。 

其他摘要

Membrane distillation (MD) is emerging as a potential technique for treating hypersaline wastewater. Despite the advantage of achieving a relatively high water recovery, scaling of sparingly soluble salts can result in a reduction in the vapor flux and even wetting of the hydrophobic pores. The development of effective strategies for mitigating the scaling-induced wetting entails novel techniques to in-situ characterize interfacial phenomena. Therefore, this study was aimed at exploring characterization methods based on optical coherence tomography (OCT), which enables noninvasive visualization in MD processes. The OCT-based characterization was exploited to simultaneously monitor the crystallization in the feed and at the feed-membrane interface; it was revealed that the surface growth could play a key role in initiating the scaling, while the deposition of crystals would dominate the long-term scaling. The OCT-based characterization was also employed to track the deformation resulting from the stress redistribution in the crystal-containing membrane; in terms of the Stoney’s equation, it was revealed that the initial deposition could create tensile stress to bend the membrane toward the feed, while the bending would be reversed to indicate compressive interactions in the regime of achieving a high surface coverage. In order to correlate the crystal-membrane interactions with the operating conditions, the coupled phenomena of crystallization and evaporation were modeled to ascertain how the concentration rate could vary the maximum supersaturation achievable in the feed, which would determine the crystallization pressure of the confined crystals. Both the experimental characterization and theoretical analysis suggested that it should be more effective to regul ate the crystalline growth (in comparison with the nucleation) in the context of alleviating the scaling-induced wetting or structural damage. This study would be of great value for the design of MD processes with improved scaling resistance.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] ECKARDT N A, COMINELLI E, GALBIATI M, et al. The future of science: food and water for life [J]. Plant Cell, 2009, 21(2): 368-372.
[2] HOEKSTRA A Y. Water scarcity challenges to business [J]. Nature Climate Change, 2014, 4(5): 318-320.
[3] SCHLOSSER C A, STRZEPEK K, GAO X, et al. The future of global water stress: An integrated assessment [J]. Earth's Future, 2014, 2(8): 341-361.
[4] ELIMELECH M, PHILLIP W A. The Future of Seawater Desalination: Energy, Technology, and the Environment [J]. Science, 2011, 333(6043): 712-717.
[5] ASHOOR B B, MANSOUR S, GIWA A, et al. Principles and applications of direct contact membrane distillation (DCMD): A comprehensive review [J]. Desalination, 2016, 398: 222-246.
[6] ALKHUDHIRI A, DARWISH N, HILAL N. Membrane distillation: A comprehensive review [J]. Desalination, 2012, 287: 2-18.
[7] DRIOLI E, ALI A, MACEDONIO F. Membrane distillation: Recent developments and perspectives [J]. Desalination, 2015, 356: 56-84.
[8] LAWSON K W, LLOYD D R. Membrane distillation [J]. Journal of Membrane Science, 1997, 124(1): 1-25.
[9] SARTI G C, GOSTOLI C. Use of Hydrophobic Membranes in Thermal Separation of Liquid Mixtures: Theory and Experiments [M]. Membranes and Membrane Processes. Boston, MA; Springer US. 1986: 349-360.
[10] ALKLAIBI A M, LIOR N. Membrane-distillation desalination: Status and potential [J]. Desalination, 2005, 171(2): 111-131.
[11] ESSALHI M, KHAYET M. Self-sustained webs of polyvinylidene fluoride electrospun nano-fibers: Effects of polymer concentration and desalination by direct contact membrane distillation [J]. Journal of Membrane Science, 2014, 454: 133-143.
[12] KARODE S. Coupling Reverse Osmosis and Osmotic Dehydration: Further Investigations [J]. Separation Science and Technology, 2001, 36(14): 3091-3103.
[13] CHEN Y, LU K J, GAI W, et al. Nanofiltration-Inspired Janus Membranes with Simultaneous Wetting and Fouling Resistance for Membrane Distillation [J]. Environmental Science & Technology, 2021, 55(11): 7654-7664.
[14] DESHMUKH A, BOO C, KARANIKOLA V, et al. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges [J]. Energy & Environmental Science, 2018, 11(5): 1177-1196.
[15] WANG P, CHUNG T-S. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring [J]. Journal of Membrane Science, 2015, 474: 39-56.
[16] SMOLDERS K, FRANKEN A C M. Terminology for Membrane Distillation [J]. Desalination, 1989, 72(3): 249-262.
[17] SARTI G C, GOSTOLI C, MATULLI S. Low energy cost desalination processes using hydrophobic membranes [J]. Desalination, 1985, 56: 277-286.
[18] QTAISHAT M R, BANAT F. Desalination by solar powered membrane distillation systems [J]. Desalination, 2013, 308: 186-197.
[19] CAMACHO L, DUMéE L, ZHANG J, et al. Advances in Membrane Distillation for Water Desalination and Purification Applications [J]. Water, 2013, 5(1): 94-196.
[20] LAWSON K W, LLOYD D R. Membrane distillation. II. Direct contact MD [J]. Journal of Membrane Science, 1996, 120(1): 123-133.
[21] ZHANG J, GRAY S, LI J-D. Predicting the influence of operating conditions on DCMD flux and thermal efficiency for incompressible and compressible membrane systems [J]. Desalination, 2013, 323: 142-149.
[22] ZHANG J, LI J-D, GRAY S. Effect of applied pressure on performance of PTFE membrane in DCMD [J]. Journal of Membrane Science, 2011, 369(1-2): 514-525.
[23] HE F, GILRON J, LEE H, et al. Potential for scaling by sparingly soluble salts in crossflow DCMD [J]. Journal of Membrane Science, 2008, 311(1-2): 68-80.
[24] HWANG H J, HE K, GRAY S, et al. Direct contact membrane distillation (DCMD): Experimental study on the commercial PTFE membrane and modeling [J]. Journal of Membrane Science, 2011, 371(1-2): 90-98.
[25] GARCı́A-PAYO M C, IZQUIERDO-GIL M A, FERNáNDEZ-PINEDA C. Air gap membrane distillation of aqueous alcohol solutions [J]. Journal of Membrane Science, 2000, 169(1): 61-80.
[26] AL-JUBOORI R A, NAJI O, BOWTELL L, et al. Power effect of ultrasonically vibrated spacers in air gap membrane distillation: Theoretical and experimental investigations [J]. Separation and Purification Technology, 2021, 262: 118319.
[27] ALKHUDHIRI A, DARWISH N, HILAL N. Produced water treatment: Application of Air Gap Membrane Distillation [J]. Desalination, 2013, 309: 46-51.
[28] ALKLAIBI A, LIOR N. Transport analysis of air-gap membrane distillation [J]. Journal of Membrane Science, 2005, 255(1-2): 239-253.
[29] COJOCARU C, KHAYET M. Sweeping gas membrane distillation of sucrose aqueous solutions: Response surface modeling and optimization [J]. Separation and Purification Technology, 2011, 81(1): 12-24.
[30] RIVIER C. Separation of binary mixtures by thermostatic sweeping gas membrane distillation I. Theory and simulations [J]. Journal of Membrane Science, 2002, 201(1-2): 1-16.
[31] TIJING L D, WOO Y C, CHOI J-S, et al. Fouling and its control in membrane distillation—A review [J]. Journal of Membrane Science, 2015, 475: 215-244.
[32] WARSINGER D M, SWAMINATHAN J, GUILLEN-BURRIEZA E, et al. Scaling and fouling in membrane distillation for desalination applications: A review [J]. Desalination, 2015, 356: 294-313.
[33] ZHAO K, HEINZL W, WENZEL M, et al. Experimental study of the memsys vacuum-multi-effect-membrane-distillation (V-MEMD) module [J]. Desalination, 2013, 323: 150-160.
[34] CHAMANI H, MATSUURA T, RANA D, et al. Modeling of pore wetting in vacuum membrane distillation [J]. Journal of Membrane Science, 2019, 572: 332-342.
[35] AL-ASHEH S, BANAT F, QTAISHAT M, et al. Concentration of sucrose solutions via vacuum membrane distillation [J]. Desalination, 2006, 195(1-3): 60-68.
[36] LEE J-G, KIM Y-D, SHIM S-M, et al. Numerical study of a hybrid multi-stage vacuum membrane distillation and pressure-retarded osmosis system [J]. Desalination, 2015, 363: 82-91.
[37] WONG P W, GUO J, KHANZADA N K, et al. In-situ 3D fouling visualization of membrane distillation treating industrial textile wastewater by optical coherence tomography imaging [J]. Water Research, 2021, 205: 117668.
[38] SWAMINATHAN J, LIENHARD J H. Design and operation of membrane distillation with feed recirculation for high recovery brine concentration [J]. Desalination, 2018, 445: 51-62.
[39] SU M, TEOH M M, WANG K Y, et al. Effect of inner-layer thermal conductivity on flux enhancement of dual-layer hollow fiber membranes in direct contact membrane distillation [J]. Journal of Membrane Science, 2010, 364(1-2): 278-289.
[40] MARTINETTI C R, CHILDRESS A E, CATH T Y. High recovery of concentrated RO brines using forward osmosis and membrane distillation [J]. Journal of Membrane Science, 2009, 331(1): 31-39.
[41] HE F, GILRON J, SIRKAR K K. High water recovery in direct contact membrane distillation using a series of cascades [J]. Desalination, 2013, 323: 48-54.
[42] EL-BOURAWI M S, DING Z, MA R, et al. A framework for better understanding membrane distillation separation process [J]. Journal of Membrane Science, 2006, 285(1-2): 4-29.
[43] ZHANG P, PABSTMANN A, GRAY S, et al. Silica fouling during direct contact membrane distillation of coal seam gas brine with high sodium bicarbonate and low hardness [J]. Desalination, 2018, 444: 107-117.
[44] YIN Y, JEONG N, MINJAREZ R, et al. Contrasting Behaviors between Gypsum and Silica Scaling in the Presence of Antiscalants during Membrane Distillation [J]. Environmental Science & Technology, 2021, 55(8): 5335-5346.
[45] YAO M, TIJING L D, NAIDU G, et al. A review of membrane wettability for the treatment of saline water deploying membrane distillation [J]. Desalination, 2020, 479: 114312.
[46] GOH S, ZHANG J, LIU Y, et al. Fouling and wetting in membrane distillation (MD) and MD-bioreactor (MDBR) for wastewater reclamation [J]. Desalination, 2013, 323: 39-47.
[47] SONG L, MA Z, LIAO X, et al. Pilot plant studies of novel membranes and devices for direct contact membrane distillation-based desalination [J]. Journal of Membrane Science, 2008, 323(2): 257-270.
[48] KARAKULSKI K, GRYTA M, MORAWSKI A. Membrane processes used for potable water quality improvement [J]. Desalination, 2002, 145(1): 315-319.
[49] ZARASVAND ASADI R, SUJA F, TARKIAN F, et al. Solar desalination of Gas Refinery wastewater using membrane distillation process [J]. Desalination, 2012, 291: 56-64.
[50] HANEMAAIJER J H. Memstill® — low cost membrane distillation technology for seawater desalination [J]. Desalination, 2004, 168: 355.
[51] KEZIA K, LEE J, WEEKS M, et al. Direct contact membrane distillation for the concentration of saline dairy effluent [J]. Water Research, 2015, 81: 167-177.
[52] JENSEN M B, CHRISTENSEN K V, ANDRéSEN R, et al. A model of direct contact membrane distillation for black currant juice [J]. Journal of Food Engineering, 2011, 107(3): 405-414.
[53] BHATTACHARYA M, DUTTA S K, SIKDER J, et al. Computational and experimental study of chromium (VI) removal in direct contact membrane distillation [J]. Journal of Membrane Science, 2014, 450: 447-456.
[54] QU D, SUN D, WANG H, et al. Experimental study of ammonia removal from water by modified direct contact membrane distillation [J]. Desalination, 2013, 326: 135-140.
[55] PAL P, MANNA A K. Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes [J]. Water Research, 2010, 44(19): 5750-5760.
[56] XIAO Z, ZHENG R, LIU Y, et al. Slippery for scaling resistance in membrane distillation: A novel porous micropillared superhydrophobic surface [J]. Water Research, 2019, 155: 152-161.
[57] LIU J, WANG Y, LI Z, et al. Unraveling relative roles of bulk precipitation and surface growth in developing a scaling layer in membrane distillation [J]. Desalination, 2022, 544: 116133.
[58] REZAEI M, WARSINGER D M, LIENHARD V J, et al. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention [J]. Water Research, 2018, 139: 329-352.
[59] HORSEMAN T, YIN Y, CHRISTIE K S S, et al. Wetting, Scaling, and Fouling in Membrane Distillation: State-of-the-Art Insights on Fundamental Mechanisms and Mitigation Strategies [J]. ACS ES&T Engineering, 2020, 1(1): 117-140.
[60] XIAO Z, LI Z, GUO H, et al. Scaling mitigation in membrane distillation: From superhydrophobic to slippery [J]. Desalination, 2019, 466: 36-43.
[61] SU C, HORSEMAN T, CAO H, et al. Robust Superhydrophobic Membrane for Membrane Distillation with Excellent Scaling Resistance [J]. Environmental Science & Technology, 2019, 53: 11801-11809.
[62] SOUKANE S, ELCIK H, ALPATOVA A, et al. Scaling sets the limits of large scale membrane distillation modules for the treatment of high salinity feeds [J]. Journal of Cleaner Production, 2021, 287: 125-555.
[63] NGHIEM L D, CATH T. A scaling mitigation approach during direct contact membrane distillation [J]. Separation and Purification Technology, 2011, 80(2): 315-322.
[64] LIU J, WANG Y, LI Z, et al. Flux decline induced by scaling of calcium sulfate in membrane distillation: Theoretical analysis on the role of different mechanisms [J]. Journal of Membrane Science, 2021, 628: 119257.
[65] MARTı́NEZ-Dı́EZ L, VáZQUEZ-GONZáLEZ M I. Temperature and concentration polarization in membrane distillation of aqueous salt solutions [J]. Journal of Membrane Science, 1999, 156(2): 265-273.
[66] GILRON J, LADIZANSKY Y, KORIN E. Silica Fouling in Direct Contact Membrane Distillation [J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10521-10529.
[67] TUN C M, FANE A G, MATHEICKAL J T, et al. Membrane distillation crystallization of concentrated salts—flux and crystal formation [J]. Journal of Membrane Science, 2005, 257(1-2): 144-155.
[68] WARSINGER D M, TOW E W, SWAMINATHAN J, et al. Theoretical framework for predicting inorganic fouling in membrane distillation and experimental validation with calcium sulfate [J]. Journal of Membrane Science, 2017, 528: 381-390.
[69] FEIN J B, WALTHER J V. Calcite solubility in supercritical CO2H2O fluids [J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1665-1673.
[70] ULLAH R, KHRAISHEH M, ESTEVES R J, et al. Energy efficiency of direct contact membrane distillation [J]. Desalination, 2018, 433: 56-67.
[71] LIN S, YIP N Y, ELIMELECH M. Direct contact membrane distillation with heat recovery: Thermodynamic insights from module scale modeling [J]. Journal of Membrane Science, 2014, 453: 498-515.
[72] AZIMI G, PAPANGELAKIS V G, DUTRIZAC J E. Modelling of calcium sulphate solubility in concentrated multi-component sulphate solutions [J]. Fluid Phase Equilibria, 2007, 260: 300-315.
[73] HE S, ODDO J E, TOMSON M B. The Nucleation Kinetics of Calcium Sulfate Dihydrate in NaCl Solutions up to 6 m and 90°C [J]. Journal of Colloid and Interface Science, 1994, 162(2): 297-303.
[74] YIN Y, WANG W, KOTA A K, et al. Elucidating mechanisms of silica scaling in membrane distillation: effects of membrane surface wettability [J]. Environmental Science: Water Research & Technology, 2019, 5(11): 2004-2014.
[75] LEE S, KIM Y, HONG S. Treatment of industrial wastewater produced by desulfurization process in a coal-fired power plant via FO-MD hybrid process [J]. Chemosphere, 2018, 210: 44-51.
[76] MCGAUGHEY A L, GUSTAFSON R D, CHILDRESS A E. Effect of long-term operation on membrane surface characteristics and performance in membrane distillation [J]. Journal of Membrane Science, 2017, 543: 143-150.
[77] RAMEZANIANPOUR M, SIVAKUMAR M. An analytical flux decline model for membrane distillation [J]. Desalination, 2014, 345: 1-12.
[78] GOH S, ZHANG Q, ZHANG J, et al. Impact of a biofouling layer on the vapor pressure driving force and performance of a membrane distillation process [J]. Journal of Membrane Science, 2013, 438: 140-152.
[79] FISHER L R, ISRAELACHVILI J N. Experimental studies on the applicability of the Kelvin equation to highly curved concave menisci [J]. Journal of Colloid and Interface Science, 1981, 80(2): 528-541.
[80] CHEW J W, KRANTZ W B, FANE A G. Effect of a macromolecular- or bio-fouling layer on membrane distillation [J]. Journal of Membrane Science, 2014, 456: 66-76.
[81] TAN Y Z, CHEW J W, KRANTZ W B. Effect of humic-acid fouling on membrane distillation [J]. Journal of Membrane Science, 2016, 504: 263-273.
[82] LIU J, LI Z, WANG Y, et al. Analyzing scaling behavior of calcium sulfate in membrane distillation via optical coherence tomography [J]. Water Research, 2021, 191: 116809.
[83] MENG S, YE Y, MANSOURI J, et al. Crystallization behavior of salts during membrane distillation with hydrophobic and superhydrophobic capillary membranes [J]. Journal of Membrane Science, 2015, 473: 165-176.
[84] GRYTA M. Calcium sulphate scaling in membrane distillation process [J]. Chemical Papers, 2009, 63(2): 146-151.
[85] FARID M U, KHANZADA N K, AN A K. Understanding fouling dynamics on functionalized CNT-based membranes: Mechanisms and reversibility [J]. Desalination, 2019, 456: 74-84.
[86] MARSELINA Y, LE-CLECH P, STUETZ R, et al. Detailed characterisation of fouling deposition and removal on a hollow fibre membrane by direct observation technique [J]. Desalination, 2008, 231(1): 3-11.
[87] MARSELINA Y, LIFIA, LE-CLECH P, et al. Characterisation of membrane fouling deposition and removal by direct observation technique [J]. Journal of Membrane Science, 2009, 341(1-2): 163-171.
[88] WANG Y-N, WEI J, SHE Q, et al. Microscopic Characterization of FO/PRO Membranes – A Comparative Study of CLSM, TEM and SEM [J]. Environmental Science & Technology, 2012, 46(18): 9995-10003.
[89] LI W, LIU X, WANG Y N, et al. Analyzing the Evolution of Membrane Fouling via a Novel Method Based on 3D Optical Coherence Tomography Imaging [J]. Environmental Science & Technology, 2016, 50(13): 6930-6939.
[90] PODOLEANU A G. Optical coherence tomography [J]. Journal of Microscopy, 2012, 247(3): 209-219.
[91] FERCHER A F. Optical coherence tomography - development, principles, applications [J]. Zeitschrift für Medizinische Physik, 2010, 20(4): 251-276.
[92] WOJTKOWSKI M. High-speed optical coherence tomography: basics and applications [J]. Applied Optics, 2010, 49(16): D30-61.
[93] FORTUNATO L, JANG Y, LEE J G, et al. Fouling development in direct contact membrane distillation: Non-invasive monitoring and destructive analysis [J]. Water Research, 2018, 132: 34-41.
[94] BAUER A, WAGNER M, SARAVIA F, et al. In-situ monitoring and quantification of fouling development in membrane distillation by means of optical coherence tomography [J]. Journal of Membrane Science, 2019, 577: 145-152.
[95] WANG Z, CHEN Y, SUN X, et al. Mechanism of pore wetting in membrane distillation with alcohol vs. surfactant [J]. Journal of Membrane Science, 2018, 559: 183-195.
[96] CHANG H, LIU B, ZHANG Z, et al. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions [J]. Environmental Science & Technology, 2021, 55(3): 1395-1418.
[97] LIN S, NEJATI S, BOO C, et al. Omniphobic Membrane for Robust Membrane Distillation [J]. Environmental Science & Technology Letters, 2014, 1(11): 443-447.
[98] FRANKEN A C M, NOLTEN J A M, MULDER M H V, et al. Wetting criteria for the applicability of membrane distillation [J]. Journal of Membrane Science, 1987, 33(3): 315-328.
[99] REZAEI M, WARSINGER D M, LIENHARD V J H, et al. Wetting prevention in membrane distillation through superhydrophobicity and recharging an air layer on the membrane surface [J]. Journal of Membrane Science, 2017, 530: 42-52.
[100]SHAO S, SHI D, HU J, et al. Unraveling the Kinetics and Mechanism of Surfactant-Induced Wetting in Membrane Distillation: An In Situ Observation with Optical Coherence Tomography [J]. Environmental Science & Technology, 2021, 56(1): 556-563.
[101]GOH P S, LAU W J, OTHMAN M H D, et al. Membrane fouling in desalination and its mitigation strategies [J]. Desalination, 2018, 425: 130-155.
[102]CHRISTIE K S S, YIN Y, LIN S, et al. Distinct Behaviors between Gypsum and Silica Scaling in Membrane Distillation [J]. Environmental Science & Technology, 2020, 54(1): 568-576.
[103]CHRISTENSON H K. Two-step crystal nucleation via capillary condensation [J]. CrystEngComm, 2013, 15(11): 2030-2039.
[104]WU W, NANCOLLAS G H. Interfacial Free Energies and Crystallization in Aqueous Media [J]. Journal of Colloid and Interface Science, 1996, 182(2): 365-373.
[105]MBOGORO M M, PERUFFO M, ADOBES-VIDAL M, et al. Quantitative 3D Visualization of the Growth of Individual Gypsum Microcrystals: Effect of Ca2+:SO42– Ratio on Kinetics and Crystal Morphology [J]. The Journal of Physical Chemistry C, 2017, 121(23): 12726-12734.
[106]GRYTA M. Alkaline scaling in the membrane distillation process [J]. Desalination, 2008, 228(1-3): 128-134.
[107]LI W, CHEN K K, WANG Y-N, et al. A conceptual design of spacers with hairy structures for membrane processes [J]. Journal of Membrane Science, 2016, 510: 314-325.
[108]HOANG T A, ANG H M, ROHL A L. Effects of temperature on the scaling of calcium sulphate in pipes [J]. Powder Technology, 2007, 179(1-2): 31-37.
[109]ANTONY A, LOW J H, GRAY S, et al. Scale formation and control in high pressure membrane water treatment systems: A review [J]. Journal of Membrane Science, 2011, 383(1-2): 1-16.
[110]BARBIER E, COSTE M, GENIN A, et al. Simultaneous determination of nucleation and crystal growth kinetics of gypsum [J]. Chemical Engineering Science, 2009, 64(2): 363-369.
[111]KOBARI M, KUBOTA N, HIRASAWA I. Simulation of metastable zone width and induction time for a seeded aqueous solution of potassium sulfate [J]. Journal of Crystal Growth, 2010, 312(19): 2734-2739.
[112]CHARLES N T, JOHNSON D W. The occurrence and characterization of fouling during membrane evaporative cooling [J]. Journal of Membrane Science, 2008, 319(1-2): 44-53.
[113]LAPIDOT T, SEDRANSK CAMPBELL K L, HENG J Y Y. Model for Interpreting Surface Crystallization Using Quartz Crystal Microbalance: Theory and Experiments [J]. Analytical Chemistry, 2016, 88(9): 4886-4893.
[114]LIN N H, SHIH W Y, LYSTER E, et al. Crystallization of calcium sulfate on polymeric surfaces [J]. Journal of Colloid and Interface Science, 2011, 356(2): 790-797.
[115]TANG C Y, CHONG T H, FANE A G. Colloidal interactions and fouling of NF and RO membranes: a review [J]. Advances in colloid and interface science, 2011, 164(1-2): 126-143.
[116]CHRISTIE K S S, HORSEMAN T, WANG R, et al. Gypsum scaling in membrane distillation: Impacts of temperature and vapor flux [J]. Desalination, 2022, 525.
[117]MESSNAOUI B, BOUNAHMIDI T. On the modeling of calcium sulfate solubility in aqueous solutions [J]. Fluid Phase Equilibria, 2006, 244(2): 117-127.
[118]ABDEL-AAL E A, RASHAD M M, EL-SHALL H. Crystallization of calcium sulfate dihydrate at different supersaturation ratios and different free sulfate concentrations [J]. Crystal Research and Technology, 2004, 39(4): 313-321.
[119]XIE M, GRAY S R. Gypsum scaling in forward osmosis: Role of membrane surface chemistry [J]. Journal of Membrane Science, 2016, 513: 250-259.
[120]MOULIN A M, O'SHEA S J, BADLEY R A, et al. Measuring Surface-Induced Conformational Changes in Proteins [J]. Langmuir, 1999, 15(26): 8776-8779.
[121]STONEY G G, PARSONS C A. The tension of metallic films deposited by electrolysis [J]. 1909, 82(553): 172-175.
[122]SCHERER G W. Crystallization in pores [J]. Cement and Concrete Research, 1999, 29(8): 1347-1358.
[123]STEIGER M. Crystal growth in porous materials—I: The crystallization pressure of large crystals [J]. Journal of Crystal Growth, 2005, 282(3-4): 455-469.
[124]HUANG X, LI C, ZUO K, et al. Predominant Effect of Material Surface Hydrophobicity on Gypsum Scale Formation [J]. Environmental Science & Technology, 2020, 54(23): 15395-15404.
[125]HE F, SIRKAR K K, GILRON J. Studies on scaling of membranes in desalination by direct contact membrane distillation: CaCO3 and mixed CaCO3/CaSO4 systems [J]. Chemical Engineering Science, 2009, 64(8): 1844-1859.
[126]SRISURICHAN S, JIRARATANANON R, FANE A. Mass transfer mechanisms and transport resistances in direct contact membrane distillation process [J]. Journal of Membrane Science, 2006, 277(1-2): 186-194.
[127]KARANIKOLA V, BOO C, ROLF J, et al. Engineered Slippery Surface to Mitigate Gypsum Scaling in Membrane Distillation for Treatment of Hypersaline Industrial Wastewaters [J]. Environmental Science & Technology, 2018, 52(24): 14362-14370.
[128]PENG Y, GE J, LI Z, et al. Effects of anti-scaling and cleaning chemicals on membrane scale in direct contact membrane distillation process for RO brine concentrate [J]. Separation and Purification Technology, 2015, 154: 22-26.
[129]LI Z, DEMOPOULOS G P. Effect of NaCl, MgCl2, FeCl2, FeCl3, and AlCl3 on Solubility of CaSO4 Phases in Aqueous HCl or HCl + CaCl2 Solutions at 298 to 353 K [J]. Journal of Chemical & Engineering Data, 2005, 51(2): 569-576.
[130]SCHOCK G, MIQUEL A. Mass transfer and pressure loss in spiral wound modules [J]. Desalination, 1987, 64: 339-352.
[131]GUO Q, HUANG Y, XU M, et al. PTFE porous membrane technology: A comprehensive review [J]. Journal of Membrane Science, 2022, 664: 121115.
[132]LYNN A S, MOORE B S, GRIFFIN C A, et al. Evaluating the performance of a configurable finite element model as a tool in composite catheter design [J]. Procedia Manufacturing, 2020, 51: 981-988.
[133]KRANTZ W B. Systematic Method for Scaling Analysis [M]. Scaling Analysis in Modeling Transport and Reaction Processes. 2007: 7-18.

所在学位评定分委会
力学
国内图书分类号
X703
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544488
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
王业威. 膜蒸馏中结垢诱发润湿现象的表征与分析[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032349-王业威-环境科学与工程(6876KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王业威]的文章
百度学术
百度学术中相似的文章
[王业威]的文章
必应学术
必应学术中相似的文章
[王业威]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。