[1] MET O, JENSEN K M, CHAMBERLAIN C A, et al. Principles of adoptive T cell therapy in cancer [J]. Semin Immunopathol, 2019, 41(1): 49-58.
[2] RILEY R S, JUNE C H, LANGER R, et al. Delivery technologies for cancer immunotherapy [J]. Nat Rev Drug Discov, 2019, 18(3): 175-96.
[3] WALDMAN A D, FRITZ J M, LENARDO M J. A guide to cancer immunotherapy: from T cell basic science to clinical practice [J]. Nat Rev Immunol, 2020, 20(11): 651-68.
[4] POCATERRA A, CATUCCI M, MONDINO A. Adoptive T cell therapy of solid tumors: time to team up with immunogenic chemo/radiotherapy [J]. Curr Opin Immunol, 2022, 74: 53-9.
[5] KIESGEN S, MESSINGER J C, CHINTALA N K, et al. Comparative analysis of assays to measure CAR T-cell-mediated cytotoxicity [J]. Nat Protoc, 2021, 16(3): 1331-42.
[6] BAXEVANIS C N, PEREZ S A, PAPAMICHAIL M. Cancer immunotherapy [J]. Crit Rev Clin Lab Sci, 2009, 46(4): 167-89.
[7] BECKERMANN K E, DUDZINSKI S O, RATHMELL J C. Dysfunctional T cell metabolism in the tumor microenvironment [J]. Cytokine Growth Factor Rev, 2017, 35: 7-14.
[8] GALLUZZI L, CHAN T A, KROEMER G, et al. The hallmarks of successful anticancer immunotherapy [J]. Sci Transl Med, 2018, 10(459).
[9] CHAN J D, LAI J, SLANEY C Y, et al. Cellular networks controlling T cell persistence in adoptive cell therapy [J]. Nat Rev Immunol, 2021, 21(12): 769-84.
[10] RESTIFO N P, DUDLEY M E, ROSENBERG S A. Adoptive immunotherapy for cancer: harnessing the T cell response [J]. Nat Rev Immunol, 2012, 12(4): 269-81.
[11] MOROTTI M, ALBUKHARI A, ALSAADI A, et al. Promises and challenges of adoptive T-cell therapies for solid tumours [J]. Br J Cancer, 2021, 124(11): 1759-76.
[12] WORKENHE S T, POL J, KROEMER G. Tumor-intrinsic determinants of immunogenic cell death modalities [J]. Oncoimmunology, 2021, 10(1): 1893466.
[13] SAHU A, KOSE K, KRAEHENBUEHL L, et al. In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response [J]. Nat Commun, 2022, 13(1): 5312.
[14] AKMAN M, BELISARIO D C, SALAROGLIO I C, et al. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons [J]. J Exp Clin Cancer Res, 2021, 40(1): 28.
[15] JIANG X, XU J, LIU M, et al. Adoptive CD8(+) T cell therapy against cancer:Challenges and opportunities [J]. Cancer Lett, 2019, 462: 23-32.
[16] MOLON B, UGEL S, DEL POZZO F, et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells [J]. J Exp Med, 2011, 208(10): 1949-62.
[17] JOHNSON L A, JUNE C H. Driving gene-engineered T cell immunotherapy of cancer [J]. Cell Res, 2017, 27(1): 38-58.
[18] SHRIMALI R K, YU Z, THEORET M R, et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer [J]. Cancer Res, 2010, 70(15): 6171-80.
[19] CIPPONI A, WIEERS G, VAN BAREN N, et al. Tumor-infiltrating lymphocytes: apparently good for melanoma patients. But why? [J]. Cancer Immunol Immunother, 2011, 60(8): 1153-60.
[20] LIM W A, JUNE C H. The Principles of Engineering Immune Cells to Treat Cancer [J]. Cell, 2017, 168(4): 724-40.
[21] MAJZNER R G, MACKALL C L. Clinical lessons learned from the first leg of the CAR T cell journey [J]. Nat Med, 2019, 25(9): 1341-55.
[22] ZHANG Y, LIU Z, WEI W, et al. TCR engineered T cells for solid tumor immunotherapy [J]. Exp Hematol Oncol, 2022, 11(1): 38.
[23] SHAFER P, KELLY L M, HOYOS V. Cancer Therapy With TCR-Engineered T Cells: Current Strategies, Challenges, and Prospects [J]. Front Immunol, 2022, 13: 835762.
[24] SUN Y, LI F, SONNEMANN H, et al. Evolution of CD8(+) T Cell Receptor (TCR) Engineered Therapies for the Treatment of Cancer [J]. Cells, 2021, 10(9).
[25] ZHU W, PENG Y, WANG L, et al. Identification of alpha-fetoprotein-specific T-cell receptors for hepatocellular carcinoma immunotherapy [J]. Hepatology, 2018, 68(2): 574-89.
[26] YAZDANI Z, RAFIEI A, IRANNEJAD H, et al. Designing a novel multiepitope peptide vaccine against melanoma using immunoinformatics approach [J]. J Biomol Struct Dyn, 2022, 40(7): 3312-24.
[27] XU P, LUO H, KONG Y, et al. Cancer neoantigen: Boosting immunotherapy [J]. Biomed Pharmacother, 2020, 131: 110640.
[28] WALSH S R, SIMOVIC B, CHEN L, et al. Endogenous T cells prevent tumor immune escape following adoptive T cell therapy [J]. J Clin Invest, 2019, 129(12): 5400-10.
[29] KOCHENDERFER J N, DUDLEY M E, FELDMAN S A, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells [J]. Blood, 2012, 119(12): 2709-20.
[30] HE J, XIONG X, YANG H, et al. Defined tumor antigen-specific T cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy response [J]. Cell Res, 2022, 32(6): 530-42.
[31] WANG S, SUN J, CHEN K, et al. Perspectives of tumor-infiltrating lymphocyte treatment in solid tumors [J]. BMC Med, 2021, 19(1): 140.
[32] GALON J, COSTES A, SANCHEZ-CABO F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome [J]. Science, 2006, 313(5795): 1960-4.
[33] TAUBE J M, AKTURK G, ANGELO M, et al. The Society for Immunotherapy of Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation [J]. J Immunother Cancer, 2020, 8(1).
[34] HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation [J]. Cell, 2011, 144(5): 646-74.
[35] MOTZ G T, SANTORO S P, WANG L P, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors [J]. Nat Med, 2014, 20(6): 607-15.
[36] MOTZ G T, COUKOS G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales [J]. Nat Rev Immunol, 2011, 11(10): 702-11.
[37] HAMZAH J, JUGOLD M, KIESSLING F, et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction [J]. Nature, 2008, 453(7193): 410-4.
[38] SCHAAF M B, GARG A D, AGOSTINIS P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy [J]. Cell Death Dis, 2018, 9(2): 115.
[39] MELLMAN I, COUKOS G, DRANOFF G. Cancer immunotherapy comes of age [J]. Nature, 2011, 480(7378): 480-9.
[40] GAJEWSKI T F, SCHREIBER H, FU Y X. Innate and adaptive immune cells in the tumor microenvironment [J]. Nat Immunol, 2013, 14(10): 1014-22.
[41] FACCIABENE A, PENG X, HAGEMANN I S, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells [J]. Nature, 2011, 475(7355): 226-30.
[42] MARTINEZ-BOSCH N, VINAIXA J, NAVARRO P. Immune Evasion in Pancreatic Cancer: From Mechanisms to Therapy [J]. Cancers (Basel), 2018, 10(1).
[43] WU Q, YOU L, NEPOVIMOVA E, et al. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape [J]. J Hematol Oncol, 2022, 15(1): 77.
[44] GE Z, WU S, ZHANG Z, et al. Mechanism of tumor cells escaping from immune surveillance of NK cells [J]. Immunopharmacol Immunotoxicol, 2020, 42(3): 187-98.
[45] REN Z, HU Y, LI G, et al. HIF-1alpha induced long noncoding RNA FOXD2-AS1 promotes the osteosarcoma through repressing p21 [J]. Biomed Pharmacother, 2019, 117: 109104.
[46] ZHANG L, CONEJO-GARCIA J R, KATSAROS D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer [J]. N Engl J Med, 2003, 348(3): 203-13.
[47] HWANG W T, ADAMS S F, TAHIROVIC E, et al. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis [J]. Gynecol Oncol, 2012, 124(2): 192-8.
[48] SATO E, OLSON S H, AHN J, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer [J]. Proc Natl Acad Sci U S A, 2005, 102(51): 18538-43.
[49] BOUMA-TER STEEGE J C, BAETEN C I, THIJSSEN V L, et al. Angiogenic profile of breast carcinoma determines leukocyte infiltration [J]. Clin Cancer Res, 2004, 10(21): 7171-8.
[50] BOISSONNAS A, FETLER L, ZEELENBERG I S, et al. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor [J]. J Exp Med, 2007, 204(2): 345-56.
[51] CHAOUL N, TANG A, DESRUES B, et al. Lack of MHC class II molecules favors CD8(+) T-cell infiltration into tumors associated with an increased control of tumor growth [J]. Oncoimmunology, 2018, 7(3): e1404213.
[52] NISONOFF A, WISSLER F C, LIPMAN L N. Properties of the major component of a peptic digest of rabbit antibody [J]. Science, 1960, 132(3441): 1770-1.
[53] FUDENBERG H H, DREWS G, NISONOFF A. Serologic Demonstration of Dual Specificity of Rabbit Bivalent Hybrid Antibody [J]. J Exp Med, 1964, 119(1): 151-66.
[54] LABRIJN A F, JANMAAT M L, REICHERT J M, et al. Bispecific antibodies: a mechanistic review of the pipeline [J]. Nat Rev Drug Discov, 2019, 18(8): 585-608.
[55] OFFNER S, HOFMEISTER R, ROMANIUK A, et al. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells [J]. Mol Immunol, 2006, 43(6): 763-71.
[56] BLANCO B, DOMINGUEZ-ALONSO C, ALVAREZ-VALLINA L. Bispecific Immunomodulatory Antibodies for Cancer Immunotherapy [J]. Clin Cancer Res, 2021, 27(20): 5457-64.
[57] PORTER D L, LEVINE B L, KALOS M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia [J]. N Engl J Med, 2011, 365(8): 725-33.
[58] SUURS F V, LUB-DE HOOGE M N, DE VRIES E G E, et al. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges [J]. Pharmacol Ther, 2019, 201: 103-19.
[59] RADER C. Bispecific antibodies in cancer immunotherapy [J]. Curr Opin Biotechnol, 2020, 65: 9-16.
[60] TORRES E T R, EMENS L A. Emerging combination immunotherapy strategies for breast cancer: dual immune checkpoint modulation, antibody-drug conjugates and bispecific antibodies [J]. Breast Cancer Res Treat, 2022, 191(2): 291-302.
[61] SHIM H. Bispecific Antibodies and Antibody-Drug Conjugates for Cancer Therapy: Technological Considerations [J]. Biomolecules, 2020, 10(3).
[62] LEE D W, GARDNER R, PORTER D L, et al. Current concepts in the diagnosis and management of cytokine release syndrome [J]. Blood, 2014, 124(2): 188-95.
[63] BELMONTES B, SAWANT D V, ZHONG W, et al. Immunotherapy combinations overcome resistance to bispecific T cell engager treatment in T cell-cold solid tumors [J]. Sci Transl Med, 2021, 13(608).
[64] CHUCKRAN C A, LIU C, BRUNO T C, et al. Neuropilin-1: a checkpoint target with unique implications for cancer immunology and immunotherapy [J]. J Immunother Cancer, 2020, 8(2).
[65] LECLERC M, VOILIN E, GROS G, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1 [J]. Nat Commun, 2019, 10(1): 3345.
[66] ZHANG X, KLAMER B, LI J, et al. A pan-cancer study of class-3 semaphorins as therapeutic targets in cancer [J]. BMC Med Genomics, 2020, 13(Suppl 5): 45.
[67] SONG X, ZHANG W, ZHANG Y, et al. Expression of semaphorin 3A and neuropilin 1 with clinicopathological features and survival in human tongue cancer [J]. Med Oral Patol Oral Cir Bucal, 2012, 17(6): e962-8.
[68] EOM Y W, SHIM K Y, BAIK S K. Mesenchymal stem cell therapy for liver fibrosis [J]. Korean J Intern Med, 2015, 30(5): 580-9.
[69] SONG N, SCHOLTEMEIJER M, SHAH K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential [J]. Trends Pharmacol Sci, 2020, 41(9): 653-64.
[70] GALIPEAU J, SENSEBE L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities [J]. Cell Stem Cell, 2018, 22(6): 824-33.
[71] MITTAL V. Epithelial Mesenchymal Transition in Tumor Metastasis [J]. Annu Rev Pathol, 2018, 13: 395-412.
[72] VON EINEM J C, GUENTHER C, VOLK H D, et al. Treatment of advanced gastrointestinal cancer with genetically modified autologous mesenchymal stem cells: Results from the phase 1/2 TREAT-ME-1 trial [J]. Int J Cancer, 2019, 145(6): 1538-46.
[73] LIN W, HUANG L, LI Y, et al. Mesenchymal Stem Cells and Cancer: Clinical Challenges and Opportunities [J]. Biomed Res Int, 2019, 2019: 2820853.
[74] MARKOV A, THANGAVELU L, ARAVINDHAN S, et al. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders [J]. Stem Cell Res Ther, 2021, 12(1): 192.
[75] KAVARI S L, SHAH K. Engineered stem cells targeting multiple cell surface receptors in tumors [J]. Stem Cells, 2020, 38(1): 34-44.
[76] GAO P, REN G, LIANG J, et al. STAT6 Upregulates NRP1 Expression in Endothelial Cells and Promotes Angiogenesis [J]. Front Oncol, 2022, 12: 823377.
[77] LI H, ZHAO J, LIU B, et al. MicroRNA-320 targeting neuropilin 1 inhibits proliferation and migration of vascular smooth muscle cells and neointimal formation [J]. Int J Med Sci, 2019, 16(1): 106-14.
[78] CHEN Z, GAO H, DONG Z, et al. NRP1 regulates radiation-induced EMT via TGF-beta/Smad signaling in lung adenocarcinoma cells [J]. Int J Radiat Biol, 2020, 96(10): 1281-95.
[79] DUMOND A, PAGES G. Neuropilins, as Relevant Oncology Target: Their Role in the Tumoral Microenvironment [J]. Front Cell Dev Biol, 2020, 8: 662.
[80] OVERACRE-DELGOFFE A E, CHIKINA M, DADEY R E, et al. Interferon-gamma Drives T(reg) Fragility to Promote Anti-tumor Immunity [J]. Cell, 2017, 169(6): 1130-41 e11.
[81] KWIATKOWSKI S C, GUERRERO P A, HIROTA S, et al. Neuropilin-1 modulates TGFbeta signaling to drive glioblastoma growth and recurrence after anti-angiogenic therapy [J]. PLoS One, 2017, 12(9): e0185065.
[82] ZHU B, ZHAN Q Q, LIU Q Y, et al. The effect of neuropilin-1 silencing on the transforming growth factor-beta1-mediated epithelial-mesenchymal transition of colon cancer SW480 cells and its effect on the proliferation and migration of colon cancer cells [J]. J Physiol Pharmacol, 2022, 73(2).
[83] QUANTE M, RASKOPF E, STAHL S, et al. No functional and transductional significance of specific neuropilin 1 siRNA inhibition in colon carcinoma cell lines lacking VEGF receptor 2 [J]. Oncol Rep, 2009, 21(5): 1161-8.
修改评论