[1] HU Y-S, LU Y. 2019 Nobel Prize for the Li-Ion Batteries and New Opportunities and Challenges in Na-Ion Batteries[J]. ACS Energy Letters, 2019, 4(11): 2689-2690.
[2] XIE J, LU Y C. A Retrospective on Lithium-Ion Batteries[J]. Nature Communications, 2020, 11(1): 6362.
[3] XU K. Li-Ion Battery Electrolytes[J]. Nature Energy, 2021, 6(7): 763-763.
[4] 锋 吴. 绿色二次电池材料的研究进展[J]. 中国材料进展, 2009, 28(7~8): 41-49.
[5] 闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014, 35(10): 2767-2775.
[6] TARASCON J M, ARMAND M. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature, 2001, 414(6861): 359-367.
[7] Japan Ministry of Economy, Trade and Industry (2013). Development Roadmap of Rechargable Battery (New Energy and Industrial Technology Development Organization (Nedo))[EB/OL]. (2013-08-29).
[2022-12-28]. https://www.nedo.go.jp/content/100535728.pdf.
[8] 国家制造强国建设战略咨询委员会&中国工程院战略咨询中心. 中国制造2025[M]. 北京: 电子工业出版社, 2018: 250-258.
[9] CHOI J W, AURBACH D. Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities[J]. Nature Reviews Materials, 2016, 1(4): 16013.
[10] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S Batteries with High Energy Storage[J]. Nature Materials, 2011, 11(1): 19-29.
[11] YIN Y X, XIN S, GUO Y G, et al. Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects[J]. Angewandte Chemie International Edition, 2013, 52(50): 13186-13200.
[12] LIANG Y, YAO Y. Positioning Organic Electrode Materials in the Battery Landscape[J]. Joule, 2018, 2(9): 1690-1706.
[13] WU C, LOU J, ZHANG J, et al. Current Status and Future Directions of All-Solid-State Batteries with Lithium Metal Anodes, Sulfide Electrolytes, and Layered Transition Metal Oxide Cathodes[J]. Nano Energy, 2021, 87: 106081.
[14] XU W, WANG J, DING F, et al. Lithium Metal Anodes for Rechargeable Batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537.
[15] ASENBAUER J, EISENMANN T, KUENZEL M, et al. The Success Story of Graphite as a Lithium-Ion Anode Material-Fundamentals, Remaining Challenges, and Recent Developments Including Silicon (Oxide) Composites[J]. Sustainable Energy & Fuels, 2020, 4(11): 5387-5416.
[16] LU J, CHEN Z, PAN F, et al. High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries[J]. Electrochemical Energy Reviews, 2018, 1(1): 35-53.
[17] ABRAHAM K M. Prospects and Limits of Energy Storage in Batteries[J]. Journal of Physical Chemistry Letters, 2015, 6(5): 830-844.
[18] WHITTINGHAM M S. Electrical Energy Storage and Intercalation Chemistry[J]. Science, 1976, 192(4244): 1126-1127.
[19] LIU B, ZHANG J-G, XU W. Advancing Lithium Metal Batteries[J]. Joule, 2018, 2(5): 833-845.
[20] JACOBSON A J, CHIANELLI R R, WHITTINGHAM M S. Amorphous Molybdenum-Disulfide Cathodes[J]. Journal of the Electrochemical Society, 1979, 126(12): 2277-2278.
[21] MEGAHED S, SCROSATI B. Lithium-Ion Rechargeable Batteries[J]. Journal of Power Sources, 1994, 51(1-2): 79-104.
[22] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
[23] LI L, LI S, LU Y. Suppression of Dendritic Lithium Growth in Lithium Metal-Based Batteries[J]. Chemical Communications, 2018, 54(50): 6648-6661.
[24] LI Y, ZHANG Y, LI Z, et al. Operando Decoding of Surface Strain in Anode-Free Lithium Metal Batteries Via Optical Fiber Sensor[J]. Advanced Science, 2022, 9(26): 2203247.
[25] YU Z, CUI Y, BAO Z. Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes[J]. Cell Reports Physical Science, 2020, 1(7): 100119.
[26] ZHANG X, WANG A, LIU X, et al. Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination[J]. Accounts of Chemical Research, 2019, 52(11): 3223-3232.
[27] NIU C, LEE H, CHEN S, et al. High-Energy Lithium Metal Pouch Cells with Limited Anode Swelling and Long Stable Cycles[J]. Nature Energy, 2019, 4(7): 551-559.
[28] WU H, JIA H, WANG C, et al. Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes[J]. Advanced Energy Materials, 2020, 11(5): 2003092.
[29] ROSSO M, BRISSOT C, TEYSSOT A, et al. Dendrite Short-Circuit and Fuse Effect on Li/Polymer/Li Cells[J]. Electrochimica Acta, 2006, 51(25): 5334-5340.
[30] BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. Dendritic Growth Mechanisms in Lithium/Polymer Cells[J]. Journal of Power Sources, 1999, 81-82: 925-929.
[31] CHAZALVIEL J. Electrochemical Aspects of the Generation of Ramified Metallic Electrodeposits[J]. Physical Review A, 1990, 42(12): 7355-7367.
[32] DING F, XU W, GRAFF G L, et al. Dendrite-Free Lithium Deposition Via Self-Healing Electrostatic Shield Mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456.
[33] ELY D R, GARCíA R E. Heterogeneous Nucleation and Growth of Lithium Electrodeposits on Negative Electrodes[J]. Journal of the Electrochemical Society, 2013, 160(4): A662-A668.
[34] YAMAKI J, TOBISHIMA S, HAYASHI K, et al. A Consideration of the Morphology of Electrochemically Deposited Lithium in an Organic Electrolyte[J]. Journal of Power Sources, 1998, 74(2): 219-227.
[35] WANG X, ZENG W, HONG L, et al. Stress-Driven Lithium Dendrite Growth Mechanism and Dendrite Mitigation by Electroplating on Soft Substrates[J]. Nature Energy, 2018, 3(3): 227-235.
[36] YE W, SHEN C, TIAN J, et al. Self-Assembled Synthesis of Sers-Active Silver Dendrites and Photoluminescence Properties of a Thin Porous Silicon Layer[J]. Electrochemistry Communications, 2008, 10(4): 625-629.
[37] 梁杰铬 罗 政, 闫 钰,袁 斌. 面向可充电电池的锂金属负极的枝晶生长: 理论基础、影响因素和抑制方法[J]. 材料导报A, 2018, 32(6): 1779-1786.
[38] BESENHARD J O. The Electrochemical Preparation and Properties of Ionic Alkali Metal- and NR4-Graphite Intercalation Compounds in Organic Electrolytes[J]. Carbon, 1976, 14(2): 111-115.
[39] DEY A N, SULLIVAN B P. The Electrochemical Decomposition of Propylene Carbonate on Graphite[J]. Journal of the Electrochemical Society, 1970, 117(2): 222-224.
[40] FLANDROIS S, SIMON B. Carbon Materials for Lithium-Ion Rechargeable Batteries[J]. Carbon, 1999, 37(2): 165-180.
[41] PELED E, MENKIN S. Review-Sei: Past, Present and Future[J]. Journal of the Electrochemical Society, 2017, 164(7): A1703-A1719.
[42] CHANG H J, ILOTT A J, TREASE N M, et al. Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using 7Li MRI[J]. Journal of the American Chemical Society, 2015, 137(48): 15209-15216.
[43] PELED E. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems-the Solid Electrolyte Interphase Model[J]. Journal of the Electrochemical Society, 1979, 126(12): 2047-2051.
[44] AURBACH D. Review of Selected Electrode-Solution Interactions Which Determine the Performance of Li and Li Ion Batteries[J]. Journal of Power Sources, 2000, 89(2): 206-218.
[45] GOFER Y, BENZION M, AURBACH D. Solutions of Liasf6 in 1, 3-Dioxolane for Secondary Lithium Batteries[J]. Journal of Power Sources, 1992, 39(2): 163-178.
[46] MIAO R, YANG J, FENG X, et al. Novel Dual-Salts Electrolyte Solution for Dendrite-Free Lithium-Metal Based Rechargeable Batteries with High Cycle Reversibility[J]. Journal of Power Sources, 2014, 271291-297.
[47] WINTER M. The Solid Electrolyte Interphase-the Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries[J]. Zeitschrift Fur Physikalische Chemie, 2009, 223(10-11): 1395-1406.
[48] CHENG X-B, ZHAO C-Z, YAO Y-X, et al. Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes[J]. Chem, 2019, 5(1): 74-96.
[49] TIKEKAR M D, CHOUDHURY S, TU Z, et al. Design Principles for Electrolytes and Interfaces for Stable Lithium-Metal Batteries[J]. Nature Energy, 2016, 1(9): 114.
[50] ZHAI P, LIU L, GU X, et al. Interface Engineering for Lithium Metal Anodes in Liquid Electrolyte[J]. Advanced Energy Materials, 2020, 10(34): 2001257.
[51] QI Y, GUO H B, HECTOR L G, et al. Threefold Increase in the Young's Modulus of Graphite Negative Electrode During Lithium Intercalation[J]. Journal of the Electrochemical Society, 2010, 157(5): A558-A566.
[52] CHAN C K, PENG H, LIU G, et al. High-Performance Lithium Battery Anodes Using Silicon Nanowires[J]. Nature nanotechnology, 2008, 3(1): 31-35.
[53] KO M, OH P, CHAE S, et al. Considering Critical Factors of Li-Rich Cathode and Si Anode Materials for Practical Li-Ion Cell Applications[J]. Small, 2015, 11(33): 4058-4073.
[54] KWON T W, CHOI J W, COSKUN A. The Emerging Era of Supramolecular Polymeric Binders in Silicon Anodes[J]. Chemical Society Reviews, 2018, 47(6): 2145-2164.
[55] CHAE S, KO M, KIM K, et al. Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries[J]. Joule, 2017, 1(1): 47-60.
[56] LIN D, LIU Y, CUI Y. Reviving the Lithium Metal Anode for High-Energy Batteries[J]. Nature nanotechnology, 2017, 12(3): 194-206.
[57] LIU Y, LIN D, LIANG Z, et al. Lithium-Coated Polymeric Matrix as a Minimum Volume-Change and Dendrite-Free Lithium Metal Anode[J]. Nature Communications, 2016, 71: 0992.
[58] LIU Y, YUAN B, SUN C, et al. Ultralow‐Expansion Lithium Metal Composite Anode Via Gradient Framework Design[J]. Advanced Functional Materials, 2022, 32(35): 2202771.
[59] HU L, DENG J, LIANG Q, et al. Engineering Current Collectors for Advanced Alkali Metal Anodes: A Review and Perspective[J]. EcoMat, 2022, 5(1): 12269.
[60] MATSUDA S, KUBO Y, UOSAKI K, et al. Insulative Microfiber 3D Matrix as a Host Material Minimizing Volume Change of the Anode of Li Metal Batteries[J]. ACS Energy Letters, 2017, 2(4): 924-929.
[61] ZHANG S, XIAO S, LI D, et al. Commercial Carbon Cloth: An Emerging Substrate for Practical Lithium Metal Batteries[J]. Energy Storage Materials, 2022, 48: 172-190.
[62] WANG Z, SUN Z, LI J, et al. Insights into the Deposition Chemistry of Li Ions in Nonaqueous Electrolyte for Stable Li Anodes[J]. Chemical Society Reviews, 2021, 50(5): 3178-3210.
[63] LI S, JIANG M, XIE Y, et al. Developing High-Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress[J]. Advanced Materials, 2018, 30(17): 1706375.
[64] HAO Z, ZHAO Q, TANG J, et al. Functional Separators Towards the Suppression of Lithium Dendrites for Rechargeable High-Energy Batteries[J]. Materials Horizons, 2021, 8(1): 12-32.
[65] ZOU P, SUI Y, ZHAN H, et al. Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields[J]. Chemical Reviews, 2021, 121(10): 5986-6056.
[66] CHEN Z, CHRISTENSEN L, DAHN J R. Large-Volume-Change Electrodes for Li-Ion Batteries of Amorphous Alloy Particles Held by Elastomeric Tethers[J]. Electrochemistry Communications, 2003, 5(11): 919-923.
[67] HUESKER J, FROBöSE L, KWADE A, et al. In Situ Dilatometric Study of the Binder Influence on the Electrochemical Intercalation of Bis(Trifluoromethanesulfonyl) Imide Anions into Graphite[J]. Electrochimica Acta, 2017, 257423-435.
[68] LIANG Z, ZHENG G, LIU C, et al. Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes[J]. Nano Letters, 2015, 15(5): 2910-2916.
[69] CHENG X B, HOU T Z, ZHANG R, et al. Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries[J]. Advanced Materials, 2016, 28(15): 2888-2895.
[70] KIM M S, RYU J-H, DEEPIKA, et al. Langmuir-Blodgett Artificial Solid-Electrolyte Interphases for Practical Lithium Metal Batteries[J]. Nature Energy, 2018, 3(10): 889-898.
[71] LIU W, MI Y, WENG Z, et al. Functional Metal-Organic Framework Boosting Lithium Metal Anode Performance Via Chemical Interactions[J]. Chemical Science, 2017, 8(6): 4285-4291.
[72] CHANG C H, CHUNG S H, MANTHIRAM A. Dendrite-Free Lithium Anode Via a Homogenous Li-Ion Distribution Enabled by a Kimwipe Paper[J]. Advanced Sustainable Systems, 2017, 1(1-2): 1600034.
[73] LIU H, CHENG X B, XU R, et al. Plating/Stripping Behavior of Actual Lithium Metal Anode[J]. Advanced Energy Materials, 2019, 9(44): 1902254.
[74] CHANG J, HU H, SHANG J, et al. Rational Design of Li-Wicking Hosts for Ultrafast Fabrication of Flexible and Stable Lithium Metal Anodes[J]. Small, 2022, 18(2): 2105308.
[75] ZHANG R, CHEN X, SHEN X, et al. Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries[J]. Joule, 2018, 2(4): 764-777.
[76] LIANG Z, LIN D, ZHAO J, et al. Composite Lithium Metal Anode by Melt Infusion of Lithium into a 3D Conducting Scaffold with Lithiophilic Coating[J]. Proceedings of the National Academy of Sciences, 2016, 113(11): 2862-2867.
[77] ZHANG P, PENG C, LIU X, et al. 3d Lithiophilic "Hairy" Si Nanowire Arrays@Carbon Scaffold Favor a Flexible and Stable Lithium Composite Anode[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44325-44332.
[78] YIN Y C, YU Z L, MA Z Y, et al. Bio-Inspired Low-Tortuosity Carbon Host for High-Performance Lithium-Metal Anode[J]. National Science Review, 2019, 6(2): 247-256.
[79] JIN S, YE Y, NIU Y, et al. Solid-Solution-Based Metal Alloy Phase for Highly Reversible Lithium Metal Anode[J]. Journal of the American Chemical Society, 2020, 142(19): 8818-8826.
[80] YANG C P, YIN Y X, ZHANG S F, et al. Accommodating Lithium into 3D Current Collectors with a Submicron Skeleton Towards Long-Life Lithium Metal Anodes[J]. Nature Communications, 2015, 6: 8058.
[81] ZUO T T, WU X W, YANG C P, et al. Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes[J]. Advanced Materials, 2017, 29(29): 1700389.
[82] CHI S-S, LIU Y, SONG W-L, et al. Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode[J]. Advanced Functional Materials, 2017, 27(24): 1700348.
[83] GUO C, GUO Y, TAO R, et al. Uniform Lithiophilic Layers in 3D Current Collectors Enable Ultrastable Solid Electrolyte Interphase for High-Performance Lithium Metal Batteries[J]. Nano Energy, 2022, 96: 107121.
[84] SUN C, LI Y, JIN J, et al. Zno Nanoarray-Modified Nickel Foam as a Lithiophilic Skeleton to Regulate Lithium Deposition for Lithium-Metal Batteries[J]. Journal of Materials Chemistry A, 2019, 7(13): 7752-7759.
[85] SUN Z, JIN S, JIN H, et al. Robust Expandable Carbon Nanotube Scaffold for Ultrahigh-Capacity Lithium-Metal Anodes[J]. Advanced Materials, 2018, 30(32): 1800884.
[86] YE L, FENG P, CHEN X, et al. Cu Coated Soft Fabric as Anode for Lithium Metal Batteries[J]. Energy Storage Materials, 2020, 26: 371-377.
[87] ZHU R, SHENG N, RAO Z, et al. Employing a T-Shirt Template and Variant of Schweizer's Reagent for Constructing a Low-Weight, Flexible, Hierarchically Porous and Textile-Structured Copper Current Collector for Dendrite-Suppressed Li Metal[J]. Journal of Materials Chemistry A, 2019, 7(47): 27066-27073.
[88] WANG S H, YUE J, DONG W, et al. Tuning Wettability of Molten Lithium Via a Chemical Strategy for Lithium Metal Anodes[J]. Nature Communications, 2019, 10(1): 4930.
[89] KONG L L, WANG L, NI Z C, et al. Lithium-Magnesium Alloy as a Stable Anode for Lithium-Sulfur Battery[J]. Advanced Functional Materials, 2019, 29(13): 1808756.
[90] FAN H, CHEN B, LI S, et al. Nanocrystalline Li-Al-Mn-Si Foil as Reversible Li Host: Electronic Percolation and Electrochemical Cycling Stability[J]. Nano Letters, 2020, 20(2): 896-904.
[91] SHI P, FU Z H, ZHOU M Y, et al. Inhibiting Intercrystalline Reactions of Anode with Electrolytes for Long-Cycling Lithium Batteries[J]. Science Advances, 2022, 8(33): eabq3445.
[92] CHOI H J, KANG D W, PARK J W, et al. In Situ Formed Ag-Li Intermetallic Layer for Stable Cycling of All-Solid-State Lithium Batteries[J]. Advanced Science, 2022, 9(1): 2103826.
[93] WANG H, HU P, LIU X, et al. Sowing Silver Seeds within Patterned Ditches for Dendrite-Free Lithium Metal Batteries[J]. Advanced Science, 2021, 8(14): 2100684.
[94] CHEN Z, LIANG Z, ZHONG H, et al. Bulk/Interfacial Synergetic Approaches Enable the Stable Anode for High Energy Density All-Solid-State Lithium-Sulfur Batteries[J]. ACS Energy Letters, 2022, 7(8): 2761-2770.
[95] FU L, WAN M, ZHANG B, et al. A Lithium Metal Anode Surviving Battery Cycling above 200 °C[J]. Advanced Materials, 2020, 32(29): 2000952.
[96] LIU Z, GUO D, FAN W, et al. Expansion-Tolerant Lithium Anode with Built-in Lif-Rich Interface for Stable 400 Wh Kg-1 Lithium Metal Pouch Cells[J]. ACS Materials Letters, 2022, 4(8): 1516-1522.
[97] XIANG J, CHENG Z, ZHAO Y, et al. A Lithium-Ion Pump Based on Piezoelectric Effect for Improved Rechargeability of Lithium Metal Anode[J]. Advanced Science, 2019, 6(22): 1901120.
[98] WANG D, LIU H, LIU F, et al. Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries[J]. Nano Letters, 2021, 21(11): 4757-4764.
[99] KONG J-Z, REN C, JIANG Y-X, et al. Li-Ion-Conductive Li2TiO3-Coated Li[Li0.2Mn0.51Ni0.19Co0.1]O2 for High-Performance Cathode Material in Lithium-Ion Battery[J]. Journal of Solid State Electrochemistry, 2016, 20(5): 1435-1443.
[100] LEE J I, SHIN M, HONG D, et al. Efficient Li-Ion-Conductive Layer for the Realization of Highly Stable High-Voltage and High-Capacity Lithium Metal Batteries[J]. Advanced Energy Materials, 2019, 9(13): 1803722.
[101] DENG Y, WANG M, FAN C, et al. Strategy to Enhance the Cycling Stability of the Metallic Lithium Anode in Li-Metal Batteries[J]. Nano Letters, 2021, 21(4): 1896-1901.
[102] ZHAI P, WANG T, JIANG H, et al. 3D Artificial Solid-Electrolyte Interphase for Lithium Metal Anodes Enabled by Insulator-Metal-Insulator Layered Heterostructures[J]. Advanced Materials, 2021, 33(13): 2006247.
[103] XIONG X, YAN W, ZHU Y, et al. Li4Ti5O12 Coating on Copper Foil as Ion Redistributor Layer for Stable Lithium Metal Anode[J]. Advanced Energy Materials, 2022, 12(13): 2103112.
[104] LI Y, SUN Y, PEI A, et al. Robust Pinhole-Free Li3N Solid Electrolyte Grown from Molten Lithium[J]. ACS Central Science, 2018, 4(1): 97-104.
[105] LIN D, LIU Y, CHEN W, et al. Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon[J]. Nano Letters, 2017, 17(6): 3731-3737.
[106] CHEN H, PEI A, LIN D C, et al. Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode[J]. Advanced Energy Materials, 2019, 9(22): 1900858.
[107] TU Z, CHOUDHURY S, ZACHMAN M J, et al. Fast Ion Transport at Solid-Solid Interfaces in Hybrid Battery Anodes[J]. Nature Energy, 2018, 3(4): 310-316.
[108] WANG Q, WAN J, CAO X, et al. Organophosphorus Hybrid Solid Electrolyte Interphase Layer Based on LixPO4 Enables Uniform Lithium Deposition for High-Performance Lithium Metal Batteries[J]. Advanced Functional Materials, 2021, 32(2): 2107923.
[109] ZENG J, LIU Q, JIA D, et al. A Polymer Brush-Based Robust and Flexible Single-Ion Conducting Artificial SEI Film for Fast Charging Lithium Metal Batteries[J]. Energy Storage Materials, 2021, 41: 697-702.
[110] ZHANG K, WU F, ZHANG K, et al. Chlorinated Dual-Protective Layers as Interfacial Stabilizer for Dendrite-Free Lithium Metal Anode[J]. Energy Storage Materials, 2021, 41: 485-494.
[111] DUAN H, CHEN W P, FAN M, et al. Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderate-Temperature Conversion Chemistry[J]. Angewandte Chemie International Edition, 2020, 59(29): 12069-12075.
[112] MENG Y S, SRINIVASAN V, XU K. Designing Better Electrolytes[J]. Science, 2022, 378(6624): eabq3750.
[113] ZHANG J G, XU W, XIAO J, et al. Lithium Metal Anodes with Nonaqueous Electrolytes[J]. Chemical Reviews, 2020, 120(24): 13312-13348.
[114] WANG H, YU Z, KONG X, et al. Liquid Electrolyte: The Nexus of Practical Lithium Metal Batteries[J]. Joule, 2022, 6(3): 588-616.
[115] JAUMANN T, BALACH J, KLOSE M, et al. SEI-Component Formation on Sub 5 nm Sized Silicon Nanoparticles in Li-Ion Batteries: The Role of Electrode Preparation, Fec Addition and Binders[J]. Physical Chemistry Chemical Physics, 2015, 17(38): 24956-24967.
[116] XU C, LINDGREN F, PHILIPPE B, et al. Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive[J]. Chemistry of Materials, 2015, 27(7): 2591-2599.
[117] ZHANG X-Q, CHENG X-B, CHEN X, et al. Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries[J]. Advanced Functional Materials, 2017, 27(10): 1605989.
[118] GUO J, WEN Z, WU M, et al. Vinylene Carbonate-LiNO3: A Hybrid Additive in Carbonic Ester Electrolytes for SEI Modification on Li Metal Anode[J]. Electrochemistry Communications, 2015, 5159-63.
[119] YAN C, YAO Y X, CHEN X, et al. Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries[J]. Angewandte Chemie International Edition, 2018, 57(43): 14055-14059.
[120] LIU S, JI X, PIAO N, et al. An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes[J]. Angewandte Chemie International Edition, 2021, 60(7): 3661-3671.
[121] ZHANG S, YANG G, LIU Z, et al. Competitive Solvation Enhanced Stability of Lithium Metal Anode in Dual-Salt Electrolyte[J]. Nano Letters, 2021, 21(7): 3310-3317.
[122] LIU Y, LIN D, LI Y, et al. Solubility-Mediated Sustained Release Enabling Nitrate Additive in Carbonate Electrolytes for Stable Lithium Metal Anode[J]. Nature Communications, 2018, 9(1): 3656.
[123] XU R, ZHANG X-Q, CHENG X-B, et al. Artificial Soft-Rigid Protective Layer for Dendrite-Free Lithium Metal Anode[J]. Advanced Functional Materials, 2018, 28(8): 1705838.
[124] MARKEVICH E, SALITRA G, CHESNEAU F, et al. Very Stable Lithium Metal Stripping-Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution[J]. ACS Energy Letters, 2017, 2(6): 1321-1326.
[125] TAN Y H, LU G X, ZHENG J H, et al. Lithium Fluoride in Electrolyte for Stable and Safe Lithium-Metal Batteries[J]. Advanced Materials, 2021, 33(42): 2102134.
[126] WEBER R, GENOVESE M, LOULI A J, et al. Long Cycle Life and Dendrite-Free Lithium Morphology in Anode-Free Lithium Pouch Cells Enabled by a Dual-Salt Liquid Electrolyte[J]. Nature Energy, 2019, 4(8): 683-689.
[127] QIAN J, HENDERSON W A, XU W, et al. High Rate and Stable Cycling of Lithium Metal Anode[J]. Nature Communications, 2015, 6: 6362.
[128] REN X, ZOU L, JIAO S, et al. High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries[J]. ACS Energy Letters, 2019, 4(4): 896-902.
[129] YU Z, WANG H, KONG X, et al. Molecular Design for Electrolyte Solvents Enabling Energy-Dense and Long-Cycling Lithium Metal Batteries[J]. Nature Energy, 2020, 5(7): 526-533.
[130] LAGADEC M F, ZAHN R, WOOD V. Characterization and Performance Evaluation of Lithium-Ion Battery Separators[J]. Nature Energy, 2018, 4(1): 16-25.
[131] CHI M, SHI L, WANG Z, et al. Excellent Rate Capability and Cycle Life of Li Metal Batteries with ZrO2/POSS Multilayer-Assembled Pe Separators[J]. Nano Energy, 2016, 281-11.
[132] ZHAO C Z, CHEN P Y, ZHANG R, et al. An Ion Redistributor for Dendrite-Free Lithium Metal Anodes[J]. Science Advances, 2018, 4(11): eaat3446.
[133] CHEN X, ZHANG R, ZHAO R, et al. A “Dendrite-Eating” Separator for High-Areal-Capacity Lithium-Metal Batteries[J]. Energy Storage Materials, 2020, 31: 181-186.
[134] FANG C, LU B, PAWAR G, et al. Pressure-Tailored Lithium Deposition and Dissolution in Lithium Metal Batteries[J]. Nature Energy, 2021, 6(10): 987-994.
[135] CHEN Y, HUANG H, LIU L, et al. Diffusion Enhancement to Stabilize Solid Electrolyte Interphase[J]. Advanced Energy Materials, 2021, 11(40): 2101774.
[136] HUANG A, LIU H, MANOR O, et al. Enabling Rapid Charging Lithium Metal Batteries Via Surface Acoustic Wave-Driven Electrolyte Flow[J]. Advanced Materials, 2020, 32(14): 1907516.
[137] ADAIR K R, BANIS M N, ZHAO Y, et al. Temperature-Dependent Chemical and Physical Microstructure of Li Metal Anodes Revealed through Synchrotron-Based Imaging Techniques[J]. Advanced Materials, 2020, 32(32): 2002550.
[138] FAN X, JI X, CHEN L, et al. All-Temperature Batteries Enabled by Fluorinated Electrolytes with Non-Polar Solvents[J]. Nature Energy, 2019, 4(10): 882-890.
[139] YAN K, WANG J, ZHAO S, et al. Temperature-Dependent Nucleation and Growth of Dendrite-Free Lithium Metal Anodes[J]. Angewandte Chemie International Edition, 2019, 58(33): 11364-11368.
[140] ATKINSON R W, CARTER R, LOVE C T. Operational Strategy to Stabilize Lithium Metal Anodes by Applied Thermal Gradient[J]. Energy Storage Materials, 2019, 22: 18-28.
[141] LU D, SHAO Y, LOZANO T, et al. Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes[J]. Advanced Energy Materials, 2015, 5(3): 1400993.
[142] ZHENG J, YAN P, MEI D, et al. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High-Concentration Electrolyte Layer[J]. Advanced Energy Materials, 2016, 6(8): 1502151.
[143] HUANG Y K, PAN R, REHNLUND D, et al. First-Cycle Oxidative Generation of Lithium Nucleation Sites Stabilizes Lithium-Metal Electrodes[J]. Advanced Energy Materials, 2021, 11(9): 2003674.
[144] CHEN S, NIU C, LEE H, et al. Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries[J]. Joule, 2019, 3(4): 1094-1105.
[145] CHOUDHURY R, WILD J, YANG Y. Engineering Current Collectors for Batteries with High Specific Energy[J]. Joule, 2021, 5(6): 1301-1305.
[146] JIN D, ROH Y, JO T, et al. Robust Cycling of Ultrathin Li Metal Enabled by Nitrate-Preplanted Li Powder Composite[J]. Advanced Energy Materials, 2021, 11(18): 2003769.
[147] ZHANG K, LIU W, GAO Y, et al. A High-Performance Lithium Metal Battery with Ion-Selective Nanofluidic Transport in a Conjugated Microporous Polymer Protective Layer[J]. Advanced Materials, 2021, 33(5): 2006323.
[148] MIN YANG K, YANG K, CHO M, et al. Self-Assembled Functional Layers onto Separator toward Practical Lithium Metal Batteries[J]. Chemical Engineering Journal, 2023, 454: 140191.
[149] ZERRIN T, SHANG R, DONG B, et al. An Overlooked Parameter in Li-S Batteries: The Impact of Electrolyte-to-Sulfur Ratio on Capacity Fading[J]. Nano Energy, 2022, 104: 107913.
[150] ZHU Y, PANDE V, LI L, et al. Design Principles for Self-Forming Interfaces Enabling Stable Lithium-Metal Anodes[J]. Proceedings of the National Academy of Sciences, 2020, 117(44): 27195-27203.
[151] DAUBINGER P, EBERT F, HARTMANN S, et al. Impact of Electrochemical and Mechanical Interactions on Lithium-Ion Battery Performance Investigated by Operando Dilatometry[J]. Journal of Power Sources, 2021, 488: 229457.
[152] DAUBINGER P, GöTTLINGER M, HARTMANN S, et al. Consequences of Different Pressures and Electrolytes on the Irreversible Expansion of Lithium Metal Half Cells[J]. Batteries & Supercaps, 2022, 6(12): 202200452
[153] DE BIASI L, KONDRAKOV A O, GEßWEIN H, et al. Between Scylla and Charybdis: Balancing among Structural Stability and Energy Density of Layered NCM Cathode Materials for Advanced Lithium-Ion Batteries[J]. Journal of Physical Chemistry C, 2017, 121(47): 26163-26171.
[154] LI P, FANG Z, DONG X, et al. The Pathway toward Practical Application of Lithium-Metal Anodes for Non-Aqueous Secondary Batteries[J]. National Science Review, 2022, 9(8): nwac031.
[155] SHI P, LI T, ZHANG R, et al. Lithiophilic LiC6 Layers on Carbon Hosts Enabling Stable Li Metal Anode in Working Batteries[J]. Advanced Materials, 2019, 31(8): 1807131.
[156] LIU X, CHANG H, LI Y, et al. Polyelectrolyte-Bridged Metal/Cotton Hierarchical Structures for Highly Durable Conductive Yarns[J]. ACS Applied Materials & Interfaces, 2010, 2(2): 529-535.
[157] CHANG J, SHANG J, SUN Y, et al. Flexible and Stable High-Energy Lithium-Sulfur Full Batteries with Only 100% Oversized Lithium[J]. Nature Communications, 2018, 9(1): 4480.
[158] OHZUKU T, UEDA A, YAMAMOTO N. Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells[J]. Journal of the Electrochemical Society, 1995, 142(5): 1431-1435.
[159] NAKAYAMA N, NOZAWA T, IRIYAMA Y, et al. Interfacial Lithium-Ion Transfer at the Limn2o4 Thin Film Electrode/Aqueous Solution Interface[J]. Journal of Power Sources, 2007, 174(2): 695-700.
[160] GUO Y, NIU P, LIU Y, et al. An Autotransferable g-C3N4 Li+-Modulating Layer toward Stable Lithium Anodes[J]. Advanced Materials, 2019, 31(27): 1900342.
[161] LIU J, BAO Z, CUI Y, et al. Pathways for Practical High-Energy Long-Cycling Lithium Metal Batteries[J]. Nature Energy, 2019, 4(3): 180-186.
[162] SU C C, HE M, SHI J, et al. Solvation Rule for Solid-Electrolyte Interphase Enabler in Lithium-Metal Batteries[J]. Angewandte Chemie International Edition, 2020, 59(41): 18229-18233.
[163] LIU W, SONG M S, KONG B, et al. Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives[J]. Advanced Materials, 2017, 29(1): 1603436.
[164] NISHIDE H, OYAIZU K. Materials Science. Toward Flexible Batteries[J]. Science, 2008, 319(5864): 737-738.
[165] CHEN J, LIU C T. Technology Advances in Flexible Displays and Substrates[J]. IEEE Access, 2013, 1150-158.
[166] LIANG Y, ZHAO C Z, YUAN H, et al. A Review of Rechargeable Batteries for Portable Electronic Devices[J]. InfoMat, 2019, 1(1): 6-32.
[167] ZENG L, QIU L, CHENG H-M. Towards the Practical Use of Flexible Lithium Ion Batteries[J]. Energy Storage Materials, 2019, 23434-438.
[168] GAO Y, XIE C, ZHENG Z. Textile Composite Electrodes for Flexible Batteries and Supercapacitors: Opportunities and Challenges[J]. Advanced Energy Materials, 2020, 11(3): 2002838.
[169] MARTIN C, GENOVESE M, LOULI A J, et al. Cycling Lithium Metal on Graphite to Form Hybrid Lithium-Ion/Lithium Metal Cells[J]. Joule, 2020, 4(6): 1296-1310.
[170] LIU B, ZHANG Y, WANG Z, et al. Coupling a Sponge Metal Fibers Skeleton with in Situ Surface Engineering to Achieve Advanced Electrodes for Flexible Lithium-Sulfur Batteries[J]. Advanced Materials, 2020, 32(34): 2003657.
[171] CHANG W C, KAO T L, LIN Y, et al. A Flexible All Inorganic Nanowire Bilayer Mesh as a High-Performance Lithium-Ion Battery Anode[J]. Journal of Materials Chemistry A, 2017, 5(43): 22662-22671.
[172] WANG Y, WANG Y, JIA D, et al. All-Nanowire Based Li-Ion Full Cells Using Homologous Mn2O3 and LiMn2O4[J]. Nano Letters, 2014, 14(2): 1080-1084.
[173] LIU F, SONG S, XUE D, et al. Folded Structured Graphene Paper for High Performance Electrode Materials[J]. Advanced Materials, 2012, 24(8): 1089-1094.
[174] ZHAO X, HAYNER C M, KUNG M C, et al. Flexible Holey Graphene Paper Electrodes with Enhanced Rate Capability for Energy Storage Applications[J]. ACS Nano, 2011, 5(11): 8739-8749.
[175] LIU B, ZHANG J, WANG X, et al. Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries[J]. Nano Letters, 2012, 12(6): 3005-3011.
[176] PU X, LI L, SONG H, et al. A Self-Charging Power Unit by Integration of a Textile Triboelectric Nanogenerator and a Flexible Lithium-Ion Battery for Wearable Electronics[J]. Advanced Materials, 2015, 27(15): 2472-2478.
[177] BALOGUN M S, YANG H, LUO Y, et al. Achieving High Gravimetric Energy Density for Flexible Lithium-Ion Batteries Facilitated by Core-Double-Shell Electrodes[J]. Energy & Environmental Science, 2018, 11(7): 1859-1869.
[178] EBNER M, CHUNG D-W, GARCíA R E, et al. Tortuosity Anisotropy in Lithium-Ion Battery Electrodes[J]. Advanced Energy Materials, 2014, 4(5): 1301278.
[179] SANDER J S, ERB R M, LI L, et al. High-Performance Battery Electrodes Via Magnetic Templating[J]. Nature Energy, 2016, 1(8): 99.
[180] PENG J, SNYDER G J. A Figure of Merit for Flexibility[J]. Science, 2019, 366(6466): 690-691.
[181] AN Y, LUO C, YAO D, et al. Natural Cocoons Enabling Flexible and Stable Fabric Lithium-Sulfur Full Batteries[J]. Nano-Micro Letters, 2021, 13(1): 84.
[182] DENG Z, JIANG H, HU Y, et al. 3D Ordered Macroporous MoS2@C Nanostructure for Flexible Li-Ion Batteries[J]. Advanced Materials, 2017, 29(10): 1603020.
[183] FU X, DUNNE F, CHEN M, et al. A Wet-Processed, Binder-Free Sulfur Cathode Integrated with a Dual-Functional Separator for Flexible Li-S Batteries[J]. Nanoscale, 2020, 12(9): 5483-5493.
[184] HE X, HU Y, CHEN R, et al. Foldable Uniform GeOx/ZnO/C Composite Nanofibers as a High-Capacity Anode Material for Flexible Lithium Ion Batteries[J]. Chemical Engineering Journal, 2019, 3601020-1029.
[185] KIM J-M, KIM J A, KIM S-H, et al. All-Nanomat Lithium-Ion Batteries: A New Cell Architecture Platform for Ultrahigh Energy Density and Mechanical Flexibility[J]. Advanced Energy Materials, 2017, 7(22): 1701099.
[186] PARK M, CHA H, LEE Y, et al. Postpatterned Electrodes for Flexible Node-Type Lithium-Ion Batteries[J]. Advanced Materials, 2017, 29(11): 1605773.
[187] SHEN W, LI K, LV Y, et al. Highly‐Safe and Ultra‐Stable All‐Flexible Gel Polymer Lithium Ion Batteries Aiming for Scalable Applications[J]. Advanced Energy Materials, 2020, 10(21): 1904281.
[188] SON J M, OH S, BAE S H, et al. A Pair of NiCo2O4 and V2O5 Nanowires Directly Grown on Carbon Fabric for Highly Bendable Lithium‐Ion Batteries[J]. Advanced Energy Materials, 2019, 9(18): 1900477.
[189] KIM S H, KIM N Y, CHOE U J, et al. Ultrahigh-Energy-Density Flexible Lithium-Metal Full Cells Based on Conductive Fibrous Skeletons[J]. Advanced Energy Materials, 2021, 11(24): 2100531.
[190] CHANG J, HUANG Q Y, ZHENG Z J. A Figure of Merit for Flexible Batteries[J]. Joule, 2020, 4(7): 1346-1349.
[191] CHANG J, HUANG Q, GAO Y, et al. Pathways of Developing High-Energy-Density Flexible Lithium Batteries[J]. Advanced Materials, 2021, 33(46): 2004419.
修改评论