中文版 | English
题名

三维锂金属负极的一体化结构设计及界面调控

其他题名
INTEGRATED DESIGN OF THREE-DIMENSIONAL LITHIUM METAL ANODES AND INTERFACIAL REGULATION
姓名
姓名拼音
LUO Chao
学号
11930816
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
邓永红
导师单位
材料科学与工程系
论文答辩日期
2023-05-13
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

    锂金属具有极高的理论比容量和低的电化学电势,被认为是高能量密度锂电池体系的理想负极材料。 在实用化条件下,锂金属电池需承受≥ 3.0 mAh cm-2 和≥ 0.3 mA cm-2(≥ 0.1 C)的循环容量与充电电流。这导致锂金属负极面临严重的枝状锂沉积、界面不稳定和大体积膨胀问题,极大限制了其循环稳定性和使用安全性。针对这些问题,本研究从结构设计和界面调控出发,发展了一类三维锂金属复合负极,解决了锂金属负极的锂枝晶生长、界面不稳定和大体积膨胀问题,并成功构筑了高能量密度的柔性锂金属电池。主要研究内容与结果如下:
    采用机械辊压工艺将钛酸锂纳米颗粒修饰的三维镀铜碳纤维膜和锂镁金属箔紧密复合,实现了梯度导电界面层修饰三维锂金属复合负极(LiMgMEC)的可控制备。通过有效平衡锂金属界面层的离子和电子传输速率,保证了LiMg-MEC负极的无枝晶锂沉积和稳定循环。即使在10.0 mA cm-2的超大电流密度下,LiMg-MEC 负极的锂沉积行为也仅在界面层内部发生。在低负极/正极容量比例(N/P:4.0)和实用电流密度(1.0/1.0 mA cm-2,0.33/0.33 C)条件下,LiMg-MEC全电池可稳定运行225圈(容量保持率为80.0%),相比未修饰电池提升一倍有余。
    在实现无枝晶锂沉积的基础上,通过引入多孔层优化了锂金属负极的体积膨胀行为。采用机械辊压工艺将镀锡铜金属化纳米纤维膜与锂箔紧密复合,实现了兼具导电子和亲锂特性纤维多孔层修饰三维锂金属复合负极(LiSnCuPI)的可控制备。通过多孔层纤维表面电子与离子的均化作用和锂沉积位置引导,体积膨胀行为带来的电极厚度增加值降低了36.8%。在低N/P 值(3.0)和高电流密度(4.0/8.0 mA cm-2,1.21/2.42 C)下,LiSnCuPI全电池稳定运行200圈后容量发挥仍有1.90 mAh cm-2(保持率为69.9%),展示出优异的大倍率循环性能。
    在实现无枝晶锂沉积和表观低体积膨胀的基础上,通过多孔层孔隙体积量优化,解决了锂金属负极的体积膨胀问题。采用机械辊压工艺将含 SEI界面修饰化学成分的绝缘聚合物上层、高孔隙率的镀铜纤维中间层和锂镁金 属 箔下层紧密复合,实现了具有三明治结构的三维锂金属复合负极(zeroVE-Li)的可控制备。通过三明治电极结构中的梯度导电子、梯度亲锂、SEI 界面化学优化和多孔隙体积的协同作用,解决了锂金属负极的枝晶生长、界面不稳定和大体积膨胀问题,实现了表观零体积膨胀行为和电化学循环稳定性的显著提升。在低 N/P 值(3.6)和大电流密度(2.0/2.0 mA cm-2,0.54/0.54 C)下,zeroVE-Li全电池可稳定循环200圈(容量保持率为63.0%),相比未修饰电池提升近三倍。
    三维骨架赋予锂金属负极良好的机械柔性,利于高能量密度柔性锂金属电池的构筑。为匹配锂金属负极制备高能量密度柔性锂金属电池,提出了一种仿竹席结构的三维连锁致密柔性正极(LCO-ICTE),解决了常规柔性电极中高面容量与优异机械柔性不兼容的问题。受益于zeroVE-Li负极电化学稳定和表观零体积膨胀等优点,zeroVE-LiǁLCO-ICTE柔性锂金属电池在低N/P值(2.2)和贫电解液用量(3.2 µL mAh-1)的实用化严苛条件下取得了创当时纪录的柔性品质因子(FOM:45.6)、极高的面能量密度(22.7mWh cm-2)和体积能量密度(375 Wh L-1)。该柔性电池与电极的设计理念也适用于构筑其他高能量密度柔性电池(如钠、钾、锌金属电池等),以提高其能量密度和循环稳定性。

其他摘要

    Due to the advantages of the lowest electrochemical potential and ultrahigh theoretical specific capacity, Li metal has been recognized as the ultimate choice of the anode to achieve high energy density batteries. Usually, practical Li metal batteries require an operating capacity and current density of ≥ 3.0 mAh cm-2 and ≥ 0.3 mA cm-2 (≥ 0.1 C), respectively. This leads to serious problems such as dendritic Li deposition, interfacial instability, and large volume expansion for Li metal anodes, which severely limit cycling stability and safety. In response to these problems, this study developed a class of three-dimensional (3D) Li metal composite anodes based on structural design and interface regulation, which solved the problems of dendritic Li deposition, interfacial instability, and large volume expansion, and successfully constructed flexible Li metal batteries with high energy density. The main research content and results are as follows:

    By mechanical rolling process, the fiber film modified with Li titanate nanoparticles and lithium-magnesium (LiMg) metal foil was closely combined, and the controllable preparation of 3D Li metal composite anodes (LiMg-MEC) modified with gradient conductive interface layer was realized. By effectively balancing the ion and electron transport rates of the interface layer, the LiMg-MEC anodes achieve dendrite-free and cycling stability. The Li deposition behavior of the LiMg-MEC anodes only occurs in the interface layer even at an extremely high current density of 10.0 mA cm-2. At a low negative/positive capacity ratio (N/P: 4.0) and practical current density (1.0/1.0 mA cm-2, 0.33/0.33 C), the LiMg-MEC full cell operated stably for 225 cycles (80.0% of capacity retention), which is more than double that of the blank cell.

    Based on achieving dendrite-free Li deposition, the volume expansion behavior of the Li metal anode is alleviated by introducing a porous layer. By mechanical rolling process, the tin-copper metallized nanofiber film and a Li foil were closely combined, and the controllable preparation of 3D Li metal composite anodes (LiSnCuPI) modified with a conductive and lithiophilic porous layer was realized. Through the homogenization of electrons and ions on the fiber surface and the guidance of Li deposition positions, the increment in electrode thickness caused by volume expansion is reduced by 36.8%. At a low N/P value (3.0) and high current density (4.0/8.0 mA cm-2, 1.21/2.42 C), LiSnCuPI full cell operated stably for 200 cycles (69.9% of capacity retention), showing the excellent high-rate cycling performance.

    Based on achieving dendrite-free Li deposition and apparent low volume expansion, the problem of large volume expansion of Li metal anodes is solved by optimizing the pore volume of the porous layer. By mechanical rolling process, the upper layer of insulating polymer film containing interfacial modification chemicals, the middle layer of pore-rich copper metalized fiber film, and the lower layer of LiMg foil were closely combined, and the controllable preparation of 3D Li metal composite anodes (zeroVE-Li) with a sandwich structure was realized. Through the synergistic idea of gradient electron conduction, gradient lithiophilicity, optimization of SEI interface, and large porous volume in the sandwich electrode structure, the problems of dendrite growth, interface instability, and large volume expansion of Li metal anodes are solved. And apparent zero-volume expansion behavior and stable cycling are achieved. At a low N/P value (3.6) and high current density (2.0/2.0 mA cm-2, 0.54/0.54 C), the zeroVE-Li full cell operated stably for 200 cycles (63.0% of capacity retention), which is nearly three times higher than that of the blank cell.

    The 3D skeletons enable excellent mechanical flexibility to the Li metal anode, which benefits the construction of high energy density flexible Li metal batteries. To match the Li metal anode, bamboo mat-like 3D interlocking compact flexible cathodes (LCO-ICTE) were prepared, which solved the problem of incompatibility between high areal capacity and excellent mechanical flexibility in conventional flexible electrodes. Benefiting from the electrochemical stability and apparent zero-volume expansion merit of zeroVE-Li, the zeroVE-LiǁLCO-ICTE flexible Li metal cell achieved high areal energy density (22.7 mWh cm-2), large whole-cell volumetric energy density (375 Wh L-1) and record-breaking Figure of Merit (FOM: 45.6) at that time under a practically harsh condition of the low N/P value (2.2) and lean electrolyte dosage (3.2 µL mAh-1). In principle, the design concept of flexible Li metal batteries is also applicable to constructing other high energy density batteries (e.g., sodium, potassium, and zinc metal batteries, etc.) to enhance their energy density and cycling stability.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] HU Y-S, LU Y. 2019 Nobel Prize for the Li-Ion Batteries and New Opportunities and Challenges in Na-Ion Batteries[J]. ACS Energy Letters, 2019, 4(11): 2689-2690.
[2] XIE J, LU Y C. A Retrospective on Lithium-Ion Batteries[J]. Nature Communications, 2020, 11(1): 6362.
[3] XU K. Li-Ion Battery Electrolytes[J]. Nature Energy, 2021, 6(7): 763-763.
[4] 锋 吴. 绿色二次电池材料的研究进展[J]. 中国材料进展, 2009, 28(7~8): 41-49.
[5] 闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014, 35(10): 2767-2775.
[6] TARASCON J M, ARMAND M. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature, 2001, 414(6861): 359-367.
[7] Japan Ministry of Economy, Trade and Industry (2013). Development Roadmap of Rechargable Battery (New Energy and Industrial Technology Development Organization (Nedo))[EB/OL]. (2013-08-29).
[2022-12-28]. https://www.nedo.go.jp/content/100535728.pdf.
[8] 国家制造强国建设战略咨询委员会&中国工程院战略咨询中心. 中国制造2025[M]. 北京: 电子工业出版社, 2018: 250-258.
[9] CHOI J W, AURBACH D. Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities[J]. Nature Reviews Materials, 2016, 1(4): 16013.
[10] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S Batteries with High Energy Storage[J]. Nature Materials, 2011, 11(1): 19-29.
[11] YIN Y X, XIN S, GUO Y G, et al. Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects[J]. Angewandte Chemie International Edition, 2013, 52(50): 13186-13200.
[12] LIANG Y, YAO Y. Positioning Organic Electrode Materials in the Battery Landscape[J]. Joule, 2018, 2(9): 1690-1706.
[13] WU C, LOU J, ZHANG J, et al. Current Status and Future Directions of All-Solid-State Batteries with Lithium Metal Anodes, Sulfide Electrolytes, and Layered Transition Metal Oxide Cathodes[J]. Nano Energy, 2021, 87: 106081.
[14] XU W, WANG J, DING F, et al. Lithium Metal Anodes for Rechargeable Batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537.
[15] ASENBAUER J, EISENMANN T, KUENZEL M, et al. The Success Story of Graphite as a Lithium-Ion Anode Material-Fundamentals, Remaining Challenges, and Recent Developments Including Silicon (Oxide) Composites[J]. Sustainable Energy & Fuels, 2020, 4(11): 5387-5416.
[16] LU J, CHEN Z, PAN F, et al. High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries[J]. Electrochemical Energy Reviews, 2018, 1(1): 35-53.
[17] ABRAHAM K M. Prospects and Limits of Energy Storage in Batteries[J]. Journal of Physical Chemistry Letters, 2015, 6(5): 830-844.
[18] WHITTINGHAM M S. Electrical Energy Storage and Intercalation Chemistry[J]. Science, 1976, 192(4244): 1126-1127.
[19] LIU B, ZHANG J-G, XU W. Advancing Lithium Metal Batteries[J]. Joule, 2018, 2(5): 833-845.
[20] JACOBSON A J, CHIANELLI R R, WHITTINGHAM M S. Amorphous Molybdenum-Disulfide Cathodes[J]. Journal of the Electrochemical Society, 1979, 126(12): 2277-2278.
[21] MEGAHED S, SCROSATI B. Lithium-Ion Rechargeable Batteries[J]. Journal of Power Sources, 1994, 51(1-2): 79-104.
[22] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
[23] LI L, LI S, LU Y. Suppression of Dendritic Lithium Growth in Lithium Metal-Based Batteries[J]. Chemical Communications, 2018, 54(50): 6648-6661.
[24] LI Y, ZHANG Y, LI Z, et al. Operando Decoding of Surface Strain in Anode-Free Lithium Metal Batteries Via Optical Fiber Sensor[J]. Advanced Science, 2022, 9(26): 2203247.
[25] YU Z, CUI Y, BAO Z. Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes[J]. Cell Reports Physical Science, 2020, 1(7): 100119.
[26] ZHANG X, WANG A, LIU X, et al. Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination[J]. Accounts of Chemical Research, 2019, 52(11): 3223-3232.
[27] NIU C, LEE H, CHEN S, et al. High-Energy Lithium Metal Pouch Cells with Limited Anode Swelling and Long Stable Cycles[J]. Nature Energy, 2019, 4(7): 551-559.
[28] WU H, JIA H, WANG C, et al. Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes[J]. Advanced Energy Materials, 2020, 11(5): 2003092.
[29] ROSSO M, BRISSOT C, TEYSSOT A, et al. Dendrite Short-Circuit and Fuse Effect on Li/Polymer/Li Cells[J]. Electrochimica Acta, 2006, 51(25): 5334-5340.
[30] BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. Dendritic Growth Mechanisms in Lithium/Polymer Cells[J]. Journal of Power Sources, 1999, 81-82: 925-929.
[31] CHAZALVIEL J. Electrochemical Aspects of the Generation of Ramified Metallic Electrodeposits[J]. Physical Review A, 1990, 42(12): 7355-7367.
[32] DING F, XU W, GRAFF G L, et al. Dendrite-Free Lithium Deposition Via Self-Healing Electrostatic Shield Mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456.
[33] ELY D R, GARCíA R E. Heterogeneous Nucleation and Growth of Lithium Electrodeposits on Negative Electrodes[J]. Journal of the Electrochemical Society, 2013, 160(4): A662-A668.
[34] YAMAKI J, TOBISHIMA S, HAYASHI K, et al. A Consideration of the Morphology of Electrochemically Deposited Lithium in an Organic Electrolyte[J]. Journal of Power Sources, 1998, 74(2): 219-227.
[35] WANG X, ZENG W, HONG L, et al. Stress-Driven Lithium Dendrite Growth Mechanism and Dendrite Mitigation by Electroplating on Soft Substrates[J]. Nature Energy, 2018, 3(3): 227-235.
[36] YE W, SHEN C, TIAN J, et al. Self-Assembled Synthesis of Sers-Active Silver Dendrites and Photoluminescence Properties of a Thin Porous Silicon Layer[J]. Electrochemistry Communications, 2008, 10(4): 625-629.
[37] 梁杰铬 罗 政, 闫 钰,袁 斌. 面向可充电电池的锂金属负极的枝晶生长: 理论基础、影响因素和抑制方法[J]. 材料导报A, 2018, 32(6): 1779-1786.
[38] BESENHARD J O. The Electrochemical Preparation and Properties of Ionic Alkali Metal- and NR4-Graphite Intercalation Compounds in Organic Electrolytes[J]. Carbon, 1976, 14(2): 111-115.
[39] DEY A N, SULLIVAN B P. The Electrochemical Decomposition of Propylene Carbonate on Graphite[J]. Journal of the Electrochemical Society, 1970, 117(2): 222-224.
[40] FLANDROIS S, SIMON B. Carbon Materials for Lithium-Ion Rechargeable Batteries[J]. Carbon, 1999, 37(2): 165-180.
[41] PELED E, MENKIN S. Review-Sei: Past, Present and Future[J]. Journal of the Electrochemical Society, 2017, 164(7): A1703-A1719.
[42] CHANG H J, ILOTT A J, TREASE N M, et al. Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using 7Li MRI[J]. Journal of the American Chemical Society, 2015, 137(48): 15209-15216.
[43] PELED E. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems-the Solid Electrolyte Interphase Model[J]. Journal of the Electrochemical Society, 1979, 126(12): 2047-2051.
[44] AURBACH D. Review of Selected Electrode-Solution Interactions Which Determine the Performance of Li and Li Ion Batteries[J]. Journal of Power Sources, 2000, 89(2): 206-218.
[45] GOFER Y, BENZION M, AURBACH D. Solutions of Liasf6 in 1, 3-Dioxolane for Secondary Lithium Batteries[J]. Journal of Power Sources, 1992, 39(2): 163-178.
[46] MIAO R, YANG J, FENG X, et al. Novel Dual-Salts Electrolyte Solution for Dendrite-Free Lithium-Metal Based Rechargeable Batteries with High Cycle Reversibility[J]. Journal of Power Sources, 2014, 271291-297.
[47] WINTER M. The Solid Electrolyte Interphase-the Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries[J]. Zeitschrift Fur Physikalische Chemie, 2009, 223(10-11): 1395-1406.
[48] CHENG X-B, ZHAO C-Z, YAO Y-X, et al. Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes[J]. Chem, 2019, 5(1): 74-96.
[49] TIKEKAR M D, CHOUDHURY S, TU Z, et al. Design Principles for Electrolytes and Interfaces for Stable Lithium-Metal Batteries[J]. Nature Energy, 2016, 1(9): 114.
[50] ZHAI P, LIU L, GU X, et al. Interface Engineering for Lithium Metal Anodes in Liquid Electrolyte[J]. Advanced Energy Materials, 2020, 10(34): 2001257.
[51] QI Y, GUO H B, HECTOR L G, et al. Threefold Increase in the Young's Modulus of Graphite Negative Electrode During Lithium Intercalation[J]. Journal of the Electrochemical Society, 2010, 157(5): A558-A566.
[52] CHAN C K, PENG H, LIU G, et al. High-Performance Lithium Battery Anodes Using Silicon Nanowires[J]. Nature nanotechnology, 2008, 3(1): 31-35.
[53] KO M, OH P, CHAE S, et al. Considering Critical Factors of Li-Rich Cathode and Si Anode Materials for Practical Li-Ion Cell Applications[J]. Small, 2015, 11(33): 4058-4073.
[54] KWON T W, CHOI J W, COSKUN A. The Emerging Era of Supramolecular Polymeric Binders in Silicon Anodes[J]. Chemical Society Reviews, 2018, 47(6): 2145-2164.
[55] CHAE S, KO M, KIM K, et al. Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries[J]. Joule, 2017, 1(1): 47-60.
[56] LIN D, LIU Y, CUI Y. Reviving the Lithium Metal Anode for High-Energy Batteries[J]. Nature nanotechnology, 2017, 12(3): 194-206.
[57] LIU Y, LIN D, LIANG Z, et al. Lithium-Coated Polymeric Matrix as a Minimum Volume-Change and Dendrite-Free Lithium Metal Anode[J]. Nature Communications, 2016, 71: 0992.
[58] LIU Y, YUAN B, SUN C, et al. Ultralow‐Expansion Lithium Metal Composite Anode Via Gradient Framework Design[J]. Advanced Functional Materials, 2022, 32(35): 2202771.
[59] HU L, DENG J, LIANG Q, et al. Engineering Current Collectors for Advanced Alkali Metal Anodes: A Review and Perspective[J]. EcoMat, 2022, 5(1): 12269.
[60] MATSUDA S, KUBO Y, UOSAKI K, et al. Insulative Microfiber 3D Matrix as a Host Material Minimizing Volume Change of the Anode of Li Metal Batteries[J]. ACS Energy Letters, 2017, 2(4): 924-929.
[61] ZHANG S, XIAO S, LI D, et al. Commercial Carbon Cloth: An Emerging Substrate for Practical Lithium Metal Batteries[J]. Energy Storage Materials, 2022, 48: 172-190.
[62] WANG Z, SUN Z, LI J, et al. Insights into the Deposition Chemistry of Li Ions in Nonaqueous Electrolyte for Stable Li Anodes[J]. Chemical Society Reviews, 2021, 50(5): 3178-3210.
[63] LI S, JIANG M, XIE Y, et al. Developing High-Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress[J]. Advanced Materials, 2018, 30(17): 1706375.
[64] HAO Z, ZHAO Q, TANG J, et al. Functional Separators Towards the Suppression of Lithium Dendrites for Rechargeable High-Energy Batteries[J]. Materials Horizons, 2021, 8(1): 12-32.
[65] ZOU P, SUI Y, ZHAN H, et al. Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields[J]. Chemical Reviews, 2021, 121(10): 5986-6056.
[66] CHEN Z, CHRISTENSEN L, DAHN J R. Large-Volume-Change Electrodes for Li-Ion Batteries of Amorphous Alloy Particles Held by Elastomeric Tethers[J]. Electrochemistry Communications, 2003, 5(11): 919-923.
[67] HUESKER J, FROBöSE L, KWADE A, et al. In Situ Dilatometric Study of the Binder Influence on the Electrochemical Intercalation of Bis(Trifluoromethanesulfonyl) Imide Anions into Graphite[J]. Electrochimica Acta, 2017, 257423-435.
[68] LIANG Z, ZHENG G, LIU C, et al. Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes[J]. Nano Letters, 2015, 15(5): 2910-2916.
[69] CHENG X B, HOU T Z, ZHANG R, et al. Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries[J]. Advanced Materials, 2016, 28(15): 2888-2895.
[70] KIM M S, RYU J-H, DEEPIKA, et al. Langmuir-Blodgett Artificial Solid-Electrolyte Interphases for Practical Lithium Metal Batteries[J]. Nature Energy, 2018, 3(10): 889-898.
[71] LIU W, MI Y, WENG Z, et al. Functional Metal-Organic Framework Boosting Lithium Metal Anode Performance Via Chemical Interactions[J]. Chemical Science, 2017, 8(6): 4285-4291.
[72] CHANG C H, CHUNG S H, MANTHIRAM A. Dendrite-Free Lithium Anode Via a Homogenous Li-Ion Distribution Enabled by a Kimwipe Paper[J]. Advanced Sustainable Systems, 2017, 1(1-2): 1600034.
[73] LIU H, CHENG X B, XU R, et al. Plating/Stripping Behavior of Actual Lithium Metal Anode[J]. Advanced Energy Materials, 2019, 9(44): 1902254.
[74] CHANG J, HU H, SHANG J, et al. Rational Design of Li-Wicking Hosts for Ultrafast Fabrication of Flexible and Stable Lithium Metal Anodes[J]. Small, 2022, 18(2): 2105308.
[75] ZHANG R, CHEN X, SHEN X, et al. Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries[J]. Joule, 2018, 2(4): 764-777.
[76] LIANG Z, LIN D, ZHAO J, et al. Composite Lithium Metal Anode by Melt Infusion of Lithium into a 3D Conducting Scaffold with Lithiophilic Coating[J]. Proceedings of the National Academy of Sciences, 2016, 113(11): 2862-2867.
[77] ZHANG P, PENG C, LIU X, et al. 3d Lithiophilic "Hairy" Si Nanowire Arrays@Carbon Scaffold Favor a Flexible and Stable Lithium Composite Anode[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44325-44332.
[78] YIN Y C, YU Z L, MA Z Y, et al. Bio-Inspired Low-Tortuosity Carbon Host for High-Performance Lithium-Metal Anode[J]. National Science Review, 2019, 6(2): 247-256.
[79] JIN S, YE Y, NIU Y, et al. Solid-Solution-Based Metal Alloy Phase for Highly Reversible Lithium Metal Anode[J]. Journal of the American Chemical Society, 2020, 142(19): 8818-8826.
[80] YANG C P, YIN Y X, ZHANG S F, et al. Accommodating Lithium into 3D Current Collectors with a Submicron Skeleton Towards Long-Life Lithium Metal Anodes[J]. Nature Communications, 2015, 6: 8058.
[81] ZUO T T, WU X W, YANG C P, et al. Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes[J]. Advanced Materials, 2017, 29(29): 1700389.
[82] CHI S-S, LIU Y, SONG W-L, et al. Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode[J]. Advanced Functional Materials, 2017, 27(24): 1700348.
[83] GUO C, GUO Y, TAO R, et al. Uniform Lithiophilic Layers in 3D Current Collectors Enable Ultrastable Solid Electrolyte Interphase for High-Performance Lithium Metal Batteries[J]. Nano Energy, 2022, 96: 107121.
[84] SUN C, LI Y, JIN J, et al. Zno Nanoarray-Modified Nickel Foam as a Lithiophilic Skeleton to Regulate Lithium Deposition for Lithium-Metal Batteries[J]. Journal of Materials Chemistry A, 2019, 7(13): 7752-7759.
[85] SUN Z, JIN S, JIN H, et al. Robust Expandable Carbon Nanotube Scaffold for Ultrahigh-Capacity Lithium-Metal Anodes[J]. Advanced Materials, 2018, 30(32): 1800884.
[86] YE L, FENG P, CHEN X, et al. Cu Coated Soft Fabric as Anode for Lithium Metal Batteries[J]. Energy Storage Materials, 2020, 26: 371-377.
[87] ZHU R, SHENG N, RAO Z, et al. Employing a T-Shirt Template and Variant of Schweizer's Reagent for Constructing a Low-Weight, Flexible, Hierarchically Porous and Textile-Structured Copper Current Collector for Dendrite-Suppressed Li Metal[J]. Journal of Materials Chemistry A, 2019, 7(47): 27066-27073.
[88] WANG S H, YUE J, DONG W, et al. Tuning Wettability of Molten Lithium Via a Chemical Strategy for Lithium Metal Anodes[J]. Nature Communications, 2019, 10(1): 4930.
[89] KONG L L, WANG L, NI Z C, et al. Lithium-Magnesium Alloy as a Stable Anode for Lithium-Sulfur Battery[J]. Advanced Functional Materials, 2019, 29(13): 1808756.
[90] FAN H, CHEN B, LI S, et al. Nanocrystalline Li-Al-Mn-Si Foil as Reversible Li Host: Electronic Percolation and Electrochemical Cycling Stability[J]. Nano Letters, 2020, 20(2): 896-904.
[91] SHI P, FU Z H, ZHOU M Y, et al. Inhibiting Intercrystalline Reactions of Anode with Electrolytes for Long-Cycling Lithium Batteries[J]. Science Advances, 2022, 8(33): eabq3445.
[92] CHOI H J, KANG D W, PARK J W, et al. In Situ Formed Ag-Li Intermetallic Layer for Stable Cycling of All-Solid-State Lithium Batteries[J]. Advanced Science, 2022, 9(1): 2103826.
[93] WANG H, HU P, LIU X, et al. Sowing Silver Seeds within Patterned Ditches for Dendrite-Free Lithium Metal Batteries[J]. Advanced Science, 2021, 8(14): 2100684.
[94] CHEN Z, LIANG Z, ZHONG H, et al. Bulk/Interfacial Synergetic Approaches Enable the Stable Anode for High Energy Density All-Solid-State Lithium-Sulfur Batteries[J]. ACS Energy Letters, 2022, 7(8): 2761-2770.
[95] FU L, WAN M, ZHANG B, et al. A Lithium Metal Anode Surviving Battery Cycling above 200 °C[J]. Advanced Materials, 2020, 32(29): 2000952.
[96] LIU Z, GUO D, FAN W, et al. Expansion-Tolerant Lithium Anode with Built-in Lif-Rich Interface for Stable 400 Wh Kg-1 Lithium Metal Pouch Cells[J]. ACS Materials Letters, 2022, 4(8): 1516-1522.
[97] XIANG J, CHENG Z, ZHAO Y, et al. A Lithium-Ion Pump Based on Piezoelectric Effect for Improved Rechargeability of Lithium Metal Anode[J]. Advanced Science, 2019, 6(22): 1901120.
[98] WANG D, LIU H, LIU F, et al. Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries[J]. Nano Letters, 2021, 21(11): 4757-4764.
[99] KONG J-Z, REN C, JIANG Y-X, et al. Li-Ion-Conductive Li2TiO3-Coated Li[Li0.2Mn0.51Ni0.19Co0.1]O2 for High-Performance Cathode Material in Lithium-Ion Battery[J]. Journal of Solid State Electrochemistry, 2016, 20(5): 1435-1443.
[100] LEE J I, SHIN M, HONG D, et al. Efficient Li-Ion-Conductive Layer for the Realization of Highly Stable High-Voltage and High-Capacity Lithium Metal Batteries[J]. Advanced Energy Materials, 2019, 9(13): 1803722.
[101] DENG Y, WANG M, FAN C, et al. Strategy to Enhance the Cycling Stability of the Metallic Lithium Anode in Li-Metal Batteries[J]. Nano Letters, 2021, 21(4): 1896-1901.
[102] ZHAI P, WANG T, JIANG H, et al. 3D Artificial Solid-Electrolyte Interphase for Lithium Metal Anodes Enabled by Insulator-Metal-Insulator Layered Heterostructures[J]. Advanced Materials, 2021, 33(13): 2006247.
[103] XIONG X, YAN W, ZHU Y, et al. Li4Ti5O12 Coating on Copper Foil as Ion Redistributor Layer for Stable Lithium Metal Anode[J]. Advanced Energy Materials, 2022, 12(13): 2103112.
[104] LI Y, SUN Y, PEI A, et al. Robust Pinhole-Free Li3N Solid Electrolyte Grown from Molten Lithium[J]. ACS Central Science, 2018, 4(1): 97-104.
[105] LIN D, LIU Y, CHEN W, et al. Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon[J]. Nano Letters, 2017, 17(6): 3731-3737.
[106] CHEN H, PEI A, LIN D C, et al. Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode[J]. Advanced Energy Materials, 2019, 9(22): 1900858.
[107] TU Z, CHOUDHURY S, ZACHMAN M J, et al. Fast Ion Transport at Solid-Solid Interfaces in Hybrid Battery Anodes[J]. Nature Energy, 2018, 3(4): 310-316.
[108] WANG Q, WAN J, CAO X, et al. Organophosphorus Hybrid Solid Electrolyte Interphase Layer Based on LixPO4 Enables Uniform Lithium Deposition for High-Performance Lithium Metal Batteries[J]. Advanced Functional Materials, 2021, 32(2): 2107923.
[109] ZENG J, LIU Q, JIA D, et al. A Polymer Brush-Based Robust and Flexible Single-Ion Conducting Artificial SEI Film for Fast Charging Lithium Metal Batteries[J]. Energy Storage Materials, 2021, 41: 697-702.
[110] ZHANG K, WU F, ZHANG K, et al. Chlorinated Dual-Protective Layers as Interfacial Stabilizer for Dendrite-Free Lithium Metal Anode[J]. Energy Storage Materials, 2021, 41: 485-494.
[111] DUAN H, CHEN W P, FAN M, et al. Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderate-Temperature Conversion Chemistry[J]. Angewandte Chemie International Edition, 2020, 59(29): 12069-12075.
[112] MENG Y S, SRINIVASAN V, XU K. Designing Better Electrolytes[J]. Science, 2022, 378(6624): eabq3750.
[113] ZHANG J G, XU W, XIAO J, et al. Lithium Metal Anodes with Nonaqueous Electrolytes[J]. Chemical Reviews, 2020, 120(24): 13312-13348.
[114] WANG H, YU Z, KONG X, et al. Liquid Electrolyte: The Nexus of Practical Lithium Metal Batteries[J]. Joule, 2022, 6(3): 588-616.
[115] JAUMANN T, BALACH J, KLOSE M, et al. SEI-Component Formation on Sub 5 nm Sized Silicon Nanoparticles in Li-Ion Batteries: The Role of Electrode Preparation, Fec Addition and Binders[J]. Physical Chemistry Chemical Physics, 2015, 17(38): 24956-24967.
[116] XU C, LINDGREN F, PHILIPPE B, et al. Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive[J]. Chemistry of Materials, 2015, 27(7): 2591-2599.
[117] ZHANG X-Q, CHENG X-B, CHEN X, et al. Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries[J]. Advanced Functional Materials, 2017, 27(10): 1605989.
[118] GUO J, WEN Z, WU M, et al. Vinylene Carbonate-LiNO3: A Hybrid Additive in Carbonic Ester Electrolytes for SEI Modification on Li Metal Anode[J]. Electrochemistry Communications, 2015, 5159-63.
[119] YAN C, YAO Y X, CHEN X, et al. Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries[J]. Angewandte Chemie International Edition, 2018, 57(43): 14055-14059.
[120] LIU S, JI X, PIAO N, et al. An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes[J]. Angewandte Chemie International Edition, 2021, 60(7): 3661-3671.
[121] ZHANG S, YANG G, LIU Z, et al. Competitive Solvation Enhanced Stability of Lithium Metal Anode in Dual-Salt Electrolyte[J]. Nano Letters, 2021, 21(7): 3310-3317.
[122] LIU Y, LIN D, LI Y, et al. Solubility-Mediated Sustained Release Enabling Nitrate Additive in Carbonate Electrolytes for Stable Lithium Metal Anode[J]. Nature Communications, 2018, 9(1): 3656.
[123] XU R, ZHANG X-Q, CHENG X-B, et al. Artificial Soft-Rigid Protective Layer for Dendrite-Free Lithium Metal Anode[J]. Advanced Functional Materials, 2018, 28(8): 1705838.
[124] MARKEVICH E, SALITRA G, CHESNEAU F, et al. Very Stable Lithium Metal Stripping-Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution[J]. ACS Energy Letters, 2017, 2(6): 1321-1326.
[125] TAN Y H, LU G X, ZHENG J H, et al. Lithium Fluoride in Electrolyte for Stable and Safe Lithium-Metal Batteries[J]. Advanced Materials, 2021, 33(42): 2102134.
[126] WEBER R, GENOVESE M, LOULI A J, et al. Long Cycle Life and Dendrite-Free Lithium Morphology in Anode-Free Lithium Pouch Cells Enabled by a Dual-Salt Liquid Electrolyte[J]. Nature Energy, 2019, 4(8): 683-689.
[127] QIAN J, HENDERSON W A, XU W, et al. High Rate and Stable Cycling of Lithium Metal Anode[J]. Nature Communications, 2015, 6: 6362.
[128] REN X, ZOU L, JIAO S, et al. High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries[J]. ACS Energy Letters, 2019, 4(4): 896-902.
[129] YU Z, WANG H, KONG X, et al. Molecular Design for Electrolyte Solvents Enabling Energy-Dense and Long-Cycling Lithium Metal Batteries[J]. Nature Energy, 2020, 5(7): 526-533.
[130] LAGADEC M F, ZAHN R, WOOD V. Characterization and Performance Evaluation of Lithium-Ion Battery Separators[J]. Nature Energy, 2018, 4(1): 16-25.
[131] CHI M, SHI L, WANG Z, et al. Excellent Rate Capability and Cycle Life of Li Metal Batteries with ZrO2/POSS Multilayer-Assembled Pe Separators[J]. Nano Energy, 2016, 281-11.
[132] ZHAO C Z, CHEN P Y, ZHANG R, et al. An Ion Redistributor for Dendrite-Free Lithium Metal Anodes[J]. Science Advances, 2018, 4(11): eaat3446.
[133] CHEN X, ZHANG R, ZHAO R, et al. A “Dendrite-Eating” Separator for High-Areal-Capacity Lithium-Metal Batteries[J]. Energy Storage Materials, 2020, 31: 181-186.
[134] FANG C, LU B, PAWAR G, et al. Pressure-Tailored Lithium Deposition and Dissolution in Lithium Metal Batteries[J]. Nature Energy, 2021, 6(10): 987-994.
[135] CHEN Y, HUANG H, LIU L, et al. Diffusion Enhancement to Stabilize Solid Electrolyte Interphase[J]. Advanced Energy Materials, 2021, 11(40): 2101774.
[136] HUANG A, LIU H, MANOR O, et al. Enabling Rapid Charging Lithium Metal Batteries Via Surface Acoustic Wave-Driven Electrolyte Flow[J]. Advanced Materials, 2020, 32(14): 1907516.
[137] ADAIR K R, BANIS M N, ZHAO Y, et al. Temperature-Dependent Chemical and Physical Microstructure of Li Metal Anodes Revealed through Synchrotron-Based Imaging Techniques[J]. Advanced Materials, 2020, 32(32): 2002550.
[138] FAN X, JI X, CHEN L, et al. All-Temperature Batteries Enabled by Fluorinated Electrolytes with Non-Polar Solvents[J]. Nature Energy, 2019, 4(10): 882-890.
[139] YAN K, WANG J, ZHAO S, et al. Temperature-Dependent Nucleation and Growth of Dendrite-Free Lithium Metal Anodes[J]. Angewandte Chemie International Edition, 2019, 58(33): 11364-11368.
[140] ATKINSON R W, CARTER R, LOVE C T. Operational Strategy to Stabilize Lithium Metal Anodes by Applied Thermal Gradient[J]. Energy Storage Materials, 2019, 22: 18-28.
[141] LU D, SHAO Y, LOZANO T, et al. Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes[J]. Advanced Energy Materials, 2015, 5(3): 1400993.
[142] ZHENG J, YAN P, MEI D, et al. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High-Concentration Electrolyte Layer[J]. Advanced Energy Materials, 2016, 6(8): 1502151.
[143] HUANG Y K, PAN R, REHNLUND D, et al. First-Cycle Oxidative Generation of Lithium Nucleation Sites Stabilizes Lithium-Metal Electrodes[J]. Advanced Energy Materials, 2021, 11(9): 2003674.
[144] CHEN S, NIU C, LEE H, et al. Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries[J]. Joule, 2019, 3(4): 1094-1105.
[145] CHOUDHURY R, WILD J, YANG Y. Engineering Current Collectors for Batteries with High Specific Energy[J]. Joule, 2021, 5(6): 1301-1305.
[146] JIN D, ROH Y, JO T, et al. Robust Cycling of Ultrathin Li Metal Enabled by Nitrate-Preplanted Li Powder Composite[J]. Advanced Energy Materials, 2021, 11(18): 2003769.
[147] ZHANG K, LIU W, GAO Y, et al. A High-Performance Lithium Metal Battery with Ion-Selective Nanofluidic Transport in a Conjugated Microporous Polymer Protective Layer[J]. Advanced Materials, 2021, 33(5): 2006323.
[148] MIN YANG K, YANG K, CHO M, et al. Self-Assembled Functional Layers onto Separator toward Practical Lithium Metal Batteries[J]. Chemical Engineering Journal, 2023, 454: 140191.
[149] ZERRIN T, SHANG R, DONG B, et al. An Overlooked Parameter in Li-S Batteries: The Impact of Electrolyte-to-Sulfur Ratio on Capacity Fading[J]. Nano Energy, 2022, 104: 107913.
[150] ZHU Y, PANDE V, LI L, et al. Design Principles for Self-Forming Interfaces Enabling Stable Lithium-Metal Anodes[J]. Proceedings of the National Academy of Sciences, 2020, 117(44): 27195-27203.
[151] DAUBINGER P, EBERT F, HARTMANN S, et al. Impact of Electrochemical and Mechanical Interactions on Lithium-Ion Battery Performance Investigated by Operando Dilatometry[J]. Journal of Power Sources, 2021, 488: 229457.
[152] DAUBINGER P, GöTTLINGER M, HARTMANN S, et al. Consequences of Different Pressures and Electrolytes on the Irreversible Expansion of Lithium Metal Half Cells[J]. Batteries & Supercaps, 2022, 6(12): 202200452
[153] DE BIASI L, KONDRAKOV A O, GEßWEIN H, et al. Between Scylla and Charybdis: Balancing among Structural Stability and Energy Density of Layered NCM Cathode Materials for Advanced Lithium-Ion Batteries[J]. Journal of Physical Chemistry C, 2017, 121(47): 26163-26171.
[154] LI P, FANG Z, DONG X, et al. The Pathway toward Practical Application of Lithium-Metal Anodes for Non-Aqueous Secondary Batteries[J]. National Science Review, 2022, 9(8): nwac031.
[155] SHI P, LI T, ZHANG R, et al. Lithiophilic LiC6 Layers on Carbon Hosts Enabling Stable Li Metal Anode in Working Batteries[J]. Advanced Materials, 2019, 31(8): 1807131.
[156] LIU X, CHANG H, LI Y, et al. Polyelectrolyte-Bridged Metal/Cotton Hierarchical Structures for Highly Durable Conductive Yarns[J]. ACS Applied Materials & Interfaces, 2010, 2(2): 529-535.
[157] CHANG J, SHANG J, SUN Y, et al. Flexible and Stable High-Energy Lithium-Sulfur Full Batteries with Only 100% Oversized Lithium[J]. Nature Communications, 2018, 9(1): 4480.
[158] OHZUKU T, UEDA A, YAMAMOTO N. Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells[J]. Journal of the Electrochemical Society, 1995, 142(5): 1431-1435.
[159] NAKAYAMA N, NOZAWA T, IRIYAMA Y, et al. Interfacial Lithium-Ion Transfer at the Limn2o4 Thin Film Electrode/Aqueous Solution Interface[J]. Journal of Power Sources, 2007, 174(2): 695-700.
[160] GUO Y, NIU P, LIU Y, et al. An Autotransferable g-C3N4 Li+-Modulating Layer toward Stable Lithium Anodes[J]. Advanced Materials, 2019, 31(27): 1900342.
[161] LIU J, BAO Z, CUI Y, et al. Pathways for Practical High-Energy Long-Cycling Lithium Metal Batteries[J]. Nature Energy, 2019, 4(3): 180-186.
[162] SU C C, HE M, SHI J, et al. Solvation Rule for Solid-Electrolyte Interphase Enabler in Lithium-Metal Batteries[J]. Angewandte Chemie International Edition, 2020, 59(41): 18229-18233.
[163] LIU W, SONG M S, KONG B, et al. Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives[J]. Advanced Materials, 2017, 29(1): 1603436.
[164] NISHIDE H, OYAIZU K. Materials Science. Toward Flexible Batteries[J]. Science, 2008, 319(5864): 737-738.
[165] CHEN J, LIU C T. Technology Advances in Flexible Displays and Substrates[J]. IEEE Access, 2013, 1150-158.
[166] LIANG Y, ZHAO C Z, YUAN H, et al. A Review of Rechargeable Batteries for Portable Electronic Devices[J]. InfoMat, 2019, 1(1): 6-32.
[167] ZENG L, QIU L, CHENG H-M. Towards the Practical Use of Flexible Lithium Ion Batteries[J]. Energy Storage Materials, 2019, 23434-438.
[168] GAO Y, XIE C, ZHENG Z. Textile Composite Electrodes for Flexible Batteries and Supercapacitors: Opportunities and Challenges[J]. Advanced Energy Materials, 2020, 11(3): 2002838.
[169] MARTIN C, GENOVESE M, LOULI A J, et al. Cycling Lithium Metal on Graphite to Form Hybrid Lithium-Ion/Lithium Metal Cells[J]. Joule, 2020, 4(6): 1296-1310.
[170] LIU B, ZHANG Y, WANG Z, et al. Coupling a Sponge Metal Fibers Skeleton with in Situ Surface Engineering to Achieve Advanced Electrodes for Flexible Lithium-Sulfur Batteries[J]. Advanced Materials, 2020, 32(34): 2003657.
[171] CHANG W C, KAO T L, LIN Y, et al. A Flexible All Inorganic Nanowire Bilayer Mesh as a High-Performance Lithium-Ion Battery Anode[J]. Journal of Materials Chemistry A, 2017, 5(43): 22662-22671.
[172] WANG Y, WANG Y, JIA D, et al. All-Nanowire Based Li-Ion Full Cells Using Homologous Mn2O3 and LiMn2O4[J]. Nano Letters, 2014, 14(2): 1080-1084.
[173] LIU F, SONG S, XUE D, et al. Folded Structured Graphene Paper for High Performance Electrode Materials[J]. Advanced Materials, 2012, 24(8): 1089-1094.
[174] ZHAO X, HAYNER C M, KUNG M C, et al. Flexible Holey Graphene Paper Electrodes with Enhanced Rate Capability for Energy Storage Applications[J]. ACS Nano, 2011, 5(11): 8739-8749.
[175] LIU B, ZHANG J, WANG X, et al. Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries[J]. Nano Letters, 2012, 12(6): 3005-3011.
[176] PU X, LI L, SONG H, et al. A Self-Charging Power Unit by Integration of a Textile Triboelectric Nanogenerator and a Flexible Lithium-Ion Battery for Wearable Electronics[J]. Advanced Materials, 2015, 27(15): 2472-2478.
[177] BALOGUN M S, YANG H, LUO Y, et al. Achieving High Gravimetric Energy Density for Flexible Lithium-Ion Batteries Facilitated by Core-Double-Shell Electrodes[J]. Energy & Environmental Science, 2018, 11(7): 1859-1869.
[178] EBNER M, CHUNG D-W, GARCíA R E, et al. Tortuosity Anisotropy in Lithium-Ion Battery Electrodes[J]. Advanced Energy Materials, 2014, 4(5): 1301278.
[179] SANDER J S, ERB R M, LI L, et al. High-Performance Battery Electrodes Via Magnetic Templating[J]. Nature Energy, 2016, 1(8): 99.
[180] PENG J, SNYDER G J. A Figure of Merit for Flexibility[J]. Science, 2019, 366(6466): 690-691.
[181] AN Y, LUO C, YAO D, et al. Natural Cocoons Enabling Flexible and Stable Fabric Lithium-Sulfur Full Batteries[J]. Nano-Micro Letters, 2021, 13(1): 84.
[182] DENG Z, JIANG H, HU Y, et al. 3D Ordered Macroporous MoS2@C Nanostructure for Flexible Li-Ion Batteries[J]. Advanced Materials, 2017, 29(10): 1603020.
[183] FU X, DUNNE F, CHEN M, et al. A Wet-Processed, Binder-Free Sulfur Cathode Integrated with a Dual-Functional Separator for Flexible Li-S Batteries[J]. Nanoscale, 2020, 12(9): 5483-5493.
[184] HE X, HU Y, CHEN R, et al. Foldable Uniform GeOx/ZnO/C Composite Nanofibers as a High-Capacity Anode Material for Flexible Lithium Ion Batteries[J]. Chemical Engineering Journal, 2019, 3601020-1029.
[185] KIM J-M, KIM J A, KIM S-H, et al. All-Nanomat Lithium-Ion Batteries: A New Cell Architecture Platform for Ultrahigh Energy Density and Mechanical Flexibility[J]. Advanced Energy Materials, 2017, 7(22): 1701099.
[186] PARK M, CHA H, LEE Y, et al. Postpatterned Electrodes for Flexible Node-Type Lithium-Ion Batteries[J]. Advanced Materials, 2017, 29(11): 1605773.
[187] SHEN W, LI K, LV Y, et al. Highly‐Safe and Ultra‐Stable All‐Flexible Gel Polymer Lithium Ion Batteries Aiming for Scalable Applications[J]. Advanced Energy Materials, 2020, 10(21): 1904281.
[188] SON J M, OH S, BAE S H, et al. A Pair of NiCo2O4 and V2O5 Nanowires Directly Grown on Carbon Fabric for Highly Bendable Lithium‐Ion Batteries[J]. Advanced Energy Materials, 2019, 9(18): 1900477.
[189] KIM S H, KIM N Y, CHOE U J, et al. Ultrahigh-Energy-Density Flexible Lithium-Metal Full Cells Based on Conductive Fibrous Skeletons[J]. Advanced Energy Materials, 2021, 11(24): 2100531.
[190] CHANG J, HUANG Q Y, ZHENG Z J. A Figure of Merit for Flexible Batteries[J]. Joule, 2020, 4(7): 1346-1349.
[191] CHANG J, HUANG Q, GAO Y, et al. Pathways of Developing High-Energy-Density Flexible Lithium Batteries[J]. Advanced Materials, 2021, 33(46): 2004419.

所在学位评定分委会
物理学
国内图书分类号
TQ15
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544491
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
罗超. 三维锂金属负极的一体化结构设计及界面调控[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930816-罗超-材料科学与工程系(15346KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[罗超]的文章
百度学术
百度学术中相似的文章
[罗超]的文章
必应学术
必应学术中相似的文章
[罗超]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。