中文版 | English
题名

多车主博弈视角下的电动汽车交互式充放电策略研究

其他题名
RESEARCH ON INTERACTIVE CHARGING AND DISCHARGING STRATEGY OF ELECTRIC VEHICLE UNDER THE PERSPECTIVE OF MULTI-OWNER GAME
姓名
姓名拼音
LI Zejie
学号
12032221
学位类型
硕士
学位专业
080902 电路与系统
学科门类/专业学位类别
08 工学
导师
蹇林旎
导师单位
电子与电气工程系
论文答辩日期
2023-05-16
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
随着电动汽车的数量不断增多,大规模无序充电给电网带来的压力也 不容忽视。车网能量互动(V2G)技术为电动汽车利用其电池能量实现灵 活储能支撑电力系统,缓解电网压力提供了可能。而电动汽车交互式充放 电(V2V)技术作为车网能量互动技术的一种补充,更有效地促进了电动汽车之间的交互,对于构建用户友好型电网,激发车主作为电能量交易主体具有重要意义。基于此,本文引入了博弈论作为理论基础,研究多车主博弈视角下的电动汽车交互式充放电策略。具体完成了如下工作:
首先,针对现有研究中关于电动汽车参与电力市场的机制定义不明晰的问题,对电动汽车参与电力市场的机制进行了再思考。通过从市场角度对 V2G V2V 这两种机制进行辨析,进一步明确了 V2V 机制的独特性。
在此基础上,对电动汽车通过 V2V 机制参与电力市场进行了深入的分析并对其具体的实施方案进行了研究。
其次,针对电动汽车充放电调度过程中车主充电紧急性与经济利益之间潜在的矛盾关系,提出了一种考虑车主充电紧急程度与价格适配性的电动汽车交互式充放电策略。在所设计的交互式充放电机制所需要遵循原则的基础上,规划了车主充电紧急程度和价格适配性的模型,并通过议价博弈理论在电动汽车交互式充放电策略中的应用完成了议价博弈问题的构建。 算例结果表明所提策略使车主用电成本明显下降,确保车主参与的积极性。
最后,针对电动汽车可灵活部署和分布式电力市场互动的潜能,提出了一种基于非合作博弈理论和优化模型的电动汽车交互式充放电策略。根据车主和充电场站的实际情况构建了优化模型,之后引入了非合作博弈理论并将该优化模型所对应的实际问题等价为电动汽车充放电决策的纳什均衡问题并结合信息物理架构设计了对应的均衡求解算法。算例结果表明所提策略与常规充电策略相比,显著降低了局部配电网的负荷方差的同时兼顾了车主用电需求的满足和成本的下降,同时所设计的算法有效地对电动
汽车充放电决策的纳什均衡问题进行了求解并收敛到均衡值。
其他摘要
As the number of electric vehicles (EVs) continues to increase, the pressure brought to the power grid by large-scale uncoordinated charging cannot be ignored. Vehicle-to-Grid (V2G) technology provides the possibility for EVs to use their battery energy to support the power system with flexible energy storage and alleviate the pressure on the power grid. Meanwhile, Vehicle-to-Vehicle (V2V) technology, as a supplement to V2G technology, more effectively promotes interaction between EVs. This is of great significance for building user-friendly power grids and inspiring vehicle owners as the main players in energy transactions. Based on this, this paper introduces game theory as a theoretical basis to study the strategy of interactive charging for EVs from a multi-owner game perspective. The specific work completed is as follows:
In response to the unclear definition of the mechanism of electric vehicle participation in the electricity market in existing research, this study reconsiders the mechanisms of electric vehicle participating in the electricity market. By analyzing V2G and V2V mechanisms from a market perspective, the uniqueness of the V2V mechanism is further clarified. Based on this, this study conducts an in-depth analysis of electric vehicles participating in the electricity market through the V2V mechanism and explores specific implementation plans.
In response to the potential conflict between the urgency of EV charging and economic benefits during the charging and discharging scheduling process, a V2V charging and discharging strategy for EVs is proposed that takes into account both the urgency of charging for the vehicle owner and the adaptability of pricing. Based on the principles of the designed interactive charging mechanism, a model is developed for the compatibility of charging urgency and pricing. Bargaining theory is applied to construct a bargaining problem in the V2V charging and discharging strategy. The case study results indicate that the proposed strategy can significantly reduce the electric cost of EVs owners and ensure their active participation in the interactive charging process.
In response to the potential for flexible deployment of electric vehicles and interaction with distributed power markets, a non-cooperative game theory and optimization-based electric vehicle interactive charging strategy is proposed. An optimization model is constructed based on the actual situations of vehicle owners and charging stations. Then, non-cooperative game theory is introduced and the actual problem corresponding to the optimization model is equivalently solved as a Nash equilibrium problem of electric vehicle charging and discharging decisions. An equilibrium solution algorithm is designed based on the practical information physical architecture. The numerical results show that compared with conventional charging methods, the proposed strategy significantly reduces the load variance of local distribution networks while considering both the satisfaction of vehicle owner's electricity demand and cost reduction. Furthermore, the designed algorithm effectively solves the Nash equilibrium problem of electric vehicle charging and discharging decisions.
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] International Energy Agency. Global EV Outlook 2021-Accelerating ambitionsdespite the pandemic[R]. IEA, 2021.
[2] SHI L, LIU J, WANG Y, et al. Cleaner production progress in developing andtransition countries[J]. Journal of Cleaner Production, 2021, 278: 123763.
[3] 国务院办公厅. 关于印发《新能源汽车产业发展规划(2021-2035 年)》的通知:国 办 发
[2020]39 号 [EB/OL]. (2020-10-20)
[2020-11-02]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm.
[4] ZHENG Y, SHAO Z, ZHANG Y, et al. A systematic methodology formid-and-longterm electric vehicle charging load forecasting: The case study of Shenzhen, China[J]. Sustainable Cities and Society, 2020, 1(56): 102084.
[5] WEI W, YE Z, WANG Y, et al. An economic optimization method for demand-sideenergy-storage accident backup assisted deep peaking of thermal power units[J]. Chinese Journal of Electrical Engineering, 2022, 2(8): 62-74.
[6] SECINARO S, BRESCIA V, CALANDRA D, et al. Employing bibliometric analysisto identify suitable business models for electric cars[J]. Journal of CleanerProduction, 2020, 264: 121503.
[7] KUMAR R.R, ALOK K. Adoption of electric vehicle: A literature review andprospects for sustainability[J]. Journal of Cleaner Production, 2020, 253: 119911.
[8] SECINARO S, CALANDRA D, LANZALONGA F, et al. Electric vehicles consumerbehaviours: Mapping the field and providing a research agenda[J]. Journal ofBusiness Research, 2022, 150: 399-416.
[9] KEMPTON W, LETENDRE S. Electric vehicles as a new power source for electricutilities[J]. Transportation Research Part D: Transport and Environment, 1997, 2(3):157-175.
[10] YILMAZ M, KREIN P. Review of the impact of vehicle-to-grid technologies ondistribution systems and utility interfaces[J]. IEEE Transactions on PowerElectronics, 2013, 28(12): 5673-5689.
[11] ZHOU J, ZHANG Y, LI Z, et al. Stochastic scheduling of a power grid in thepresence of EVs, RESs, and risk index with a developed lightning searchalgorithm[J]. Journal of Cleaner Production, 2022, 364: 132473.
[12] ZHANG Y, YUAN F, ZHAI H, et al. Optimizing the planning of distributedgeneration resources and storages in the virtual power plant, considering loaduncertainty[J]. Journal of Cleaner Production, 2023, 387: 135868.
[13] SHIN H, BALDICK R. Plug-In electric vehicle to home (V2H) operation under agrid outage[J]. IEEE Transactions on Smart Grid, 2017, 8(4): 2032-2041.
[14] NGUYEN D, Le L. Joint optimization of electric vehicle and home energyscheduling considering user comfort preference. IEEE Transactions on Smart Grid, 2014, 5(1): 188-199.
[15] SARKER M, PANDZIC H, ORTEGA-VAZQUEZ M. Optimal operation and servicesscheduling for an electric vehicle battery swapping station[J]. IEEE Transactions onPower Systems, 2015, 2(30): 901-910.
[16] KARAGIANNIS G, ALTINTAS O, EKICI E, et al. Vehicular networking: A surveyand tutorial on requirements, architectures, challenges, standards and solutions[J]. IEEE Communications Surveys & Tutorials, 2011, 4(13): 584-616.
[17] LIU C, CHAU K, WU D, et al. Opportunities and challenges of vehicle-to- home,vehicle-to-vehicle,and vehicle-to-grid technologies[J]. Proceedings of theIEEE, 2013, 101(11): 2409-2427.
[18] MASRUR M, SKOWRONSKA A, HANCOCK J, et al. Military-Based vehicle-to- grid and vehicle-to-vehicle microgrid—System architecture and implementation. IEEE Transactions on Transportation Electrification, 2018, 4(1): 157-171.
[19] BULUT E, KISACIKOGLU M, AKKAYA K. Spatio-Temporal Non-Intrusive directV2V charge sharing coordination[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 9385-9398.
[20] YOU P, YANG Z, CHOW M, et al. Optimal cooperative charging strategy for asmart charging station of electric vehicles[J]. IEEE Transactions on Power Systems, 2016, 31(4): 2946-2956.
[21] ZHANG K, MAO Y, LENG S, et al. Incentive-Driven energy trading in the smartgrid[J]. IEEE Access, 2016, 4: 1243-1257.
[22] WANG M, MUHAMMAD I, Zhang R, et al. Spatio-Temporal coordinated V2Venergy swapping strategy for mobile PEVs[J]. IEEE Transactions on Smart Grid, 2018, 9(3): 1566-1579.
[23] GAO J, GAO F, YANG Y, et al. Configuration optimization and benefit allocationmodel of multi-park integrated energy systems considering electric vehicle chargingstation to assist services of shared energy storage power station[J]. Journal ofCleaner Production, 2022, 336: 130381.
[24] 张忠会, 赖飞屹, 谢义苗. 基于纳什均衡理论的电力市场三方博弈分析[J]. 电网技术, 2016, 40(12): 3671-3679.
[25] ZHANG R, CHENG X, Yang L. Flexible energy management protocol forcooperative EV-to-EV charging[J]. IEEE Transactions on Intelligent TransportationSystems, 2019, 20(1): 172-184.
[26] ZENG L, LI C, LI Z, et al. Hierarchical bipartite graph matching method fortransactive V2V power exchange in distribution power system[J]. IEEE Transactionson Smart Grid, 2021, 12(1): 301-311.
[27] SANCHEZ-MARTIN P, SANCHEZ G, MORALES-ESPANA G. Direct load controldecision model for aggregated EV charging points[J]. IEEE Transactions on PowerSystems, 2012, 27(3): 1577-1584.
[28] 王惠洲, 于艾清. 基于联盟区块链技术的 V2V 电力交易研究[J]. 现代电力, 2019, 36(3): 34-41.
[29] ZHANG Q, SU Y, WU X, et al. Electricity trade strategy of regional electric vehiclecoalitions based on blockchain[J]. Electric Power Systems Research, 2022, 204:107667.
[30] ZHAO F, LI Z, WANG D, et al. Peer-to-peer energy sharing with demand-sidemanagement for fair revenue distribution and stable grid interaction in thephotovoltaic community[J]. Journal of Cleaner Production, 2023, 383: 135271.
[31] KOUFAKIS A, RIGAS E, BASSILIADES N, et al. Offline and online electricvehicle charging scheduling with V2V energy transfer[J]. IEEE Transactions onIntelligent Transportation Systems, 2020, 21(5): 2128-2138.
[32] LIU Z, WU Q, HUANG S, et al. Optimal day-ahead charging scheduling of electricvehicles through an aggregative game model[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 5173-5184.
[33] ZHAO T, LI Y, Pan X, et al. Real-Time optimal energy and reserve management ofelectric vehicle fast charging station: hierarchical game approach[J]. IEEETransactions on Smart Grid, 2018, 9(5): 5357-5370.
[34] YU Y, CHEN S, LUO Z, et al. Residential microgrids energy trading with plug-inelectric vehicle battery via stochastic games[J]. IEEE Access, 2019, 7: 174507- 174516.
[35] LI Y, ZHAO T, LIU C, et al. An interactive decision-making model based on energyand reserve for electric vehicles and power grid using generalized Stackelberggame[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 3301-3309.
[36] ZHANG Y, YANG Q, YU W, et al. An online continuous progressive second priceauction for electric vehicle charging[J]. IEEE Internet of Things Journal, 2019, 6(2):2907-2921.
[37] ZOU S, MA Z, LIU X, et al. An efficient game for coordinating electric vehiclecharging[J]. IEEE Transactions on Automatic Control, 2017, 62(5): 2374-2389.
[38] 陈吕鹏, 潘振宁, 余涛, 等. 基于动态非合作博弈的大规模电动汽车实时优化调度[J]. 电力系统自动化, 2019, 43(24): 32-40.
[39] KARFOPOULOS E, HATZIARGYRIOU N. A multi-agent system for controlledcharging of a large population of electric vehicles[J]. IEEE Transactions on PowerSystems, 2013, 28(2): 1196-1204.
[40] GAO X, CHAN K, Xia S, et al. A multi agent competitive bidding strategy in a pool- based electricity market with price-maker participants of WPPs and EVaggregators[J]. IEEE Transactions on Industrial Informatics, 2021, 17(11): 7256-7268.
[41] LI G, SUN Q, BOUKHATEM L, et al. Intelligent vehicle-to-vehicle chargingnavigation for mobile electric vehicles via VANET-Based communication[J]. IEEEAccess, 2019, 7: 170888-170906.
[42] WAN Y, QIN J, LI F, et al. Game theoretic-based distributed charging strategy forPEVs in a smart charging station[J]. IEEE Transactions on Smart Grid, 2021, 12(1):538-547.
[43] 周华嫣然, 周羿宏, 胡俊杰, 等. 人工智能技术支撑的集群电动汽车实时优化调度策略[J]. 电网技术, 2021, 45(04):1446-1459.
[44] 李航, 李国杰, 汪可友, 等. 基于深度强化学习的电动汽车实时调度策略[J]. 电力系统自动化, 2020, 44(22): 161-167.
[45] 卢强, 陈来军, 梅生伟. 博弈论在电力系统中典型应用及若干展望[J]. 中国电机工程学报, 2014, 34(29): 5009-5017.
[46] VON NEUMAN J, MORGENSTERN O. Theory of games and economic behavior[M]. Princeton: Princeton University Press, 1944.
[47] 王则柯, 李杰, 欧瑞秋. 博弈论教程[M]. 北京: 中国人民大学出版社, 2018.
[48] NASH J. Non-cooperative games[J]. Annals of Mathematics, 1951, 54(2): 286-295.
[49] MAYNARD SMITH J. Evolution and the theory of games[M]. Cambridge:Cambridge University Press, 1982: 40-65.
[50] 姜雨晴. 多主体博弈视角下的电动汽车充放电调度策略研究[D]. 东北电力大学, 2022.
[51] KEMPTON W, TOMIĆ J. Vehicle-to-grid power implementation: From stabilizingthe grid to supporting large-scale renewable energy[J]. Journal of Power Sources, 2005, 144(1): 280-294.
[52] COASE R. The nature of the firm[J]. Economica, 1937, 4: 386-405.
[53] 蒋嗣凡. 分布式光伏 P2P 交易机制和交易策略研究[D]. 浙江大学, 2020.
[54] MOHSENIAN-RAD A, WONG V, JATSKEVICH J, et al. Autonomous demand-sidemanagement based on game-theoretic energy consumption scheduling for the future smart grid[J]. IEEE Transactions on Smart Grid, 2010, 1(3): 320-331.
[55] SHANG Y, LIU M, SHAO Z, et al. A centralized vehicle-to-grid scheme withdistributed computing capacity engaging internet of smart charging points: Casestudy[J]. International Journal of Energy Research, 2021, 45(1): 841–863.
[56] LIU W, WEN F, XUE Y. A bargaining model for electric vehicle aggregators andpower system dispatchers[C]//2014 IEEE PES Asia-Pacific Power and EnergyEngineering Conference (APPEEC). IEEE 2014, 2014: 1-6.
[57] KRISTOFFERSEN T, CAPION K, MEIBOM P. Optimal charging of electric drivevehicles in a market environment[J]. Applied Energy, 2011, 88(5): 1940-1948.
[58] BOYD S, VANDENBERGHE L. Convex optimization[M]. Cambridge: CambridgeUniversity Press, 2004.
[59] FACCHINEI F, PANG J. Nash equilibria: The variational approach[J]. ConvexOptimization in Signal Processing and Communications, 2009: 443-493.
[60] CHEN X, LEUNG K. Non-cooperative and cooperative optimization of schedulingwith vehicle-to-grid regulation services[J]. IEEE Transactions on VehicularTechnology, 2020, 69(1): 114-130.
[61] CUI Y, HU Z, LUO H. Optimal day-ahead charging and frequency reservescheduling of electric vehicles considering the regulation signal uncertainty. IEEETransactions on Industry Applications, 2020, 56(5): 5824-5835.

所在学位评定分委会
电子科学与技术
国内图书分类号
TM73
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544492
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
李泽锴. 多车主博弈视角下的电动汽车交互式充放电策略研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032221-李泽锴-电子与电气工程(8310KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李泽锴]的文章
百度学术
百度学术中相似的文章
[李泽锴]的文章
必应学术
必应学术中相似的文章
[李泽锴]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。