中文版 | English
题名

基于改进气溶胶模型的内陆及近岸水体水色遥感大气校正算法及应用

其他题名
Research and application of atmospheric correction algorithm of ocean color remote sensing for inland and nearshore coastal waters based on improved aerosol models
姓名
姓名拼音
ZHAO Dan
学号
11930928
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
冯炼
导师单位
环境科学与工程学院
论文答辩日期
2023-05-17
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

卫星遥感监测技术为湖泊水环境及其长时序变化过程的有效评估提供了海量观测数据,能有效弥补常规监测方法的缺陷,以提高湖泊水环境监测的范围和准确度,是实现湖泊大范围可持续发展的关键技术。然而,由于卫星总信号中可反映水体特征的有效信号占比较低,大多数为大气辐射信号的干扰,严重限制了内陆湖泊水环境遥感监测应用。因此,提高水体定量化遥感监测的精度需要从根本上提高从传感器信号中提取水体有效信息的精度,即提高大气校正精度。水色遥感大气校正,即大气程辐射信号的剔除,是实现一切水色参数定量化反演及水环境监测的基础前提。其基本思路为消除大气中的吸收、散射效应和水体表面反射信号,主要包括大气分子的吸收和散射、大气气溶胶的吸收和散射、以及水体表面镜面反射等。

由于内陆区域水体和水体上空大气受人类活动影响,具有水体光学特征复杂,水体上空大气光学特征动态变化强等特点,因此将海洋水色遥感大气校正算法应用于内陆水体时精度较低,其中现有标准气溶胶模型无法准确表征内陆区域大气气溶胶状况也是导致大气校正精度低的关键。因此需要在研究内陆气溶胶分布特征的基础上,对内陆水体大气校正算法进行优化。

基于上述问题,本文提出一种适用于内陆和近岸水体的大气校正算法,ACLANC(Atmospheric Correction algorithm for inLand And Nearshore Coastal waters)。该算法利用水体附近陆地表面的插值后气溶胶光学厚度(aerosol optical depth,AOD)数据作为直接输入参数,同时通过6SV辐射传输模型(Second Simulation of the Satellite Signal in the Solar Spectrum-Vector)中大陆型气溶胶模型以及SeaDAS(SeaWiFS Data Analysis System)软件中近似气溶胶模型(即r85f20模型)以模拟气溶胶散射反射率。经全球实测光谱数据验证表明,ACLANC算法在MODIS传感器可见光波段遥感反射率(remote sensing reflectance,Rrs)与实测数据具有较好的一致性,平均R2为0.77±0.09,无偏百分比误差为28.7±9.8%。ACLANC算法在Rrs校正精度以及数据覆盖范围方面表现均优于现有的大气校正算法,该算法可有效提高Rrs产品的精度。算法不确定度模拟分析结果表明,ACLANC算法误差主要源于气溶胶光学厚度产品,占算法总误差的50%以上,且该误差随AOD的减小逐步增加。在浑浊气溶胶环境下,气溶胶模型对算法误差的贡献高达50%,其中SeaDAS软件固定气溶胶模型贡献约30%的误差。

考虑内陆和近岸水域大气校正时使用标准气溶胶模型导致结果具有较大不确定性的问题,利用全球内陆区域1475个AERONET(Aerosol Robotic Network)站点的实测气溶胶数据,分析内陆区域气溶胶光学特性的空间和季节特征,刻画内陆区域气溶胶时空分布状况,以构建基于地理网格的全球内陆气溶胶模型。本文将全球划分为5°×5°地理网格,利用AERONET气溶胶数据月尺度均值,构建网格化气溶胶模型,共3207个,覆盖全球310个地理网格。同时,本文为所有气溶胶模型建立了相关的气溶胶查找表,并将其应用于大气校正算法。经星地同步数据验证,结果表明使用新气溶胶模型可以大大提高大气校正Rrs的精度。在此基础上,建立基于改进气溶胶模型的适用于内陆水体水色遥感应用的精确大气校正算法。

在上述基于改进气溶胶模型的大气校正算法基础上,考虑不同类型水体光学特征的差异,利用全球野外实测光谱数据和准分析算法构建适用于大范围不同类型水体的半解析水体透明度估算模型。经实测水体透明度数据验证,该反演模型的绝对平均误差为23.6%。基于精确大气校正Rrs获取全国2003-2020年湖库水体透明度时空分布。分析结果表明,全国湖库水体透明度的空间分布状况为西高东低,在2003-2020年之间,全国湖库水体透明度总体呈现显著上升的趋势(Z>0,p<0.05),尤其是在2012年之后,水体透明度上升趋势增加。此外,2015年全国湖库水体透明度的异常突增是由于青藏高原中部区域湖泊水体透明度异常现象所致。该异常现象是受2015年强厄尔尼诺控制的湖泊水动力系统变化的表征。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] 中华人民共和国水利部. 2021年中国水资源公报[R]. 北京: 中华人民共和国水利部, 2021.
[2] XIE P, CHEN Y. Threats to Biodiversity in Chinese Inland Waters[J]. Ambio, 1999, 28(8): 674-681.
[3] WANG S, MENG W, JIN X, et al. Ecological security problems of the major key lakes in China[J]. Environmental Earth Sciences, 2015, 74(5): 3825-3837.
[4] QIU J. China to Spend Billions Cleaning Up Groundwater[J]. Science, 2011, 334(6057): 745-745.
[5] JIANG Y. China’s water scarcity[J]. Journal of Environmental Management, 2009, 90(11): 3185-3196.
[6] CLARK D K. Phytoplankton Pigment Algorithms for the Nimbus-7 CZCS[M]//GOWER J F R. Oceanography from Space. Boston, MA: Springer US, 1981: 227-237.
[7] COBLE P G. Marine Optical Biogeochemistry: The Chemistry of Ocean Color[J]. Chemical Reviews, 2007, 107(2): 402-418.
[8] D’SA E J, MILLER R L, MCKEE B A. Suspended particulate matter dynamics in coastal waters from ocean color: Application to the northern Gulf of Mexico[J]. Geophysical Research Letters, 2007, 34(L23611).
[9] 段洪涛, 曹志刚, 沈明, 等. 湖泊遥感研究进展与展望[J]. 遥感学报, 2022, 26(01): 3-18.
[10] MOBLEY C D, STRAMSKI D, BISSETT W P, et al. Optical Modeling of Ocean Waters: Is the Case 1 - Case 2 Classification Still Useful?[J]. Oceanography, 2004, 17(2): 60-67.
[11] LEE Z, CARDER K L, ARNONE R A. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters[J]. Applied Optics, 2002, 41(27): 5755-5772.
[12] HU C, CHEN Z, CLAYTON T D, et al. Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL[J]. Remote Sensing of Environment, 2004, 93(3): 423-441.
[13] HU C, LEE Z, MA R, et al. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China[J]. Journal of Geophysical Research: Oceans, 2010, 115(C04002).
[14] SHANG S, LEE Z, SHI L, et al. Changes in water clarity of the Bohai Sea: Observations from MODIS[J]. Remote Sensing of Environment, 2016, 186: 22-31.
[15] PALMER S C J, KUTSER T, HUNTER P D. Remote sensing of inland waters: Challenges, progress and future directions[J]. Remote Sensing of Environment, 2015, 157: 1-8.
[16] QI L, LEE Z, HU C, et al. Requirement of minimal signal-to-noise ratios of ocean color sensors and uncertainties of ocean color products[J]. Journal of Geophysical Research: Oceans, 2017, 122(3): 2595-2611.
[17] WANG M. Atmospheric correction of ocean colour remote sensing observations[R]. Villefranche‐sur‐Mer, France: IOCCG, 2014.
[18] GORDON H R, WANG M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm[J]. Applied Optics, 1994, 33(3): 443-452.
[19] GORDON H, DU T, ZHANG T. Remote sensing of ocean color and aerosol properties: Resolving the issue of aerosol absorption[J]. Applied Optics, 1997, 36: 8670-8684.
[20] GORDON H R, WANG M. Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors[J]. Applied Optics, 1994, 33(33): 7754-7763.
[21] COX C, MUNK W. Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter[J]. Journal of the Optical Society of America, 1954, 44(11): 838-850.
[22] FRASER R S, MATTOO S, YEH E N, et al. Algorithm for atmospheric and glint corrections of satellite measurements of ocean pigment[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 17107-17118.
[23] RUDDICK K G, DE CAUWER V, PARK Y J, et al. Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters[J]. Limnology and Oceanography, 2006, 51(2): 1167-1179.
[24] FENG L, HOU X, LI J, et al. Exploring the potential of Rayleigh-corrected reflectance in coastal and inland water applications: A simple aerosol correction method and its merits[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146: 52-64.
[25] BAILEY S W, FRANZ B A, WERDELL P J. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing[J]. Optics Express, 2010, 18(7): 7521-7527.
[26] MOBLEY C, WERDELL J, FRANZ B, et al. Atmospheric Correction for Satellite Ocean Color Radiometry[Z]. National Aeronautics and Space Administration, 2016.
[27] WANG M, SHI W. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing[J]. Optics Express, 2007, 15(24): 15722-15733.
[28] VANHELLEMONT Q, RUDDICK K. Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8[J]. Remote Sensing of Environment, 2015, 161: 89-106.
[29] GORDON H. Removal of atmospheric effects from satellite imagery of the oceans[J]. Applied optics, 1978, 17: 1631-1636.
[30] FRANZ B A, BAILEY S W, KURING N, et al. Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS[J]. Journal of Applied Remote Sensing, 2015, 9(1): 096070.
[31] MOORE T S, CAMPBELL J W, FENG H. Characterizing the uncertainties in spectral remote sensing reflectance for SeaWiFS and MODIS-Aqua based on global in situ matchup data sets[J]. Remote Sensing of Environment, 2015, 159: 14-27.
[32] WANG M, LIU X, TAN L, et al. Impacts of VIIRS SDR performance on ocean color products[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(18): 10347-10360.
[33] STUMPF R P, ARNONE R A, GOULD R W, et al. A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters[J]. NASA Tech. Memo, 2003, 206892: 51-59.
[34] RUDDICK K, OVIDIO F, RIJKEBOER M. Atmospheric Correction of SeaWiFS Imagery for Turbid Coastal and Inland Waters[J]. Applied optics, 2000, 39: 897-912.
[35] LAVENDER S, PINKERTON M, MOORE G, et al. Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters[J]. Continental Shelf Research, 2005, 25: 539-555.
[36] HU C, CARDER K L, MULLER-KARGER F E. Atmospheric Correction of SeaWiFS Imagery over Turbid Coastal Waters: A Practical Method[J]. Remote Sensing of Environment, 2000, 74(2): 195-206.
[37] WANG M. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations[J]. Applied Optics, 2007, 46(9): 1535-1547.
[38] HALE G M, QUERRY M R. Optical Constants of Water in the 200-nm to 200-μm Wavelength Region[J]. Applied optics, 1973, 12(3): 555-563.
[39] WEI J, LEE Z, GARCIA R, et al. An assessment of Landsat-8 atmospheric correction schemes and remote sensing reflectance products in coral reefs and coastal turbid waters[J]. Remote Sensing of Environment, 2018, 215: 18-32.
[40] WANG M, SHI W. Sensor Noise Effects of the SWIR Bands on MODIS-Derived Ocean Color Products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3280-3292.
[41] CHEN S, ZHANG T, HU L. Evaluation of the NIR-SWIR atmospheric correction algorithm for MODIS-Aqua over the Eastern China Seas[J]. International Journal of Remote Sensing, 2014, 35(11-12): 4239-4251.
[42] CHEN J, CUI T, LIN C. An Improved SWIR Atmospheric Correction Model: A Cross-Calibration-Based Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 3959-3967.
[43] GORDON H R. Atmospheric correction of ocean color imagery in the Earth Observing System era[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 17081-17106.
[44] STEINMETZ F, DESCHAMPS P Y, RAMON D. Atmospheric correction in presence of sun glint: application to MERIS[J]. Opt. Express, 2011, 19(10): 9783-9800.
[45] MAO Z, CHEN J, HAO Z, et al. A new approach to estimate the aerosol scattering ratios for the atmospheric correction of satellite remote sensing data in coastal regions[J]. Remote Sensing of Environment, 2013, 132: 186-194.
[46] VANHELLEMONT Q, RUDDICK K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications[J]. Remote Sensing of Environment, 2018, 216: 586-597.
[47] VERMOTE E, TANRÉ D, DEUZÉ J L, et al. Second simulation of a satellite signal in the solar spectrum-vector (6SV), 6S User Guide Version 3[Z]. 2006.
[48] BRAJARD J, SANTER R, CRÉPON M, et al. Atmospheric correction of MERIS data for case-2 waters using a neuro-variational inversion[J]. Remote Sensing of Environment, 2012, 126: 51-61.
[49] FAN Y, LI W, GATEBE C K, et al. Atmospheric correction over coastal waters using multilayer neural networks[J]. Remote Sensing of Environment, 2017, 199: 218-240.
[50] LIU H, HE X, LI Q, et al. Estimating ultraviolet reflectance from visible bands in ocean colour remote sensing[J]. Remote Sensing of Environment, 2021, 258: 112404.
[51] MEN J, TIAN L, ZHAO D, et al. Development of a Deep Learning-Based Atmospheric Correction Algorithm for Oligotrophic Oceans[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-19.
[52] BASSANI C, MANZO C, BRAGA F, et al. The impact of the microphysical properties of aerosol on the atmospheric correction of hyperspectral data in coastal waters[J]. Atmospheric Measurement Techniques, 2015, 8(3): 1593-1604.
[53] OMAR A H, WON J G, WINKER D M, et al. Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10S14).
[54] SHETTLE E P, FENN R W. Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical Properties[M]. Optical Physics Division, Air Force Geophysics Laboratory, 1979.
[55] TANRÉ D, KAUFMAN Y J, HERMAN M, et al. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 16971-16988.
[56] D’ALMEIDA G A, KOEPKE P, SHETTLE E P. Atmospheric Aerosols: Global Climatology and Radiative Characteristics[M]. A. Deepak Pub., 1991.
[57] LOGAN T, XI B, DONG X, et al. Classification and investigation of Asian aerosol absorptive properties[J]. Atmospheric Chemistry and Physics, 2013, 13(4): 2253-2265.
[58] VON BISMARCK-OSTEN C, WEBER S. A uniform classification of aerosol signature size distributions based on regression-guided and observational cluster analysis[J]. Atmospheric Environment, 2014, 89: 346-357.
[59] JUNGE C E. Our knowledge of the physico-chemistry of aerosols in the undisturbed marine environment[J]. Journal of Geophysical Research (1896-1977), 1972, 77(27): 5183-5200.
[60] DEIRMENDJIAN D. Scattering and Polarization Properties of Water Clouds and Hazes in the Visible and Infrared[J]. Applied Optics, 1964, 3(2): 187-196.
[61] DEIRMENDJIAN D. Electromagnetic Scattering on Spherical Polydispersions[M]. 1969.
[62] DAVIES C N. Size distribution of atmospheric particles[J]. Journal of Aerosol Science, 1974, 5: 293-300.
[63] AHMAD Z, FRANZ B, MCCLAIN C, et al. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans[J]. Applied Optics, 2010, 49: 5545-5560.
[64] MONTES M, PAHLEVAN N, GILES D M, et al. Augmenting Heritage Ocean-Color Aerosol Models for Enhanced Remote Sensing of Inland and Nearshore Coastal Waters[J]. Frontiers in Remote Sensing, 2022, 3.
[65] ANTOINE D, MOREL A. A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): Principle and implementation for atmospheres carrying various aerosols including absorbing ones[J]. International Journal of Remote Sensing, 1999, 20(9): 1875-1916.
[66] SMIRNOV A, HOLBEN B N, KAUFMAN Y J, et al. Optical Properties of Atmospheric Aerosol in Maritime Environments[J]. Journal of the Atmospheric Sciences, 2002, 59(3): 501-523.
[67] LYDWINE G C, ROBERT J F, CHRISTOPHE M P, et al. Non-supervised classification of aerosol mixtures for ocean color remote sensing[C]//SPIE Proceedings - Ocean Remote Sensing and Applications: Vol. 4892. 2003.
[68] ZAGOLSKI F, SANTER R, AZNAY O. A new climatology for atmospheric correction based on the aerosol inherent optical properties[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D14208).
[69] ZHANG M, HU C, ENGLISH D, et al. Atmospheric Correction of AISA Measurements Over the Florida Keys Optically Shallow Waters: Challenges in Radiometric Calibration and Aerosol Selection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 4189-4196.
[70] FEDOROV S, MOLKOV A, KALINSKAYA D. Aerosol Optical Properties above Productive Waters of Gorky Reservoir for Atmospheric Correction of Sentinel-3/OLCI Images[J]. Remote Sensing, 2022, 14(23).
[71] MOOSMÜLLER H, CHAKRABARTY R K, ARNOTT W P. Aerosol light absorption and its measurement: A review[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(11): 844-878.
[72] WANG S, LI J, ZHANG B, et al. Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS[J]. Remote Sensing of Environment, 2020, 247: 111949.
[73] LIU C, ZHU L, LI J, et al. The increasing water clarity of Tibetan lakes over last 20 years according to MODIS data[J]. Remote Sensing of Environment, 2021, 253: 112199.
[74] MACIEL D A, BARBOSA C C F, NOVO E M L de M, et al. Water clarity in Brazilian water assessed using Sentinel-2 and machine learning methods[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 182: 134-152.
[75] AAS E, HØKEDAL J, SØRENSEN K. Secchi depth in the Oslofjord-Skagerrak area: Theory, experiments and relationships to other quantities[J]. Ocean Science, 2014, 10.
[76] WERNAND M R. On the history of the Secchi disc[J]. Journal of the European Optical Society - Rapid publications, 2010, 5(0).
[77] BOYCE D G, LEWIS M, WORM B. Integrating global chlorophyll data from 1890 to 2010[J]. Limnology and Oceanography: Methods, 2012, 10(11): 840-852.
[78] DUNTLEY S Q, PREISENDORFER R. The visibility of submerged objects[R]. San Diego: Visibility Laboratory, Massachusetts Institute of Technology, Scripps Institution of Oceanography, 1952.
[79] ZANEVELD J R V, PEGAU W S. Robust underwater visibility parameter[J]. Opt. Express, 2003, 11(23): 2997-3009.
[80] PREISENDORFER R W. Hydrologic optics[M]. US Department of Commerce, National Oceanic and Atmospheric Administration, 1976.
[81] PREISENDORFER R W. Secchi disk science: Visual optics of natural waters1[J]. Limnology and Oceanography, 1986, 31(5): 909-926.
[82] LEE Z, SHANG S, HU C, et al. Secchi disk depth: A new theory and mechanistic model for underwater visibility[J]. Remote Sensing of Environment, 2015, 169: 139-149.
[83] LEE Z, HU C, SHANG S, et al. Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4241-4255.
[84] RONALD J, ZANEVELD V. Remotely sensed reflectance and its dependence on vertical structure: a theoretical derivation[J]. Appl. Opt., 1982, 21(22): 4146-4150.
[85] GORDON H R, BROWN J W, EVANS R H. Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner[J]. Applied Optics, 1988, 27(5): 862-871.
[86] LEE Z, CARDER K L, MOBLEY C D, et al. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization[J]. Appl. Opt., 1999, 38(18): 3831-3843.
[87] JIANG D, MATSUSHITA B, SETIAWAN F, et al. An improved algorithm for estimating the Secchi disk depth from remote sensing data based on the new underwater visibility theory[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152: 13-23.
[88] FENG L, HOU X, ZHENG Y. Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations[J]. Remote Sensing of Environment, 2019, 221: 675-686.
[89] CARLSON R E. A trophic state index for lakes[J]. Limnology and Oceanography, 1977, 22(2): 361-369.
[90] 费尊乐, 李宝华, 夏滨. 浮游植物与海水光化学参数之间的相关关系的研究[C]//黑潮调查研究论文集(三). 北京: 海洋出版社, 1991: 143-149.
[91] 李宝华, 傅克忖. 南黄海浮游植物与水色透明度之间相关关系的研究[J]. 黄渤海海洋, 1999(03): 73-79.
[92] OLMANSON L G, BAUER M E, BREZONIK P L. A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes[J]. Remote Sensing of Environment, 2008, 112(11): 4086-4097.
[93] BINDING C E, GREENBERG T A, WATSON S B, et al. Long term water clarity changes in North America’s Great Lakes from multi-sensor satellite observations[J]. Limnology and Oceanography, 2015, 60(6): 1976-1995.
[94] SONG K, LIU G, WANG Q, et al. Quantification of lake clarity in China using Landsat OLI imagery data[J]. Remote Sensing of Environment, 2020, 243: 111800.
[95] SONG K, WANG Q, LIU G, et al. A unified model for high resolution mapping of global lake (>1 ha) clarity using Landsat imagery data[J]. Science of The Total Environment, 2022, 810: 151188.
[96] SHEN M, DUAN H, CAO Z, et al. Sentinel-3 OLCI observations of water clarity in large lakes in eastern China: Implications for SDG 6.3.2 evaluation[J]. Remote Sensing of Environment, 2020, 247: 111950.
[97] ZHANG Y, SHI K, SUN X, et al. Improving remote sensing estimation of Secchi disk depth for global lakes and reservoirs using machine learning methods[J]. GIScience & Remote Sensing, 2022, 59(1): 1367-1383.
[98] FAIZI F, MAHMOOD K. Synergic use of neural networks model and remote sensing algorithms to estimate water clarity indicators in Khanpur reservoir, Pakistan[J]. Acta Geophysica, 2022, 70(3): 1433-1443.
[99] HOLBEN B N, ECK T F, SLUTSKER I, et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization[J]. Remote Sensing of Environment, 1998, 66(1): 1-16.
[100] ZIBORDI G, HOLBEN B, SLUTSKER I, et al. AERONET-OC: A network for the validation of ocean color primary products[J]. Journal of Atmospheric and Oceanic Technology - J ATMOS OCEAN TECHNOL, 2009, 26.
[101] GILES D M, SINYUK A, SOROKIN M G, et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements[J]. Atmospheric Measurement Techniques, 2019, 12(1): 169-209.
[102] ZIBORDI G, HOOKER S B, BERTHON J F, et al. Autonomous Above-Water Radiance Measurements from an Offshore Platform: A Field Assessment Experiment[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(5): 808-819.
[103] ZIBORDI G, HOLBEN B, HOOKER S B, et al. A network for standardized ocean color validation measurements[J]. Eos, Transactions American Geophysical Union, 2006, 87(30): 293-297.
[104] MUELLER, J. L., FROUIN, R., DAVIS, C., et al. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4. Volume III: Radiometric Measurements and Data Analysis Protocols[R]. Greenbelt, MD: Goddard Space Flight Space Center, 2003: pp.1-63.
[105] 唐军武, 宋庆君, 田国良, 等. 水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004(01): 37-44.
[106] MOBLEY C D, ZHANG H, VOSS K J. Effects of optically shallow bottoms on upwelling radiances: Bidirectional reflectance distribution function effects[J]. Limnology and Oceanography, 2003, 48(1part2): 337-345.
[107] LEVY R C, MATTOO S, MUNCHAK L A, et al. The Collection 6 MODIS aerosol products over land and ocean[J]. Atmospheric Measurement Techniques, 2013, 6(11): 2989-3034.
[108] LEVY R C, REMER L A, MATTOO S, et al. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance[J]. Journal of Geophysical Research: Atmospheres, 2007, 112.
[109] HSU N C, JEONG M J, BETTENHAUSEN C, et al. Enhanced Deep Blue aerosol retrieval algorithm: The second generation[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(16): 9296-9315.
[110] PI X, LUO Q, FENG L, et al. Mapping global lake dynamics reveals the emerging roles of small lakes[J]. Nature Communications, 2022, 13(1): 5777.
[111] WANG M. The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness[J]. International Journal of Remote Sensing, 2002, 23(13): 2693-2702.
[112] WANG M, BAILEY S W. Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products[J]. Applied Optics, 2001, 40(27): 4790-4798.
[113] GORDON H R. Radiative Transfer in the Atmosphere for Correction of Ocean Color Remote Sensors[M]//BARALE V, SCHLITTENHARDT P M. Ocean Colour: Theory and Applications in a Decade of CZCS Experience. Dordrecht: Springer Netherlands, 1993: 33-77.
[114] GORDON H R, WANG M. Surface-roughness considerations for atmospheric correction of ocean color sensors. 1: The Rayleigh-scattering component[J]. Applied Optics, 1992, 31(21): 4247-4260.
[115] DESCHAMPS P Y, HERMAN M, TANRE D. Modeling of the atmospheric effects and its application to the remote sensing of ocean color[J]. Applied Optics, 1983, 22(23): 3751-3758.
[116] GORDON H R. Calibration requirements and methodology for remote sensors viewing the ocean in the visible[J]. Remote Sensing of Environment, 1987, 22(1): 103-126.
[117] GORDON H R, CASTAÑO D J. Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects[J]. Applied Optics, 1987, 26(11): 2111-2122.
[118] PLASS G N, KATTAWAR G W. Effect of Aerosol Variation on Radiance in the Earth’s Atmosphere–Ocean System[J]. Appl. Opt., 1972, 11(7): 1598-1604.
[119] SIEGEL D A, WANG M, MARITORENA S, et al. Atmospheric correction of satellite ocean color imagery: the black pixel assumption[J]. Applied Optics, 2000, 39(21): 3582-3591.
[120] WANG M, SHI W. Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies[J]. Geophysical Research Letters, 2005, 32(13).
[121] VERMOTE E F, VERMEULEN A. Atmospheric correction algorithm: spectral reflectances (MOD09)[Z]. (1999).
[122] SHI W, WANG M. Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing[J]. Remote Sensing of Environment, 2007, 110(2): 149-161.
[123] LU Z, LI J, SHEN Q, et al. Modification of 6SV to remove skylight reflected at the air-water interface: Application to atmospheric correction of Landsat 8 OLI imagery in inland waters[J]. PLOS ONE, 2018, 13(8): 1-18.
[124] VERMOTE E F, TANRE D, DEUZE J L, et al. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 675-686.
[125] KAUFMAN Y J, TANRÉ D. Algorithm for remote sensing of tropospheric aerosol from MODIS[Z]. 1998.
[126] KAUFMAN Y J, TANRÉ D. Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: From AVHRR to EOS-MODIS[J]. Remote Sensing of Environment, 1996, 55(1): 65-79.
[127] WEI J, LI Z, SUN L, et al. Improved merge schemes for MODIS Collection 6.1 Dark Target and Deep Blue combined aerosol products[J]. Atmospheric Environment, 2019, 202: 315-327.
[128] REMER L A, KAUFMAN Y J, TANR D, et al. The MODIS Aerosol Algorithm, Products, and Validation[J]. Journal of the Atmospheric Sciences, 2005, 62(4): 947-973.
[129] ISAAKS E H, SRIVASTAVA R M. Applied Geostatistics[M]. Oxford University Press, 1989.
[130] YANG J, HU M. Filling the missing data gaps of daily MODIS AOD using spatiotemporal interpolation[J]. Science of The Total Environment, 2018, 633: 677-683.
[131] 李如仁, 陈伟, 霍音娇, 等. 京津冀气溶胶数据普通克里金插值研究[J]. 沈阳建筑大学学报(自然科学版), 2020: 179-185.
[132] LIU G, LYU H, WANG S, et al. An Improved Land Target-Based Atmospheric Correction Method for Lake Taihu[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 9: 1-11.
[133] WANG M, SHI W, TANG J. Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements[J]. Remote Sensing of Environment, 2011, 115(3): 841-854.
[134] WANG M, JIANG L. Atmospheric Correction Using the Information From the Short Blue Band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 6224-6237.
[135] HAMILL P, GIORDANO M, WARD C, et al. An AERONET-based aerosol classification using the Mahalanobis distance[J]. Atmospheric Environment, 2016, 140: 213-233.
[136] XU Y, FENG L, ZHAO D, et al. Assessment of Landsat atmospheric correction methods for water color applications using global AERONET-OC data[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 93: 102192.
[137] TONG Y, FENG L, SUN K, et al. Assessment of the Representativeness of MODIS Aerosol Optical Depth Products at Different Temporal Scales Using Global AERONET Measurements[J]. Remote Sensing, 2020, 12(14): 2330.
[138] LEVY R C, REMER L A, KLEIDMAN R G, et al. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land[J]. Atmospheric Chemistry and Physics, 2010, 10(21): 10399-10420.
[139] REMER L A, MATTOO S, LEVY R C, et al. MODIS 3 km aerosol product: algorithm and global perspective[J]. Atmospheric Measurement Techniques, 2013, 6(7): 1829-1844.
[140] HOGAN R. How to combine errors[EB]. 2006.
[141] BILAL M, NICHOL J E. Evaluation of MODIS aerosol retrieval algorithms over the Beijing-Tianjin-Hebei region during low to very high pollution events[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(15): 7941-7957.
[142] SAYER A M, MUNCHAK L A, HSU N C, et al. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(24): 13965-13989.
[143] FRANZ B A, BAILEY S W, WERDELL P J, et al. Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry[J]. Applied Optics, 2007, 46(22): 5068-5082.
[144] WANG M, SHI W, JIANG L, et al. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors[J]. Optics Express, 2016, 24(18): 20437-20453.
[145] ZIBORDI G, MÉLIN F, VOSS K J, et al. System vicarious calibration for ocean color climate change applications: Requirements for in situ data[J]. Remote Sensing of Environment, 2015, 159: 361-369.
[146] FENG L, HU C. Land adjacency effects on MODIS Aqua top-of-atmosphere radiance in the shortwave infrared: Statistical assessment and correction[J]. Journal of Geophysical Research: Oceans, 2017, 122(6): 4802-4818.
[147] GILES D M, HOLBEN B N, ECK T F, et al. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D17203).
[148] CARRICO C M, ROOD M J, OGREN J A. Aerosol light scattering properties at Cape Grim, Tasmania, during the First Aerosol Characterization Experiment (ACE 1)[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D13): 16565-16574.
[149] IM J S, SAXENA V K, WENNY B N. An assessment of hygroscopic growth factors for aerosols in the surface boundary layer for computing direct radiative forcing[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D17): 20213-20224.
[150] ZIEGER P, FIERZ-SCHMIDHAUSER R, WEINGARTNER E, et al. Effects of relative humidity on aerosol light scattering: results from different European sites[J]. Atmospheric Chemistry and Physics, 2013, 13(21): 10609-10631.
[151] SMIRNOV A, HOLBEN B N, ECK T F, et al. Cloud-Screening and Quality Control Algorithms for the AERONET Database[J]. Remote Sensing of Environment, 2000, 73(3): 337-349.
[152] HULST H C, VAN DE HULST H C. Light scattering by small particles[M]. Courier Corporation, 1981.
[153] LENOBLE J, REMER L, TANRE D. Aerosol remote sensing[M]. Springer Science & Business Media, 2013.
[154] ZARZANA K J, CAPPA C D, TOLBERT M A. Sensitivity of Aerosol Refractive Index Retrievals Using Optical Spectroscopy[J]. Aerosol Science and Technology, 2014, 48(11): 1133-1144.
[155] DUBOVIK O, KING M D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D16): 20673-20696.
[156] CHEN H, GU X, CHENG T, et al. The spatial–temporal variations in optical properties of atmosphere aerosols derived from AERONET dataset over China[J]. Meteorology and Atmospheric Physics, 2013, 122(1): 65-73.
[157] LÜ R, YU X, JIA H, et al. Aerosol optical properties and direct radiative forcing at Taihu[J]. Applied Optics, 2017, 56(25): 7002-7012.
[158] NESSLER R, WEINGARTNER E, BALTENSPERGER U. Effect of humidity on aerosol light absorption and its implications for extinction and the single scattering albedo illustrated for a site in the lower free troposphere[J]. Journal of Aerosol Science, 2005, 36(8): 958-972.
[159] SCHMEISSER L, ANDREWS E, OGREN J A, et al. Classifying aerosol type using in situ surface spectral aerosol optical properties[J]. Atmospheric Chemistry and Physics, 2017, 17(19): 12097-12120.
[160] LEAITCH W R, MACDONALD A M, BRICKELL P C, et al. Temperature response of the submicron organic aerosol from temperate forests[J]. Atmospheric Environment, 2011, 45(37): 6696-6704.
[161] SLOWIK J G, STROUD C, BOTTENHEIM J W, et al. Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests[J]. Atmospheric Chemistry and Physics, 2010, 10(6): 2825-2845.
[162] SHERMAN J P, SHERIDAN P J, OGREN J A, et al. A multi-year study of lower tropospheric aerosol variability and systematic relationships from four North American regions[J]. Atmospheric Chemistry and Physics, 2015, 15(21): 12487-12517.
[163] JETHVA H, TORRES O, AHN C. Global assessment of OMI aerosol single-scattering albedo using ground-based AERONET inversion[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(14): 9020-9040.
[164] BROWN H, LIU X, POKHREL R, et al. Biomass burning aerosols in most climate models are too absorbing[J]. Nature Communications, 2021, 12(1): 277.
[165] BUDHAVANT K, BIKKINA S, ANDERSSON A, et al. Anthropogenic fine aerosols dominate the wintertime regime over the northern Indian Ocean[J]. Tellus B: Chemical and Physical Meteorology, 2018, 70(1): 1-15.
[166] KUMAR S, SINGH A, SRIVASTAVA A K, et al. Long-term change in aerosol characteristics over Indo-Gangetic Basin: How significant is the impact of emerging anthropogenic activities?[J]. Urban Climate, 2021, 38: 100880.
[167] ALI M A, NICHOL J E, BILAL M, et al. Classification of aerosols over Saudi Arabia from 2004–2016[J]. Atmospheric Environment, 2020, 241: 117785.
[168] BALARABE M, ABDULLAH K, NAWAWI M. Seasonal variations of aerosol optical properties and identification of different aerosol types based on AERONET data over sub-Sahara West-Africa[J]. Atmospheric and Climate Sciences, 2015, 6(1): 13-28.
[169] GELENCSÉR A, MAY B, SIMPSON D, et al. Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D23S04).
[170] LEE J, KIM J, SONG C H, et al. Characteristics of aerosol types from AERONET sunphotometer measurements[J]. Atmospheric Environment, 2010, 44(26): 3110-3117.
[171] PATHAK B, BHUYAN P K, GOGOI M, et al. Seasonal heterogeneity in aerosol types over Dibrugarh-North-Eastern India[J]. Atmospheric Environment, 2012, 47: 307-315.
[172] PAN Y, BÉLANGER S, HUOT Y. Evaluation of Atmospheric Correction Algorithms over Lakes for High-Resolution Multispectral Imagery: Implications of Adjacency Effect[J]. Remote Sensing, 2022, 14(13).
[173] ZHAO D, FENG L, SUN K. Development of a Practical Atmospheric Correction Algorithm for Inland and Nearshore Coastal Waters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15.
[174] LI S, SONG K, MU G, et al. Evaluation of the Quasi-Analytical Algorithm (QAA) for Estimating Total Absorption Coefficient of Turbid Inland Waters in Northeast China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4022-4036.
[175] RODRIGUES T, ALCÂNTARA E, WATANABE F, et al. Retrieval of Secchi disk depth from a reservoir using a semi-analytical scheme[J]. Remote Sensing of Environment, 2017, 198: 213-228.
[176] IOCCG. Update of the Quasi-Analytical Algorithm (QAA_v6)[Z]. IOCCG, 2014.
[177] MISHRA S, MISHRA D R, LEE Z. Bio-Optical Inversion in Highly Turbid and Cyanobacteria-Dominated Waters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 375-388.
[178] LIU Y, XIAO C, LI J, et al. Secchi Disk Depth Estimation from China’s New Generation of GF-5 Hyperspectral Observations Using a Semi-Analytical Scheme[J]. Remote Sensing, 2020, 12(11).
[179] NEIL C, SPYRAKOS E, HUNTER P D, et al. A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types[J]. Remote Sensing of Environment, 2019, 229: 159-178.
[180] SHEN F, VERHOEF W, ZHOU Y, et al. Satellite Estimates of Wide-Range Suspended Sediment Concentrations in Changjiang (Yangtze) Estuary Using MERIS Data[J]. Estuaries and Coasts, 2010, 33(6): 1420-1429.
[181] ZHAO D, FENG L. Assessment of the Number of Valid Observations and Diurnal Changes in Chl-a for GOCI: Highlights for Geostationary Ocean Color Missions[J]. Sensors, 2020, 20(12).
[182] DUAN H, MA R, ZHANG Y, et al. Remote-sensing assessment of regional inland lake water clarity in northeast China[J]. Limnology, 2009, 10(2): 135-141.
[183] YU D F, XING Q G, LOU M J, et al. Retrieval of Secchi disk depth in the Yellow Sea and East China Sea using 8-day MODIS data[J]. IOP Conference Series: Earth and Environmental Science, 2014, 17(1): 012112.
[184] SHI K, ZHANG Y, ZHU G, et al. Deteriorating water clarity in shallow waters: Evidence from long term MODIS and in-situ observations[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 68: 287-297.
[185] REN J, ZHENG Z, LI Y, et al. Remote observation of water clarity patterns in Three Gorges Reservoir and Dongting Lake of China and their probable linkage to the Three Gorges Dam based on Landsat 8 imagery[J]. Science of The Total Environment, 2018, 625: 1554-1566.
[186] PI X, FENG L, LI W, et al. Water clarity changes in 64 large alpine lakes on the Tibetan Plateau and the potential responses to lake expansion[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 192-204.
[187] HOU X, FENG L, DAI Y, et al. Global mapping reveals increase in lacustrine algal blooms over the past decade[J]. Nature Geoscience, 2022, 15(2): 130-134.
[188] FAIRMAN H S, BRILL M H, HEMMENDINGER H. How the CIE 1931 color-matching functions were derived from Wright-Guild data[J]. Color Research & Application, 1997, 22(1): 11-23.
[189] KENDALL M G. Rank correlation methods.[M]. Griffin, 1948.
[190] GILBERT R O. Statistical methods for environmental pollution monitoring[M]. John Wiley & Sons, 1987.
[191] CHEN X, LIU L, ZHANG X, et al. Long-term water clarity patterns of lakes across China using Landsat series imagery from 1985 to 2020[J]. Hydrology and Earth System Sciences, 2022, 26(13): 3517-3536.
[192] ZHANG G, YAO T, XIE H, et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms[Z]//EARTH-SCIENCE REVIEWS: Vol. 208. RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS: ELSEVIER, 2020.
[193] WANG B, LI J, HE Q. Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016)[J]. Advances in Atmospheric Sciences, 2017, 34(10): 1235-1248.
[194] XUE Y, KUMAR A. Evolution of the 2015/16 El Niño and historical perspective since 1979[J]. Science China Earth Sciences, 2017, 60(9): 1572-1588.
[195] LEI Y, ZHU Y, WANG B, et al. Extreme Lake Level Changes on the Tibetan Plateau Associated With the 2015/2016 El Niño[J]. Geophysical Research Letters, 2019, 46(11): 5889-5898.
[196] HU S, ZHOU T, WU B. Impact of Developing ENSO on Tibetan Plateau Summer Rainfall[J]. Journal of Climate, 2021, 34(9): 3385-3400.
[197] BONAN G B. Sensitivity of a GCM Simulation to Inclusion of Inland Water Surfaces[J]. Journal of Climate, 1995, 8(11): 2691-2704.
[198] MONISMITH S G, MACINTYRE S. The Surface Mixed Layer in Lakes and Reservoirs[M]//LIKENS G E. Encyclopedia of Inland Waters. Oxford: Academic Press, 2009: 636-650.
[199] DAI T, GOTO D, SCHUTGENS N A J, et al. Simulated aerosol key optical properties over global scale using an aerosol transport model coupled with a new type of dynamic core[J]. Atmospheric Environment, 2014, 82: 71-82.
[200] DUFORÊT L, FROUIN R, DUBUISSON P. Importance and estimation of aerosol vertical structure in satellite ocean-color remote sensing[J]. Applied Optics, 2007, 46(7): 1107-1119.
[201] SONG Z, HE X, BAI Y, et al. Effect of the Vertical Distribution of Absorbing Aerosols on the Atmospheric Correction for Satellite Ocean Color Remote Sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12.

所在学位评定分委会
力学
国内图书分类号
TP79
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544495
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
赵丹. 基于改进气溶胶模型的内陆及近岸水体水色遥感大气校正算法及应用[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930928-赵丹-环境科学与工程学(8534KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵丹]的文章
百度学术
百度学术中相似的文章
[赵丹]的文章
必应学术
必应学术中相似的文章
[赵丹]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。