中文版 | English
题名

前列腺癌细胞来源的 ERRα通过调控 Galectin-9 表 达诱导巨噬细胞 M2 极化促进疾病进展的研究

其他题名
THE RLOE OF PROSTATE CANCER CELL-DERIVED ESRRA INDUCING M2 MACROPHAGE POLARIZATION BY REGULATING THE GALECTIN- 9 EXPRESSION PROMOTES DISEASE PROGRESSION
姓名
姓名拼音
CHEN Tao
学号
12032588
学位类型
硕士
学位专业
071010 生物化学与分子生物学
学科门类/专业学位类别
07 理学
外机构导师
肖克峰 ;邹阳
外机构导师单位
深圳市人民医院
论文答辩日期
2023-05-10
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
背景:前列腺癌是男性泌尿生殖系统常见的恶性肿瘤。早期前列腺癌可通过手术、内分泌治疗以及化疗等方法进行有效治疗甚至治愈,但晚期前列腺癌目前尚无有效治疗策略。尽管免疫治疗已在多种晚期恶性肿瘤中取得了不错的进展,但在前列腺癌的治疗中应用极少。究其原因,主要由于前列腺癌进展过程中存在大量免疫抑制性细胞浸润。本课题组前期研究发现雌激素受体相关受体αERRα)可促进前列腺癌进展,并可能与免疫抑制微环境相关,但具体机制仍需进一步探究。
方法:单细胞测序分析前列腺癌免疫抑制微环境以及不同免疫抑制细胞与 ERRα的相关性,并通过多重免疫荧光验证;慢病毒系统构建 ERRα敲低与过表达的前列腺癌细胞 LNCaPDU145;结合文献报道与 JASPAR 在线网站,筛选启动子区具有雌激素受体相关受体特异性反应元件(ERRE)的免疫调节因子——半乳糖凝集素 9Galectin-9);结合 cBioPortal 数据库检测 ERRαGalectin-9 在前列腺癌中的表达相关性;qRT-PCR Western blot 分别在 ERRα敲低与过表达的前列腺癌细胞中检测Galectin-9 的表达;Luciferase 实验检测 ERRαGalectin-9 启动子的结合作用;ERRα敲低与过表达的前列腺癌细胞与巨噬细胞 THP-1 共培养,qRT-PCR 检测巨噬细胞极化标记基因,同时流式分析巨噬细胞极化情况。
结果:通过 10 位前列腺癌患者的单细胞测序,我们发现前列腺癌组织中存在一类高表达 ERRα的管腔细胞亚群,该亚群细胞含量较高的患者通常具有更高的 M2 巨噬细胞浸润水平;基于前列腺癌组织芯片的多种免疫荧光进一步验证了 ERRα表达与巨噬细胞 M2 极化显著正相关;文献报道以及JASPAR 预测 Galectin-9 启动子区具有 ERRE,可能为 ERRα的下游靶基因;数据库显示在前列腺癌中 ERRαGalectin-9 表达呈正相关;敲低或过表达ERRα 的 前 列 腺 癌 细 胞 中 Galectin-9 基 因 的 表 达 与 ERRα 显 著 正 相 关 ;Luciferase 实验显示 ERRα可直接与 Galectin-9 启动子相结合,并促进其转录表达;高表达 ERRα的前列腺癌细胞可通过分泌 Galectin-9 促进巨噬细胞向 M2 极化。
结论:前列腺癌细胞可通过高表达 ERRα促进 Galectin-9 分泌至微环境,环境中的 Galectin-9 可促进巨噬细胞向 M2 极化,引起抑制性免疫微环境,最终导致肿瘤恶性进展以及免疫治疗抵抗。
关键词
语种
中文
培养类别
独立培养
入学年份
2020-09-01
学位授予年份
2023-06-30
参考文献列表

[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCANEstimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CACancer J Clin. 2021,71(3):209-249.
[2] WANG G, ZHAO D, SPRING D J, et al. Genetics and biology of prostate cancer[J]. Genes Dev. 2018,32(17-18):1105-1140.
[3] NEVEDOMSKAYA E, BAUMGART S J, HAENDLER B. Recent Advances in Prostate CancerTreatment and Drug Discovery[J]. Int J Mol Sci. 2018,19(5).
[4] HALABI S, LIN C Y, KELLY W K, et al. Updated prognostic model for predicting overallsurvival in first-line chemotherapy for patients with metastatic castration-resistant prostatecancer[J]. J Clin Oncol. 2014,32(7):671-677.
[5] TAYLOR B S, SCHULTZ N, HIERONYMUS H, et al. Integrative genomic profiling of humanprostate cancer[J]. Cancer Cell. 2010,18(1):11-22.
[6] The Molecular Taxonomy of Primary Prostate Cancer[J]. Cell. 2015,163(4):1011-1025.
[7] ABIDA W, CYRTA J, HELLER G, et al. Genomic correlates of clinical outcome in advancedprostate cancer[J]. Proc Natl Acad Sci U S A. 2019,116(23):11428-11436.
[8] SIZEMORE G M, PITARRESI J R, BALAKRISHNAN S, et al. The ETS family of oncogenictranscription factors in solid tumours[J]. Nat Rev Cancer. 2017,17(6):337-351.
[9] SOBHANI N, NEELI P K, D'ANGELO A, et al. AR-V7 in Metastatic Prostate Cancer: AStrategy beyond Redemption[J]. Int J Mol Sci. 2021,22(11).
[10] WISE H M, HERMIDA M A, LESLIE N R. Prostate cancer, PI3K, PTEN and prognosis[J]. Clin Sci (Lond). 2017,131(3):197-210.
[11] ROBINSON D, VAN ALLEN E M, WU Y M, et al. Integrative clinical genomics of advancedprostate cancer[J]. Cell. 2015,161(5):1215-1228.
[12] TEMPLETON A J, DUTOIT V, CATHOMAS R, et al. Phase 2 trial of single-agent everolimusin chemotherapy-naive patients with castration-resistant prostate cancer (SAKK 08/08)[J]. EurUrol. 2013,64(1):150-158.
[13] LI Y F, JI H H, ZHANG Z L, et al. Targeting MRP4 expression by anti-androgen treatmentreverses MRP4-mediated docetaxel resistance in castration-resistant prostate cancer[J]. OncolLett. 2017,14(2):1748-1756.
[14] LIN Q, CAO J, DU X, et al. CYP1B1-catalyzed 4-OHE2 promotes the castration resistance ofprostate cancer stem cells by estrogen receptor α-mediated IL6 activation[J]. Cell CommunSignal. 2022,20(1):31.
[15] LI L, CLEVERS H. Coexistence of quiescent and active adult stem cells in mammals[J]. Science. 2010,327(5965):542-545.
[16] SHALEK A K, SATIJA R, SHUGA J, et al. Single-cell RNA-seq reveals dynamic paracrinecontrol of cellular variation[J]. Nature. 2014,510(7505):363-369.
[17] FILBIN M G, TIROSH I, HOVESTADT V, et al. Developmental and oncogenic programs inH3K27M gliomas dissected by single-cell RNA-seq[J]. Science. 2018,360(6386):331-335.
[18] YOUNG M D, MITCHELL T J, VIEIRA BRAGA F A, et al. Single-cell transcriptomes fromhuman kidneys reveal the cellular identity of renal tumors[J]. Science. 2018,361(6402):594-599.
[19] PENG J, SUN B F, CHEN C Y, et al. Single-cell RNA-seq highlights intra-tumoralheterogeneity and malignant progression in pancreatic ductal adenocarcinoma[J]. Cell Res. 2019,29(9):725-738.
[20] PURAM S V, TIROSH I, PARIKH A S, et al. Single-Cell Transcriptomic Analysis of Primaryand Metastatic Tumor Ecosystems in Head and Neck Cancer[J]. Cell. 2017,171(7):1611- 1624.e1624.
[21] LAMBRECHTS D, WAUTERS E, BOECKX B, et al. Phenotype molding of stromal cells inthe lung tumor microenvironment[J]. Nat Med. 2018,24(8):1277-1289.
[22] KFOURY Y, BARYAWNO N, SEVERE N, et al. Human prostate cancer bone metastases havean actionable immunosuppressive microenvironment[J]. Cancer Cell. 2021,39(11):1464- 1478.e1468.
[23] MA X, GUO J, LIU K, et al. Identification of a distinct luminal subgroup diagnosing andstratifying early stage prostate cancer by tissue-based single-cell RNA sequencing[J]. MolCancer. 2020,19(1):147.
[24] HORNING A M, WANG Y, LIN C K, et al. Single-Cell RNA-seq Reveals a Subpopulation ofProstate Cancer Cells with Enhanced Cell-Cycle-Related Transcription and AttenuatedAndrogen Response[J]. Cancer Res. 2018,78(4):853-864.
[25] EVANS R M. The nuclear receptor superfamily: a rosetta stone for physiology[J]. MolEndocrinol. 2005,19(6):1429-1438.
[26] GIGUèRE V, YANG N, SEGUI P, et al. Identification of a new class of steroid hormonereceptors[J]. Nature. 1988,331(6151):91-94.
[27] CHEN C Y, LI Y, JIA T, et al. Repression of the transcriptional activity of ERRα with sequence- specific DNA-binding polyamides[J]. Med Chem Res. 2020,29(4):607-616.
[28] FUJIMURA T, TAKAHASHI S, URANO T, et al. Increased expression of estrogen-relatedreceptor alpha (ERRalpha) is a negative prognostic predictor in human prostate cancer[J]. Int JCancer. 2007,120(11):2325-2330.
[29] CHEUNG C P, YU S, WONG K B, et al. Expression and functional study of estrogen receptor￾related receptors in human prostatic cells and tissues[J]. J Clin Endocrinol Metab. 2005,90(3):1830-1844.
[30] ZOU C, YU S, XU Z, et al. ERRalpha augments HIF-1 signalling by directly interacting withHIF-1alpha in normoxic and hypoxic prostate cancer cells[J]. J Pathol. 2014,233(1):61-73.
[31] XU Z, WANG Y, XIAO Z G, et al. Nuclear receptor ERRalpha and transcription factor ERG form a reciprocal loop in the regulation of TMPRSS2:ERG fusion gene in prostate cancer[J]. Oncogene. 2018,37(48):6259-6274.
[32] XU Z, MA T, ZHOU J, et al. Nuclear receptor ERRalpha contributes to castration-resistantgrowth of prostate cancer via its regulation of intratumoral androgen biosynthesis[J]. Theranostics. 2020,10(9):4201-4216.
[33] FRADET A, BOUCHET M, DELLIAUX C, et al. Estrogen related receptor alpha in castration￾resistant prostate cancer cells promotes tumor progression in bone[J]. Oncotarget. 2016,7(47):77071-77086.
[34] VALCARCEL-JIMENEZ L, MACCHIA A, CROSAS-MOLIST E, et al. PGC1α SuppressesProstate Cancer Cell Invasion through ERRα Transcriptional Control[J]. Cancer Res. 2019,79(24):6153-6165.
[35] HUANG H, LI J, SHEN J, et al. Increased ABCC4 Expression Induced by ERRα Leads toDocetaxel Resistance via Efflux of Docetaxel in Prostate Cancer[J]. Front Oncol. 2020,10:1474.
[36] YUK J M, KIM T S, KIM S Y, et al. Orphan Nuclear Receptor ERRα Controls MacrophageMetabolic Signaling and A20 Expression to Negatively Regulate TLR-Induced Inflammation[J]. Immunity. 2015,43(1):80-91.
[37] SONODA J, LAGANIèRE J, MEHL I R, et al. Nuclear receptor ERR alpha and coactivatorPGC-1 beta are effectors of IFN-gamma-induced host defense[J]. Genes Dev. 2007,21(15):1909-1920.
[38] CHEN L, FLIES D B. Molecular mechanisms of T cell co-stimulation and co-inhibition[J]. NatRev Immunol. 2013,13(4):227-242.
[39] KEIR M E, BUTTE M J, FREEMAN G J, et al. PD-1 and its ligands in tolerance andimmunity[J]. Annu Rev Immunol. 2008,26:677-704.
[40] COLOMBO M P, PICONESE S. Regulatory-T-cell inhibition versus depletion: the right choicein cancer immunotherapy[J]. Nat Rev Cancer. 2007,7(11):880-887.
[41] ZHAO F, OBERMANN S, VON WASIELEWSKI R, et al. Increase in frequency of myeloid- derived suppressor cells in mice with spontaneous pancreatic carcinoma[J]. Immunology. 2009,128(1):141-149.
[42] TURAJLIC S, LITCHFIELD K, XU H, et al. Insertion-and-deletion-derived tumour-specificneoantigens and the immunogenic phenotype: a pan-cancer analysis[J]. Lancet Oncol. 2017,18(8):1009-1021.
[43] PASERO C, GRAVIS G, GUERIN M, et al. Inherent and Tumor-Driven Immune Tolerance inthe Prostate Microenvironment Impairs Natural Killer Cell Antitumor Activity[J]. Cancer Res. 2016,76(8):2153-2165.
[44] KANTOFF P W, HIGANO C S, SHORE N D, et al. Sipuleucel-T immunotherapy forcastration-resistant prostate cancer[J]. N Engl J Med. 2010,363(5):411-422.
[45] HUEN N Y, PANG A L, TUCKER J A, et al. Up-regulation of proliferative and migratory genesin regulatory T cells from patients with metastatic castration-resistant prostate cancer[J]. Int J Cancer. 2013,133(2):373-382.
[46] MILLER A M, LUNDBERG K, OZENCI V, et al. CD4+CD25high T cells are enriched in thetumor and peripheral blood of prostate cancer patients[J]. J Immunol. 2006,177(10):7398-7405.
[47] FLAMMIGER A, WEISBACH L, HULAND H, et al. High tissue density of FOXP3+ T cells isassociated with clinical outcome in prostate cancer[J]. Eur J Cancer. 2013,49(6):1273-1279.
[48] IDORN M, KøLLGAARD T, KONGSTED P, et al. Correlation between frequencies of bloodmonocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markersin patients with castration-resistant metastatic prostate cancer[J]. Cancer Immunol Immunother. 2014,63(11):1177-1187.
[49] VUK-PAVLOVIĆ S, BULUR P A, LIN Y, et al. Immunosuppressive CD14+HLA-DRlow/- monocytes in prostate cancer[J]. Prostate. 2010,70(4):443-455.
[50] LANCIOTTI M, MASIERI L, RASPOLLINI M R, et al. The role of M1 and M2 macrophagesin prostate cancer in relation to extracapsular tumor extension and biochemical recurrence afterradical prostatectomy[J]. Biomed Res Int. 2014,2014:486798.
[51] NONOMURA N, TAKAYAMA H, NAKAYAMA M, et al. Infiltration of tumour-associatedmacrophages in prostate biopsy specimens is predictive of disease progression after hormonaltherapy for prostate cancer[J]. BJU Int. 2011,107(12):1918-1922.
[52] LIN D, WANG X, CHOI S Y C, et al. Immune phenotypes of prostate cancer cells: Evidence ofepithelial immune cell-like transition?[J]. Asian J Urol. 2016,3(4):195-202.
[53] MANTOVANI A, ALLAVENA P, MARCHESI F, et al. Macrophages as tools and targets incancer therapy[J]. Nat Rev Drug Discov. 2022,21(11):799-820.
[54] MURRAY P J, ALLEN J E, BISWAS S K, et al. Macrophage activation and polarization:nomenclature and experimental guidelines[J]. Immunity. 2014,41(1):14-20.
[55] DAS A, SINHA M, DATTA S, et al. Monocyte and macrophage plasticity in tissue repair andregeneration[J]. Am J Pathol. 2015,185(10):2596-2606.
[56] MARTINEZ F O, GORDON S. The M1 and M2 paradigm of macrophage activation: time forreassessment[J]. F1000Prime Rep. 2014,6:13.
[57] ALLAVENA P, SICA A, SOLINAS G, et al. The inflammatory micro-environment in tumorprogression: the role of tumor-associated macrophages[J]. Crit Rev Oncol Hematol. 2008,66(1):1-9.
[58] CHEN S, ZHU G, YANG Y, et al. Single-cell analysis reveals transcriptomic remodellings indistinct cell types that contribute to human prostate cancer progression[J]. Nat Cell Biol. 2021,23(1):87-98.
[59] LAWRENCE T, NATOLI G. Transcriptional regulation of macrophage polarization: enablingdiversity with identity[J]. Nat Rev Immunol. 2011,11(11):750-761.
[60] CIONI B, ZAALBERG A, VAN BEIJNUM J R, et al. Androgen receptor signalling inmacrophages promotes TREM-1-mediated prostate cancer cell line migration and invasion[J]. Nat Commun. 2020,11(1):4498.
[61] ERLANDSSON A, CARLSSON J, LUNDHOLM M, et al. M2 macrophages and regulatory Tcells in lethal prostate cancer[J]. Prostate. 2019,79(4):363-369.
[62] HU W, QIAN Y, YU F, et al. Alternatively activated macrophages are associated with metastasisand poor prognosis in prostate adenocarcinoma[J]. Oncol Lett. 2015,10(3):1390-1396.
[63] IZUMI K, FANG L Y, MIZOKAMI A, et al. Targeting the androgen receptor with siRNApromotes prostate cancer metastasis through enhanced macrophage recruitment viaCCL2/CCR2-induced STAT3 activation[J]. EMBO Mol Med. 2013,5(9):1383-1401.
[64] MAOLAKE A, IZUMI K, SHIGEHARA K, et al. Tumor-associated macrophages promoteprostate cancer migration through activation of the CCL22-CCR4 axis[J]. Oncotarget. 2017,8(6):9739-9751.
[65] HUANG R, WANG S, WANG N, et al. CCL5 derived from tumor-associated macrophagespromotes prostate cancer stem cells and metastasis via activating β-catenin/STAT3 signaling[J]. Cell Death Dis. 2020,11(4):234.
[66] LUNDHOLM M, HäGGLöF C, WIKBERG M L, et al. Secreted Factors from Colorectal andProstate Cancer Cells Skew the Immune Response in Opposite Directions[J]. Sci Rep. 2015,5:15651.
[67] MARIATHASAN S, TURLEY S J, NICKLES D, et al. TGFβ attenuates tumour response toPD-L1 blockade by contributing to exclusion of T cells[J]. Nature. 2018,554(7693):544-548.
[68] YANG J, ZHANG J X, WANG H, et al. Hepatocellular carcinoma and macrophage interactioninduced tumor immunosuppression via Treg requires TLR4 signaling[J]. World J Gastroenterol. 2012,18(23):2938-2947.
[69] WANG J, HUANG H, LU J, et al. Tumor cells induced-M2 macrophage favors accumulation ofTreg in nasopharyngeal carcinoma[J]. Int J Clin Exp Pathol. 2017,10(8):8389-8401.
[70] GYORI D, LIM E L, GRANT F M, et al. Compensation between CSF1R+ macrophages andFoxp3+ Treg cells drives resistance to tumor immunotherapy[J]. JCI Insight. 2018,3(11).
[71] GUO Y, WU H, XIONG J, et al. miR-222-3p-containing macrophage-derived extracellularvesicles confer gemcitabine resistance via TSC1-mediated mTOR/AKT/PI3K pathway inpancreatic cancer[J]. Cell Biol Toxicol. 2022.
[72] MARTORI C, SANCHEZ-MORAL L, PAUL T, et al. Macrophages as a Therapeutic Target inMetastatic Prostate Cancer: A Way to Overcome Immunotherapy Resistance?[J]. Cancers(Basel). 2022,14(2).
[73] THIJSSEN V L, HEUSSCHEN R, CAERS J, et al. Galectin expression in cancer diagnosis andprognosis: A systematic review[J]. Biochim Biophys Acta. 2015,1855(2):235-247.
[74] SATO M, NISHI N, SHOJI H, et al. Functional analysis of the carbohydrate recognitiondomains and a linker peptide of galectin-9 as to eosinophil chemoattractant activity[J]. Glycobiology. 2002,12(3):191-197.
[75] MATSUMOTO R, HIRASHIMA M, KITA H, et al. Biological activities of ecalectin: a noveleosinophil-activating factor[J]. J Immunol. 2002,168(4):1961-1967.
[76] ZHANG F, ZHENG M, QU Y, et al. Different roles of galectin-9 isoforms in modulating E- selectin expression and adhesion function in LoVo colon carcinoma cells[J]. Mol Biol Rep. 2009,36(5):823-830.
[77] BITRA A, DOUKOV T, WANG J, et al. Crystal structure of murine 4-1BB and its interactionwith 4-1BBL support a role for galectin-9 in 4-1BB signaling[J]. J Biol Chem. 2018,293(4):1317-1329.
[78] ZHU C, ANDERSON A C, SCHUBART A, et al. The Tim-3 ligand galectin-9 negativelyregulates T helper type 1 immunity[J]. Nat Immunol. 2005,6(12):1245-1252.
[79] MELIEF S M, VISCONTI V V, VISSER M, et al. Long-term Survival and Clinical Benefitfrom Adoptive T-cell Transfer in Stage IV Melanoma Patients Is Determined by a Four- Parameter Tumor Immune Signature[J]. Cancer Immunol Res. 2017,5(2):170-179.
[80] FREEMAN G J, CASASNOVAS J M, UMETSU D T, et al. TIM genes: a family of cell surfacephosphatidylserine receptors that regulate innate and adaptive immunity[J]. Immunol Rev. 2010,235(1):172-189.
[81] KATOH S, ISHII N, NOBUMOTO A, et al. Galectin-9 inhibits CD44-hyaluronan interactionand suppresses a murine model of allergic asthma[J]. Am J Respir Crit Care Med. 2007,176(1):27-35.
[82] KLIBI J, NIKI T, RIEDEL A, et al. Blood diffusion and Th1-suppressive effects of galectin-9- containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells[J]. Blood. 2009,113(9):1957-1966.
[83] CHEN T C, CHEN C H, WANG C P, et al. The immunologic advantage of recurrentnasopharyngeal carcinoma from the viewpoint of Galectin-9/Tim-3-related changes in thetumour microenvironment[J]. Sci Rep. 2017,7(1):10349.
[84] TSUBOI Y, ABE H, NAKAGAWA R, et al. Galectin-9 protects mice from the Shwartzmanreaction by attracting prostaglandin E2-producing polymorphonuclear leukocytes[J]. ClinImmunol. 2007,124(2):221-233.
[85] DALEY D, MANI V R, MOHAN N, et al. Dectin 1 activation on macrophages by galectin 9promotes pancreatic carcinoma and peritumoral immune tolerance[J]. Nat Med. 2017,23(5):556-567.
[86] GABRILOVICH D I, HURWITZ A A, editors. Tumor-Induced Immune Suppression. Springer:New York; 2014.
[87] KANDEL S, ADHIKARY P, LI G, et al. The TIM3/Gal9 signaling pathway: An emerging targetfor cancer immunotherapy[J]. Cancer Lett. 2021,510:67-78.

所在学位评定分委会
生物学
国内图书分类号
R737.25
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544497
专题南方科技大学医学院
推荐引用方式
GB/T 7714
陈涛. 前列腺癌细胞来源的 ERRα通过调控 Galectin-9 表 达诱导巨噬细胞 M2 极化促进疾病进展的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032588-陈涛-南方科技大学医学(2228KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈涛]的文章
百度学术
百度学术中相似的文章
[陈涛]的文章
必应学术
必应学术中相似的文章
[陈涛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。