[1] MASTON G A, EVANS S K, GREEN M R. Transcriptional regulatory elements in the human genome[J]. Annual Review of Genomics and Human Genetics, 2006, 7: 29-59.
[2] SUN B, TU J, LI Y, et al. Role of genes and their cis-regulatory elements during animal morphological evolution[J]. Yi chuan = Hereditas, 2014, 36(6): 525 -535.
[3] YEON J H, HEINKEL F, SUNG M, et al. Systems-wide Identification of cis Regulatory Elements in Proteins[J]. Cell Systems, 2016, 2(2): 89-100.
[4] CORNWALL G A, CAMERON A, LINDBERG I, et al. The cystatin-related epididymal spermatogenic protein inhibits the serine protease prohormone conve rtase 2[J]. Endocrinology, 2003, 144(3): 901-908.
[5] CORNWALL G A, HSIA N, SUTTON H G. Structure, alternative splicing and chromosomal localization of the cystatin-related epididymal spermatogenic gene[J]. Biochemical Journal, 1999, 340: 85-93.
[6] SYNTIN P, CORNWALL G A. Immunolocalization of CRES (cystatin-related epididymal spermatogenic) protein in the acrosomes of mouse spermatozoa[J]. Biology of Reproduction, 1999, 60(6): 1542-1552.
[7] LONG VO N, KASSAVETIS G A, KADONAGA J T. The RNA Polymerase II Core Promoter in Drosophila[J]. Genetics, 2019, 212(1): 13-24.
[8] MCKNIGHT S L, KINGSBURY R. TRANSCRIPTIONAL CONTROL SIGNALS OF A EUKARYOTIC PROTEIN-CODING GENE[J]. Science, 1982, 217(4557): 316-324.
[9] BAROLO S. Shadow enhancers: Frequently asked questions about distributed cis regulatory information and enhancer redundancy[J]. Bioessays, 2012, 34(2): 135 -141.
[10] KOLOVOS P, KNOCH T A, GROSVELD F G, et al. Enhancers and silencers: an integrated and simple model for their function[J]. Epigenetics & Chromatin, 2012, 5
[11] PENG Y, ZHANG Y. Enhancer and super-enhancer: Positive regulators in gene transcription[J]. Animal Models and Experimental Medicine, 2018, 1(3): 169 -179.
[12] OGBOURNE S, ANTALIS T M. Transcriptional control and the role of silence rs in transcriptional regulation in eukaryotes[J]. Biochemical Journal, 1998, 331: 1 -14.
[13] HUANG D, PETRYKOWSKA H M, MILLER B F, et al. Identification of human silencers by correlating cross-tissue epigenetic profiles and gene expression[J]. Genome Research, 2019, 29(4): 657-667.
[14] NGAN C Y, WONG C H, TJONG H, et al. Chromatin interaction analyses elucidate the roles of PRC2-bound silencers in mouse development[J]. Nature Genetics, 2020, 52(3): 264-+.
[15] WANG Z F, ROLISH M E, YEO G, et al. Systematic identification and analysis of exonic splicing silencers[J]. Cell, 2004, 119(6): 831-845.
[16] WADE P A, WOLFFE A P. Chromatin: Histone acetyltransferases in control[J]. Current Biology, 1997, 7(2): R82-R84.
[17] GREER E L, SHI Y. Histone methylation: a dynamic mark in health, disease and inheritance[J]. Nature Reviews Genetics, 2012, 13(5): 343-357.
[18] WANG C, LIU X, GAO Y, et al. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development[J]. Nature Cell Biology, 2018, 20(5): 620-+.
[19] ZHANG Z, SHI L, DAWANY N, et al. H3K4 tri-methylation breadth at transcription start sites impacts the transcriptome of systemic lupus erythematosus[J]. Clinical Epigenetics, 2016, 8
[20] ZHAO F, LIU Y, SU X, et al. Molecular basis for histone H3 "K4me3-K9me3/2" methylation pattern readout by Spindlin1[J]. The Journal of biological chemistry, 2020, 295(49): 16877-16887.
[21] WASSLER M, SYNTIN P, SUTTON-WALSH H G, et al. Identification and characterization of cystatin-related epididymal spermatogenic protein in human spermatozoa: Localization in the equatorial segment[J]. Biology of Reproduction, 2002, 67(3): 795-803.
[22] GAO M, SKOLNICK J. From Nonspecific DNA-Protein Encounter Complexes to the Prediction of DNA-Protein Interactions[J]. Plos Computational Biology, 2009, 5(4)
[23] OUDELAAR A M, HIGGS D R. The relationship between genome structure and function (vol 22, pg 154, 2021)[J]. Nature reviews Genetics, 2021(12): 22.
[24] TONG I L, YOUNG R A. Transcriptional Regulation and Its Misregulation in Disease[J]. Cell, 2013, 152(6): 1237-1251.
[25] JOHNSON D S, MORTAZAVI A, MYERS R M, et al. Genome-wide mapping of in vivo protein-DNA interactions[J]. Science, 2007, 316(5830): 1497-1502.
[26] BUENROSTRO J D, GIRESI P G, ZABA L C, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position[J]. Nature Methods, 2013, 10(12): 1213-+.
[27] JIN W, TANG Q, WAN M, et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples[J]. Nature, 2015, 528(7580): 142 -+.
[28] RIBARSKA T, GILFILLAN G D. Native Chromatin Immunoprecipitation-Sequencing (ChIP-Seq) from Low Cell Numbers[J]. Methods in molecular biology (Clifton, NJ), 2018, 1689: 157-166.
[29] SCHMID M, DURUSSEL T, LAEMMLI U K. ChlC and ChEC: Genomic mapping of chromatin proteins[J]. Molecular Cell, 2004, 16(1): 147-157.
[30] VAN STEENSEL B, HENIKOFF S. Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase[J]. Nature Biotechnology, 2000, 18(4): 424-428.
[31] SKENE P J, HENIKOFF J G, HENIKOFF S. Targeted in situ genome -wide profiling with high efficiency for low cell numbers[J]. Nat Protoc, 2018, 13(5): 1006 -1019.
[32] KAYA-OKUR H S, WU S J, CODOMO C A, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells[J]. Nat Commun, 2019, 10(1): 1930.
[33] WANG Q, XIONG H, AI S, et al. CoBATCH for high-throughput single-cell epigenomic profiling[J]. 2019
[34] WU H-W, HSIAO Y-H, CHEN C-C, et al. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation[J]. Molecules, 2016, 21(7)
[35] KU W L, NAKAMURA K, GAO W, et al. Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification[J]. Nature Methods, 2019, 16(4): 323-+.
[36] BARTOSOVIC M, KABBE M, CASTELO-BRANCO G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues[J]. Nature Biotechnology, 2021, 39(7): 825-835.
[37] WU S J, FURLAN S N, MIHALAS A B, et al. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression[J]. Nature Biotechnology, 2021, 39(7): 819-824.
[38] PRUD'HOMME B, GOMPEL N, ROKAS A, et al. Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene[J]. Nature, 2006, 440(7087): 1050-1053.
[39] ERNST J, KHERADPOUR P, MIKKELSEN T S, et al. Mapping and analysis of chromatin state dynamics in nine human cell types[J]. Nature, 2011, 473(7345): 43 -U52.
[40] XUE J, WANG B, WANG L, et al. Vector Construction of a cis-Acting Element and Interaction Analysis with a MYB Transcription Factor[J]. Molecular Plant Breeding, 2019, 17(5): 1519-1524.
[41] MAESO I, IRIMIA M, TENA J J, et al. Deep conservation of cis-regulatory elements in metazoans[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2013, 368(1632)
[42] SOMESH B P, REID J, LIU W F, et al. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest[J]. Cell, 2005, 121(6): 913-923.
[43] HIRANO R, EHARA H, KUJIRAI T, et al. Structural basis of RNA polymerase II transcription on the chromatosome containing linker histone H1[J]. Nature Communications, 2022, 13(1)
[44] NIU M, TABARI E, NI P, et al. Towards a map of cis-regulatory sequences in the human genome[J]. Nucleic Acids Research, 2018, 46(11): 5395-5409.
[45] WHITE M A. Understanding how cis-regulatory function is encoded in DNA sequence using massively parallel reporter assays and designed sequences[J]. Genomics, 2015,106(3): 165-170.
[46] SHARIFI-ZARCHI A, GEROVSKA D, ADACHI K, et al. DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism[J]. Bmc Genomics, 2017, 18
[47] RADA-IGLESIAS A. Is H3K4me1 at enhancers correlative or causative?[J]. Nature Genetics, 2018, 50(1): 4-5.
[48] LOCAL A, HUANG H, ALBUQUERQUE C P, et al. Identification of H3K4me1-associated proteins at mammalian enhancers[J]. Nature Genetics, 2018, 50(1): 73 -+.
[49] MAESO I, TENA J J. Favorable genomic environments for cis-regulatory evolution: A novel theoretical framework[J]. Seminars in Cell & Developmental Biology, 2016, 57: 2-10.
[50] BULGER M, GROUDINE M. Functional and Mechanistic Diversity of Distal Transcription Enhancers[J]. Cell, 2011, 144(3): 327-339.
[51] SENABOUTH A, ANDERSEN S, SHI Q, et al. Comparative performance of the BGI and Illumina sequencing technology for single-cell RNA-sequencing[J]. NAR Genomics and Bioinformatics, 2020, 2(2)
[52] MACOSKO E Z, BASU A, SATIJA R, et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets[J]. Cell, 2015, 161(5): 1202 -1214
修改评论