中文版 | English
题名

基于地表水与地下水模型的海绵 城市空间多尺度优化研究

其他题名
MULTI-SCALE OPTIMIZATION OF SPONGE CITY SPATIAL BASED ON SURFACE WATER AND GROUNDWATER MODELS
姓名
姓名拼音
JIN Mengxiao
学号
11649014
学位类型
博士
学位专业
0830 环境科学与工程
学科门类/专业学位类别
08 工学
导师
郑春苗
导师单位
环境科学与工程学院
论文答辩日期
2023-04-09
论文提交日期
2023-06-29
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

海绵城市是新一代城市雨洪管理理念,为应对环境变化下城市雨洪管理提供新的理念与手段。地下水含水层是蓄积、调节雨洪过程的重要载体。然而,海绵城市建设改变了城市雨水利用模式,增加了地表水—地下水交互的复杂性,导致现有海绵城市规划及建设往往忽视了地下水含水层在调节水循环过程的独特作用,难以充分发挥地下水含水层这一天然的巨型地下海绵设施的作用。本研究围绕地下水含水层在海绵城市建设中的作用机理,揭示了海绵设施对地表水过程的调节机制及地下水响应机理,探讨了海绵设施空间优化配置,构建了不同空间尺度下考虑地下水含水层性质的海绵城市研究框架。本文的主要内容包括:

构建了多空间尺度下“海绵城市—地下水”一体化研究框架,提出了不同空间尺度下基于数值模型的海绵城市研究方法。该框架分别对国家尺度、城市尺度和街区尺度的海绵城市—地下水进行水文模拟,基于模拟结果的分析提出各尺度优化管理的方法并通过实例进行验证。

提出了基于入渗潜力模型的国家尺度海绵城市空间格局优化构建方法。本研究构建了基于SWMM-MODFLOWStorm Water Management Model and Modular Three-dimensional Finite-difference Groundwater Flow Model的入渗潜力评估模型,使用该模型研究了不同土壤性质下雨水入渗对极端降水的响应。以整个中国大陆为研究区域,利用入渗潜力评估模型,同时结合中国水文地质条件,定量评估了中国大陆地区雨水入渗潜力和代表性城市雨水入渗潜力,提出了基于入渗潜力的国家尺度海绵空间格局构建优化策略。结果表明:位于三角洲序列的天津、苏州、上海和杭州等城市雨水入渗潜力弱;北京、保定和石家庄的雨水入渗潜力强;深圳和广州具有多种地质地貌条件,应根据不同的地质地貌条件确定雨水入渗潜力。

发展了融合水动力模型、地理信息系统技术和蒙特卡罗模拟的城市尺度海绵生态系统空间布局优化方法。该方法综合考虑地表积水深度、地层岩性和地下水埋深等因子,采用多因子综合评价法构建海绵生态适宜区评价体系。该方法使用水动力模型来计算地表积水深度,使用地理信息系统技术来定量评估海绵生态适宜性,使用蒙特卡罗法模拟来计算评价结果的不确定性并进行空间布局优化。以深圳市为研究区域,将该方法与景观生态学“基质—廊道—斑块”方法相结合,进行海绵生态系统的空间结构优化。结果表明:一是深圳市积水深度分布不均。0-0.5m的积水深度可下渗补给地下水且不具备内涝风险,积水大于1.0m的区域具有洪涝风险;二是第四纪沉积物主要分布在冲积河谷和沿海平原,此地质单元有较强的雨水入渗潜力。高致密花岗岩由于其高致密性,雨水入渗潜力较弱;三是深圳市地下水埋深分布不均。沿海边界地带地下水埋深在0-3m,地下水位接近地表,蓄水空间较少。山麓带区域的地下水埋深适宜,是天然的蓄水容器。

发展了基于地表水—地下水耦合模拟的街区尺度海绵设施优化配置方法。本研究通过耦合SWMM模型和MODFLOW模型,构建了可模拟不同海绵设施—地表水文过程和地下水响应过程的耦合模型。将该模型应用于深圳市新桥河流域石岩片区,研究了普通降水和极端降水下不同的海绵空间配置(分散式、组团式、集中式)对径流量、入渗量和径流峰值的影响,量化了地下水位在不同海绵设施空间配置下对降水的响应过程,提出了考虑地质条件和地下水响应的海绵设施优化空间配置和类型选择的方法。结果表明:一是生物滞留池导水率对蒸发量、雨水下渗和地表径流量影响最显著,生物滞留池植被覆盖率和导水率对峰值流量影响最显著;二是在海绵设施类型选择相同,面积相同时,分散式会随着降水量的增加,入渗总量和入渗延迟时间增加。组团式和集中式的入渗总量和入渗延迟时间基本不会因雨量增加而变化,但是两者的入渗时间会随着雨量的增加而延长;LID设施能够改善水文循环,海绵设施添加后,地下水水位年平均可抬升1米。

本论文是将水文地质、水文模拟及雨洪管理、城乡规划、景观设计等多学科理论相融合的研究。从地下水资源保护的视角,构建多尺度海绵城市研究体系,并在研究中应用了多种相关技术方法进行耦合,且将理论与技术方法运用到实践案例中,检验理论方法和技术的合理性和可行性,为海绵城市管理提出一个全新的视角和技术保障。

 

其他摘要

Sponge city is a new generation of urban stormwater management concepts, and it is a new concept and means proposed to deal with urban stormwater management in changing environments. The groundwater aquifer is a natural giant underground sponge facility with the function of storing and regulating stormwater. However, the construction of the sponge city changes the urban rainwater utilization mode and increases the complexity of the interaction between surface water and groundwater. It has led to the neglect of the unique role of existing groundwater aquifers in regulating the water cycle. Focusing on the mechanism of groundwater aquifers in the construction of sponge cities, this study revealed the regulation mechanism of LIDLow-Impact Developmentfacilities on surface water processes and the response mechanism of groundwater. At the same time, we discussed the optimal configuration of LID facility space and constructed a sponge city research framework considering the properties of groundwater aquifers at different spatial scales. The main contents of this article include:

The study built an integrated research framework of "sponge city-groundwater" at multiple spatial scales, and proposed a research method for sponge cities based on numerical models at different spatial scales. This framework conducted hydrological simulations on the sponge city-groundwater at the national scale, city scale, and block scale. Based on the analysis of the simulation results, methods for optimal management at each scale were proposed and demonstrated. 

In this study, an infiltration potential assessment model based on SWMM-MODFLOW was constructed, and the model was used to study the response of rainwater infiltration to extreme precipitation under different soil properties. Taking the entire Chinese mainland as the research area, we combined Chinese hydrogeological conditions and used the infiltration potential assessment model to quantitatively evaluate the rainwater infiltration potential of the Chinese mainland and the rainwater infiltration potential of representative cities. Subsequently, a strategy for constructing and optimizing the national-scale sponge spatial pattern based on infiltration potential was proposed.The results indicate that cities located in the delta region, such as Tianjin, Suzhou, Shanghai, and Hangzhou, have a weak rainwater infiltration potential. On the other hand, Beijing, Baoding, and Shijiazhuang exhibit a strong rainwater infiltration potential. Due to the diverse geological and topographical conditions in Shenzhen and Guangzhou, the rainwater infiltration potential should be determined based on the specific geological and topographical characteristics of each area.

An urban-scale sponge ecosystem optimization method was developed that integrates hydrodynamic models, geographic information system techniques, and Monte Carlo simulations. In this method, factors such as surface water depth, stratum lithology, and groundwater depth were considered comprehensively, and a multi-factor comprehensive evaluation method was used to construct an evaluation system for sponge ecologically suitable areas. In this method, a hydrodynamic model was used to calculate the depth of surface water, the geographic information system technology was applied to quantitatively evaluate the ecological suitability of sponges, and the Monte Carlo simulation was adopted to calculate the uncertainty of the evaluation results and optimize the spatial layout. Taking Shenzhen as the research area, this method was combined with the "matrix-corridor-patch" method of landscape ecology to optimize the spatial structure of the sponge ecosystem.The results indicate the following: Firstly, the distribution of waterlogging depth in Shenzhen is uneven. Areas with waterlogging depths of 0-0.5m can infiltrate and recharge the groundwater without the risk of internal waterlogging, while regions with waterlogging depths exceeding 1.0m are prone to flood risks. Secondly, Quaternary sediments are mainly distributed in alluvial valleys and coastal plains, indicating a strong rainwater infiltration potential in these geological units. High-density granite, due to its compactness, has a lower rainwater infiltration potential. Thirdly, the distribution of groundwater depth in Shenzhen is uneven. In the coastal boundary zone, the groundwater depth ranges from 0 to 3m, with the groundwater level close to the surface and limited storage space. In the foothill zone, the groundwater depth is suitable, serving as a natural water reservoir.

A block-scale LID facility optimal configuration method based on surface water-groundwater coupling simulation was developed. In this study, by coupling the SWMM model and the MODFLOW model, a coupled model that can simulate different LID facilities-surface hydrological processes and groundwater response processes was constructed. The model was applied to the Shiyan area of the Xinqiao River Basin in Shenzhen, and the effects of different LID spatial configurations (distributed, grouped, and centralized) on runoff, infiltration, and runoff peak under normal and extreme precipitation were studied. The study quantifies the response process of groundwater level to precipitation under different LID spatial configurations and proposes a method for LID optimal spatial configuration and type selection considering geological conditions and groundwater responses. The results indicate the following: Firstly, the hydraulic conductivity of bioretention facilities has the most significant impact on evaporation, rainwater infiltration, and surface runoff, while the vegetation coverage and hydraulic conductivity of bioretention facilities have the most significant impact on peak flow. Secondly, when the area and type of sponge facilities are the same, decentralized facilities exhibit an increase in total infiltration volume and infiltration delay time with increasing precipitation. The total infiltration volume and infiltration delay time of cluster and centralized facilities remain relatively constant with increasing rainfall, but the infiltration duration of both types increases with higher precipitation. LID (Low Impact Development) facilities can improve the hydrological cycle, and after the addition of sponge facilities, the average groundwater level can rise by 1m annually.

This thesis includes multidisciplinary theories of hydrogeology, hydrological simulation, stormwater management, urban and rural planning, and landscape design. From the perspective of groundwater resources protection, we have constructed a multi-scale sponge city research system, coupled with a variety of related technical methods, and applied theoretical and technical methods to practical cases. The rationality and feasibility of theoretical methods and technologies have been verified, and a new perspective and technical guarantee for sponge city management were proposed.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2023-04
参考文献列表

[1]LANCIA M, YAO Y Y, ANDREWS C B, et al. The China groundwater crisis: A mechanistic analysis with implication for global sustainability[J]. Sustainable Horizons, 2022, 4, 100042.
[2]NGUYEN T T, NGO H H, REN N Q, et al. Implementation of a specific urban water management-sponge city[J]. Science of The Total Environment, 2019, 652, (FEB.20): 147-162.
[3]高峰, 蔺欢欢. 海绵城市的建设与评估概念模型构建研究[J].国际城市规划, 2017, 32(5): 26-32.
[4]RAN N Q, WANG Q, WANG Q R, et al. Upgrading to urban water system 3.0 through sponge city construction[J]. Frontiers of Environmental science&Engineering, 2017, 11(4): 9.
[5]住房城乡建设部. 海绵城市建设技术指南: 低影响开发雨水系统构建(试行)[Z]. 2014.
[6]仇保兴. 海绵城市(LID)的内涵、途径与展望[J]. 给水排水, 2015,41(3): 1-7.
[7]ZHANG K, CHUI T F M. Interactions between shallow groundwater and low-impact development underdrain flow at different temporal scales[J]. Hydrological Processes, 2018, 32(23): 3495-3512.
[8]俞孔坚, 李迪华, 袁弘, 等. “海绵城市”理论与实践[J]. 城市规划, 2015, 39 (6): 26-36.
[9]龚亚西, 程珊珊, 季翔. 生态安全格局视角下的徐州海绵城市建设[J]. 福建师范大学学报(自然科学版), 2020, 36(03): 79-89.
[10]王旭阳. 城市公共空间雨洪安全格局构建与规划设施策略研究—以上海静安区为例[D]. 上海: 上海应用技术大学, 2020: 10-11.
[11]许乙青, 喻丁一, 冉静. 基于流域协同的国土空间雨洪安全格局构建方法[J]. 自然资源学报, 2021, 36(09): 2335-2349.
[12]周星宇, 郑段雅. 武汉城市圈生态安全格局评价研究[J]. 城市规划, 2018, 42(12): 132-140.
[13]景泽宇, 王忠杰, 马媛馨. 英国生态基础设施规划治理发展演进与启示借鉴[J]. 风景园林, 2023, 30(01): 119-125.
[14]赵海霞, 范金鼎, 骆新燎, 等. 绿色基础设施格局变化及其驱动因素—以南京市为例[J]. 生态学报, 2022, 42(18): 7597-7611.
[15]姜芊孜, 李金煜, 梁雪原, 等. 绿色基础设施水生态服务供需评价研究进展[J]. 生态学报, 2023, 43(4): 1-11.
[16]KRAUZE K, WAGNER I. From classical water-ecosystem theories to nature-based solutions-contextualizing nature-based solutions for sustainable city[J]. The Science of the Total Environment, 2019, 655: 697-706.
[17]SNEP R P, VOETEN J G, MOL G, et al. Nature based solutions for urban resilience: A distinction between no-tech, low-tech and high-tech solutions[J]. Frontiers in Environmental Science, 2020, 8: 599060.
[18]GRACE M, BALZAN M, COLLIER M, et al. Priority knowledge needs for implementing nature-based solutions in the Mediterranean Islands[J]. Environmental Science&Policy, 2021, 116: 56-68.
[19]赵银兵, 蔡婷婷, 孙然好, 等. 海绵城市研究进展综述: 从水文过程到生态恢复[J]. 生态学报, 2019, 39(13): 4638-4646.
[20]CHUI T F M, LIU X, ZHAN W. Assessing cost-effectiveness of specific LID practice designs in response to large storm events[J]. Journal of Hydrology, 2016, 533: 353-364.
[21]戴忱, 姚秀利, 陈凌. 海绵城市建设融入国土空间规划体系的路径与方法研究[J]. 现代城市研究, 2021(01): 72-78.
[22]鞠昌华, 裴文明, 张慧. 生态安全: 基于多尺度的考察[J]. 生态与农村环境学报, 2020, 36(5): 626-634.
[23]YANG Q, LIU G Y, HAO Y, et al. Quantitative analysis of the dynamic changes of ecological security in the provinces of China through emergy-ecological footprint hybrid indicators[J]. Journal of Cleaner Production, 2018, 184: 678-695.
[24]侯鹏, 杨旻, 翟俊, 等. 论自然保护与国家生态安全格局构建[J]. 地理研究, 2017, 36(3): 420-428.
[25]焦胜, 韩静艳, 周敏, 等. 基于雨洪安全格局的城市低影响开发模式研究[J]. 地理研究, 2018, 37(09): 1704-1713.
[26]韩静艳. 基于雨洪安全格局的城市低影响开发模型研究[D]. 长沙: 湖南大学, 2018: 12-18.
[27]郭嵘, 武彤, 黄梦石. 哈尔滨雨洪安全格局构建及规划措施研究[C]. 中国城市规划学会、贵阳市人民政府新常态: 传承与变革—2015中国城市规划年会论文集(01城市安全与防灾规划), 2015: 203-204.
[28]丁锶湲, 曾穗平, 田健. 基于内涝灾害防控的厦门雨洪安全格局模拟与设计策略研究[J]. 城市建筑, 2017, 11(33): 118-122.
[29]张青萍, 李晓策, 陈逸帆, 等. 海绵城市背景下的城市雨洪景观安全格局研究[J]. 现代城市研究, 2016(07): 6-11.
[30]吴健生, 王仰麟, 张小飞, 等. 景观生态学在国土空间治理中的应用[J]. 自然资源学报, 2020, 35(1): 14-25.
[31]SHI Y, KATZSCHNER L, NG E. Modelling the fine-scale spatiotemporal pattern of urban heat island effect using land use regressing approach in a megacity[J]. Science of the Total Environment, 2018, 618: 891-904.
[32]彭建, 赵会娟, 刘焱序, 等. 区域水安全格局构建:研究进展及概念框架[J]. 生态学报, 2016, 36(11): 3137-3145.
[33]戴冰武, 曾丽婷, 韩西丽. 基于生态安全格局的风景区游览线路最低成本路径选线—以湖南省平江县福桶景区为例[J]. 现代城市研究, 2015(01): 97-103.
[34]蒋鸿业, 邓苏衡, 祝慰. 多因子综合评价法在海绵城市专项规划中的实践探索[J]. 规划师, 2019(21): 77-84.
[35]魏博文, 李玥康, 漆宇豪, 等. 基于水动力与模糊综合模型的洪水风险评价[J]. 水利水电(中英文), 2022(9): 45-56.
[36]李建华, 张兴超, 任彬彬, 等. 韧性城乡理念下的区域雨洪安全格局研究—以北京市房山区为例[J]. 河北工业大学学报(社会科学版), 2021(2): 79-85.
[37]任智博, 付小莉, 李南生. 城市防涝风险分析研究—以武汉光谷中心城为例[J]. 土木工程, 2019, 8(2): 233-243.
[38]赵昌爽, 胡颖, 操家顺, 等. 适用于海绵城市建设的典型雨洪模型概述[J]. 净水技术, 2018, 37(8): 51-55, 60.
[39]蔡凌豪. 适用于“海绵城市”的水文水力模型概述[J]. 风景园林, 2016, 02, (0033): 33-43.
[40]康宏志, 陈亮, 郭祺忠, 等. 海绵城市建设地下水补给计算研究进展[J]. 地学前缘, 2019, 26(06): 58-65.
[41]彭辉, 孙晓文, 蒋竹青. 地表地下耦合的水量及溶质运移模拟研究进展[J]. 水文, 2021, 10301.
[42]王蕊, 王中根, 夏军. 地表水和地下水耦合模型研究进展[J]. 地理科学进展, 2008, 07: 37-41.
[43]ALIYARI F, BAILEY R T, TASDIGHI A, et al. Coupled SWAT-MODFLOW model for large-scale mixed agro-urban river basins[J]. Environmental Modelling & Software, 2019, 115: 200-210.
[44]APPLEYARD S J. Impact of storm water infiltration basins on groundwater quality, Perth metropolitan region, Western Australia[J]. Environmental Geology, 1993, 21(4): 227-236.
[45]THOMAS B F, VOGEL R M. Impact of storm water recharge practices on Boston groundwater elevations[J]. Journal of Hydrologic Engineering, 2012, 17(8): 923-932.
[46]BHASKAR A S, HOGAN D M, ARCHFIELD S A. Urban base flow with low impact developments[J]. Hydrological Processes, 2016, 30 (18): 3156-3171.
[47]MYER P E, COOPER R L, HAASE P H, et al. Santa cruz county LID groundwater recharge project, santa cruz, California, USA[C]. In: International Low Impact Development Conference 2015: LID: It Works in All Climates a Soils, 115-122.
[48]孙建伟. 邯郸市雨水利用及入渗补给地下水的研究[D]. 邯郸: 河北工程大学, 2007:3-5.
[49]郭超, 李家科, 李怀恩, 等. 雨水花园集中入渗对地下水水位和水质的影[J]. 水力发电学报, 2017, 36(12): 49-60.
[50]贾忠华, 吴舒然, 唐双成, 等. 雨水花园集中入渗对地下水水位与水质的影响[J]. 水科学进展, 2018, 29(2): 221-229.
[51]BROWN R A, BORST M. Evaluation of surface and subsurface processes in permeable pavement infiltration trenches[J]. Journal of Hydrologic Engineering, 2015, 20(2): 04014041.
[52]HERRERA C K. Community campus low impact development flow monitoring project, final project report[R]. Prepared for Kitsap County Public Works (Surface and Stormwater Management Program), Port Orchard, Washington, by Herrera Environmental Consultants, Inc., Seattle, Washington. 2013, 0204.
[53]FOX G A, MUNOZ-CARPENA R, PURVIS R A. Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables[J]. Journal of Hydrology, 2018, 556: 1-9.
[54]LAUVERNET C, MUNOZ-CARPENA R, et al. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips-part 2: Model coupling, application, factor importance, and uncertainty[J]. Hydrology and Earth System Sciences, 2018, 22: 71-87.
[55]MUNOZ-CARPENA R, LAUVERNET C, CARLUER N. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips-part 1: nonuniform infiltration and soil water redistribution[J]. Hydrology and Earth System Sciences, 2018, 22(1): 53-70.
[56]DUSSAILLANT A R, WU C H, POTTER K W. Richards equation model of a rain garden[J]. Journal of Hydrologic Engineering, 2004, 9(3): 219-225.
[57]NEWCOMER E M, GURDAK J J, SKLAR S L, et al. Urban recharge beneath low impact development and effects of climate variability and change[J]. Water Resources Research, 2014: 1716-1734.
[58]LOCATELLI L, MARK O, MIKKELSEN P S, et al. Determining the extent of groundwater interference on the performance of infiltration trenches[J]. Journal of Hydrology, 2015, 529: 1360-1372.
[59]CHAVEZ R A, BROWN G O, STORM D E. Impact of variable hydraulic conductivity on bioretention cell performance and implications for construction standards[J]. Journal of Hydraulic Engineering-Asce, 2013, 139(7): 707-715.
[60]SANSALONE L, RAJE S, KERTESZ R, et al. Retrofitting impervious urban infrastructure with green technology for rainfall-runoff restoration, indirect reuse and pollution load reduction[J]. Environmental Pollution, 2013, 183: 204-212.
[61]STEWART R D, LEE J G, SHUSTER W D, et al. Modeling hydrological response to a fully-monitored urban bioretention cell[J]. Hydrological Processes, 2017, 31(26): 4626-4638.
[62]ZHENG Y, CHEN S D, QIN H P, et al. Modeling the spatial and seasonal variations of groundwater head in an urbanized area under low impact development[J]. Water, 2018, 10(6): 803.
[63]ROLDIN M, LOCATELLI L, MARK O, et al. A simplified model of soakaway infiltration interaction with a shallow groundwater table[J]. Journal of Hydrology, 2013, 497(1): 165-175.
[64]MASSOUDIEH A, MAGHREBI M, KAMRANI B, et al. A flexible modeling framework for hydraulic and water quality performance assessment of storm water green infrastructure[J]. Environmental Modelling & Software, 2017, 92: 57-73.
[65]唐双成, 罗纨, 贾忠华, 等. 雨水花园对不同赋存形态氮磷的去除效果及土壤中优先流的影响[J]. 水利学报, 2015, 46(8): 943-950.
[66]王文亮, 李俊奇, 宫永伟, 等. 基于SWMM模型的低影响开发雨洪控制效果模拟[J]. 中国给水排水, 2012, 28(21): 42-44.
[67]张晓昕, 王强, 马洪涛. 奥林匹克公园地区雨水系统研究[J]. 给水排水,2008, (11): 7-14.
[68]ZHANG K, CHUI T F M. Evaluating hydrologic performance of bioretention cells in shallow groundwater[J]. Hydrological Processes, 2017, 31(23): 4122-4135.
[69]ENDRENY T, COLLINS V. Implications of bioretention basin spatial arrangements on stormwater recharge and groundwater mounding[J]. Ecological Engineering, 2009, 35(5): 670-677.
[70]KIDMOSE J, TROLDDORG L, REFSGAA J C, et al. Coupling of a distributed hydrological model with an urban storm water model for impact analysis of forced infiltration[J]. Journal of Hydrology, 2015, 525: 506-520.
[71]ZHANG K, CHUI T, YANG Y. Simulating the hydrological performance of low impact development in shallow groundwater via a modified SWMM[J]. Journal of Hydrology, 2018, 566: 313-331.
[72]冯艳如, 肖鸿, 彭引, 等. 地表水与地下水耦合模型开发与验证[J]. 水电能源科学, 2018, 36(5): 31-34.
[73]初亚奇. 水生态与水安全关联耦合视角下的寒地海绵城市规划研究[D]. 天津: 天津大学, 2020:15-17.
[74]夏楚瑜. 基于土地利用视角的多尺度城市碳代谢及“减排”情景模拟研究[D]. 杭州: 浙江大学, 2019:38-40.
[75]LIU Q H, CUI W H, TIAN Z, et al. Stormwater management modeling in sponge City construction: Current state and future directions[J]. Frontiers in Environmental Science, 2021, 816093.
[76]RANDALL M, SUN F, ZHANG Y Y, et al. Evaluating sponge city volume capture ratio at the catchment scale using SWMM[J]. Journal of Environmental Management, 2019, 246: 745-757.
[77]LIAO X, ZHENG J, HUANG C, et al. Approach for evaluating LID measure layout scenarios based on random forest: Case of Guangzhou-China[J]. Water, 2018, 10, 894.
[78]CHARBONNEAU C, BRADFORD A. Wetland modeling in PCSWMM:Exploring options to define wetland features and incorporate groundwater exchange[J]. Journal of Water Management Modeling, 2016, 25, C411.
[79]中国地质调查局. 中华人民共和国水文地质图[Q]. 1979. http://en.cgs.gov.cn/
[80]中国地质调查局. 地质和水文地质资料库[K]. 2021. https://geocloud.cgs.gov.cn
[81]YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth Science Frontiers, 2006, 1, 131: 163-164.
[82]LI J, ZHANG Y, DONG S, et al. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth-Science Reviews, 2014, 134: 98-136.
[83]ZHANG Z K, LING M X, LIN W, et al. "Yanshanian movement" induced by the westward subduction of the paleo-pacific plate[J]. Solid Earth Science,2020, 5(2): 103-114.
[84]张鹏, 张瑞瑾, 黄靖茗, 等. 基于FVCOM模型的海州湾纳潮量和水交能力研究[J]. 水利水电技术(中英文), 2021, 52(7): 143-151.
[85]CHEN C S, LIU H D, BEARDSLEY R C, et al. An unstructured grid, finite-volume,three-dimensional,primitive equations ocean model: Application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 20(1): 159-186
[86]YANG Z, YI S, WANG X. Hydrogeological map of Shenzhen[Q]. Shenzhen Geological Contruction Engineering Company, 2007.
[87]LANCIA M, ZHENG C M, YI S P, et al. Analysis of groundwater resources in densely populated urban watersheds with a complex tectonic setting: Shenzhen, southern China[J]. Hydrogeology Journal, 2019, (27): 183-194.
[88]姚焕玫, 卢燕南, 王石. 基于SWMM模型的南宁市海绵城市建设优化模拟[J]. 环境工程, 2019, 37 (11): 105-112, 191.
[89]KONG F H, BAN Y L, YIN H W, et al. Modeling stormwater management at the city district level in response to changes in land use and low impact development[J]. Environmental Modelling&Software, 2017, 95: 132-142.
[90]ROSSMAN L A, HUBER W C. Storm water management model reference manual volume I-hydrology(revised)[M]. American Environmental Protection Agency, 2016.
[91]黄润影. 基于SWMM和MODFLOW耦合的海绵城市水文效应研究[D]. 重庆: 重庆交通大学, 2019:11-18.
[92]谢如意, 冯振鹏, 王家, 等. 基于SWMM模型的公共建筑海绵设施应用研究[J]. 给水排水, 2022, 58(S1): 57-62.
[93]梅超, 刘家宏, 王浩, 等. SWMM原理解析与应用展望[J]. 水利水电技术, 2017, 48(05): 33-42.
[94]王泽阳. 海绵城市LID设施模型参数敏感性研究[J]. 给水排水, 2019, 45(11): 57-62.
[95]李思祎, 张建, 李涛, 等. 基于SWMM模型的LID设施的雨洪控制效果分析[J]. 中国农村水利水电, 2019(6): 60-65.
[96]ZHANG K, CHUI T, YANG Y. Simulating the hydrological performance of low impact development in shallow groundwater via a modified SWMM[J]. Journal of Hydrology, 2018, 566: 313-331.
[97]刘中培, 李鑫, 陈莹, 等. 基于MODFLOW与气候模式的矿区地下水流模拟[J]. 农村水利水电, 2021, 05: 113-117.
[98]SHU L, ULLEICH P A, DUFFY C J. Solver for hydrologic unstructured domain(SHUD): Numerical modeling of watershed hydrology with the finite volume method[R]. Hydrology, 2020.
[99]MOOERS E W, JAMIESON R C, HAYWARD J L, et al. Low-impact development effects on aquifer recharge using coupled surface and groundwater models[J]. Journal of Hydrologic Engineering, 2018, 23(9): 04018040.
[100]ZHANG K, CHUI T F M. Assessing the impact of spatial allocation of bioretention cells on shallow groundwater-an integrated surface-subsurface catchment-scale analysis with SWMM-MODFLOW[J]. Journal of Hydrology, 2020, 586, 124910.
[101]WANG Y, ZHENG C, MA R. Review: Safe and sustainable groundwater supply in China[J]. Hydrogeology Journal, 2018, 26: 1301-1324.
[102]BOWMAN D. Principles of alluvial fan morphology[M]. Berlin: Springer Verlag, 2017, 151.
[103]CGS. Chinese geological survey[P]. Beijing: Hydrogeological Map of People’s Republic of China, 1979.
[104]张兆吉. 华北平原地下水可持续利用图集[M]. 北京: 中国地图出版社, 2009, 185.
[105]LANCIA M, SU H, TIAN Y. Hydrogeology of the pearl river delta, southern China[J]. Journal of Maps, 2020, 16(2): 388-395.
[106]FREEZE R A, CHERRY J A. Groundwater[M]. Englewood Cliff, NJ: Prentice Hall, 1979, 606.
[107]ZHENG C M, LIU R, CAO G, et al. Can China cope with its water crisis? Perspectives from the North China Plain[J]. Groundwater, 2010, 48(4): 350-354.
[108]CAO G, ZHENG C M, SCANLON B R, et al. Use of flow modeling to assess sustainability of groundwater resources in the North China Plain[J]. Water Resource Research, 2013, 49: 159-175.
[109]WU C, XU Q, ZHANG X, et al. Palaeochannels on the North China Plain: Types and distributions[J]. Geomorphology, 1996, 18: 5-14.
[110]韩建秀, 王炳均, 曹邦卿. 南阳市城区地下水系统划分及供水意义[J].地下水, 2004, 26(1): 14-16.
[111]XU Y S, SHEN S L, DU Y J, et al. Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures[J]. Engineering Geology, 2009, 109: 241-254.
[112]ZHOU Y, XIAO W, WANG J, et al. Evaluating spatiotemporal variation of groundwater depth/level in Beijing Plain, a groundwater-fed area from 2001 to 2010[J]. Advances in Meteorology, 2016, 1-11.
[113]CHEN K L, WU H N, CHENG W C. Geological characteristics of strata in Chongqing, China, and mitigation of the environmental impacts of tunneling-induced geo-hazards[J]. Environmental Earth Science, 2017, 76(1): 10-16.
[114]RONG X, LU H, WANG M, et al. Cutter wear evaluation from operational parameters in EPB tunneling of Chengdu metro[J]. Tunnelling Underground Space Technology, 2019, 93, 103043,1-8.
[115]CHEN C, PEI S, JIAO J. Land subsidence caused by groundwater exploitation in Suzhou city, China[J]. Hydrogeology Journal, 2003, 11: 275-287.
[116]WU Y X, LYU H M, SHEN J S, et al. Geological and hydrogeological environment in Tianjin with potential geohazards and groundwater control during excavation[J]. Environmental Earth Sciences, 2018, 77(10): 392.
[117]HA D, ZHENG G, LOAICIGA H A, et al. Long-term groundwater level changes and land subsidence in Tianjin, China[J]. Acta Geotechnica, 2021, 4: 1303-1314.
[118]LI C, TANG X, MA T. Land subsidence caused by groundwater exploitation in the Hangzhou-Jiaxing-Huzhou Plain, China[J]. Hydrogeology Journal, 2006, 14(8): 1652-1665.
[119]SUN R, JIN M, GIORDANO M, et al. Urban and rural groundwater use in Zhengzhou, China: Challenges in joint management[J]. Hydrogeology Journal, 2009, 17(6): 1495-1506.
[120]周浩, 王殿武, 孙才志. 沈阳中心城区水源地漏斗恢复调蓄模拟研究[J]. 水文, 2011, 31(5): 47-51.
[121]DAI C L, LI Z J, DU S M, et al. Evaluation of shallow groundwater quantity in Harbin by numerical modeling[J]. Advanced Materials Research, 2011, 255-260: 2745-2750.
[122]SHEN Y, TANG C, XIAO J, et al. Effects of urbanization on water resource development and its problems in Shijiazhuang, China[C]. "Sustainable water management solutions for large cities" in proceedings of symposium S2 held during the seventh IAHS scientific assembly, 2005, 04.
[123]韩建秀, 王炳均, 曹邦卿. 南阳市城市地下水系统划分及供水意义[J] 地下水, 2004, 26(01): 14-16.
[124]LANCIA M, ZHENG C M, HE X, et al. Hydrogeological constraints and opportunities for "Sponge City" development: Shenzhen,southern China[J]. Jounal of Hydrology: Regional Studies, 2020, 28, 100679.
[125]赵茹玥. 海绵城市规划中的生态敏感性分析—以宜兴市为例[J]. 建筑节能,2017(09): 159-160.
[126]欧阳章智, 范世平, 孙健. 海绵城市专项规划的生态敏感性分析研究[J]. 人民黄河, 2020(6): 33-35.
[127]邬建国. 景观生态学—格局、过程、尺度与等级[M]. 北京: 高等教育出版社. 2007.
[128]吴健生, 张朴华. 城市景观格局对城市内涝的影响研究—以深圳市为例[J]. 地理学报, 2017, 72(03): 444-456.
[129]GAO H, SABO J L, CHEN X, et al. Landscape heterogeneity and hydrological process: A review of landscape-based hydrological models[J]. Landscape ecology, 2018, 33(9): 1460-1480.
[130]O DONNELL E, THORNE C, AHILAN S et al. The blue-green path to urban flood resilience[J]. Blue-Green Systems, 2019, 2(1): 28-45.
[131]胡文华. 新桥河挡潮闸建立前后流域水环境变化机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019:7-10.
[132]ZHANG K, CHUI T F M. A comprehensive review of spatial allocation of LID-BMP-GI practices: Strategies and optimization tools[J]. Science of the Total Environment, 2018, 621: 915-929.
[133]ZHAO Y B, YANG M Z, NI H G. An emergy-GIS method of selecting areas for sponge-like urban reconstruction[J]. Journal of Hydrology, 2018, 564: 640-650.
[134]HU H Z, TIAN Z, SUN L X, et al. Synthesized trade-off analysis of flood control solutions under future deep uncertainty:An application to the central business district of Shanghai[J]. Water Research, 2019, 166, 115067
[135]MORRIS M D. Factorial sampling plans for preliminary computational experiments[J]. Technometrics, 1991, 33(2): 161-174.
[136]CAMPOLONGO F, CARIBONI J, SALTELLI A. An effective screening design for sensitivity analysis of large model[J]. Environmental Modelling &Software, 2007, 22(10): 1509-1518.
[137]孙梦醒, 陈元芳, 王安琪. 基于Morris法的HBV模型参数敏感性分析[J]. 水电能源科学, 2020, 38(2): 40-43.
[138]SOBOL I M. Sensitivity estimates for nonlinear mathematical models[J]. Mathematical Modeling and Computational Experiment, 1993, (1): 407-414.
[139]李美水, 杨晓华. 基于Sobol方法的SWMM模型参数全局敏感性分析[J].中国给水排水, 2020, 36(17): 95-102.
[140]SALTELLI A, TARANTOLA S, CHAN K P S. A quantitative model-independent method for global sensitivity analysis of model output[J]. Technometrics, 1999, 41(1): 39-56.
[141]崔金涛, 丁继辉, YESIEKIN N, 等. 基于EFAST的CERES-Wheat模型土壤参数敏感性分析[J]. 农业机械学报, 2020, 51(12): 276-283.
[142]马冰然, 曾逸凡, 曾维华, 等. 气候变化背景下城市应对极端降水的适应性方案研究: 以西宁海绵城市试点区为例[J]. 环境科学学报, 2019, 39(4): 1361-1370.
[143]马雨露, 赖成光, 习树峰, 等. 南方高度城市化地区极端降雨特征分析及阈值确定: 以深圳市为例[J]. 水资源与水工程学报, 2017, 28(2): 76-81.
[144]MOOERS E W, JAMIESON R C, HAYWARD J L, et al. Low-Impact Development effects on aquifer recharge using coupled surface and groundwater models[J]. Journal of Hydrologic Engineering, 2018, 23(9): 04018040.
[145]杜新强, 贾思达, 方敏. 海绵城市建设对区域地下水资源的补给效应[J]. 水资源保护, 2019, 35(2): 13-24.
[146]郑宇. 低影响开发下沿海地区地下水位及氯离子时空变化的模拟研究—以深圳南山半岛为例[D]. 北京: 北京大学, 2019:15-20.
[147]JACOB K, LARS T, JENS C R, et al. Coupling of a distributed hydrological model with an urban storm water model for impact analysis of forced infiltration[J]. Journal of Hydrology, 2015, 525: 506-520.
[148]BAEK S S, CHOI D H, JUNG J W, et al. Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach[J]. Water Research, 2015, 86(1): 122-131.
[149]BHASKAR A S, HOGAN D M, NIMMO J R, et al. Groundwater recharge amidst focused stormwater infiltration[J]. Hydrological Processes, 2018, 1: 1-11.

所在学位评定分委会
资源与环境
国内图书分类号
X321
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544503
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
金梦潇. 基于地表水与地下水模型的海绵 城市空间多尺度优化研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11649014-金梦潇-环境科学与工程(18105KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[金梦潇]的文章
百度学术
百度学术中相似的文章
[金梦潇]的文章
必应学术
必应学术中相似的文章
[金梦潇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。