[1]LANCIA M, YAO Y Y, ANDREWS C B, et al. The China groundwater crisis: A mechanistic analysis with implication for global sustainability[J]. Sustainable Horizons, 2022, 4, 100042.
[2]NGUYEN T T, NGO H H, REN N Q, et al. Implementation of a specific urban water management-sponge city[J]. Science of The Total Environment, 2019, 652, (FEB.20): 147-162.
[3]高峰, 蔺欢欢. 海绵城市的建设与评估概念模型构建研究[J].国际城市规划, 2017, 32(5): 26-32.
[4]RAN N Q, WANG Q, WANG Q R, et al. Upgrading to urban water system 3.0 through sponge city construction[J]. Frontiers of Environmental science&Engineering, 2017, 11(4): 9.
[5]住房城乡建设部. 海绵城市建设技术指南: 低影响开发雨水系统构建(试行)[Z]. 2014.
[6]仇保兴. 海绵城市(LID)的内涵、途径与展望[J]. 给水排水, 2015,41(3): 1-7.
[7]ZHANG K, CHUI T F M. Interactions between shallow groundwater and low-impact development underdrain flow at different temporal scales[J]. Hydrological Processes, 2018, 32(23): 3495-3512.
[8]俞孔坚, 李迪华, 袁弘, 等. “海绵城市”理论与实践[J]. 城市规划, 2015, 39 (6): 26-36.
[9]龚亚西, 程珊珊, 季翔. 生态安全格局视角下的徐州海绵城市建设[J]. 福建师范大学学报(自然科学版), 2020, 36(03): 79-89.
[10]王旭阳. 城市公共空间雨洪安全格局构建与规划设施策略研究—以上海静安区为例[D]. 上海: 上海应用技术大学, 2020: 10-11.
[11]许乙青, 喻丁一, 冉静. 基于流域协同的国土空间雨洪安全格局构建方法[J]. 自然资源学报, 2021, 36(09): 2335-2349.
[12]周星宇, 郑段雅. 武汉城市圈生态安全格局评价研究[J]. 城市规划, 2018, 42(12): 132-140.
[13]景泽宇, 王忠杰, 马媛馨. 英国生态基础设施规划治理发展演进与启示借鉴[J]. 风景园林, 2023, 30(01): 119-125.
[14]赵海霞, 范金鼎, 骆新燎, 等. 绿色基础设施格局变化及其驱动因素—以南京市为例[J]. 生态学报, 2022, 42(18): 7597-7611.
[15]姜芊孜, 李金煜, 梁雪原, 等. 绿色基础设施水生态服务供需评价研究进展[J]. 生态学报, 2023, 43(4): 1-11.
[16]KRAUZE K, WAGNER I. From classical water-ecosystem theories to nature-based solutions-contextualizing nature-based solutions for sustainable city[J]. The Science of the Total Environment, 2019, 655: 697-706.
[17]SNEP R P, VOETEN J G, MOL G, et al. Nature based solutions for urban resilience: A distinction between no-tech, low-tech and high-tech solutions[J]. Frontiers in Environmental Science, 2020, 8: 599060.
[18]GRACE M, BALZAN M, COLLIER M, et al. Priority knowledge needs for implementing nature-based solutions in the Mediterranean Islands[J]. Environmental Science&Policy, 2021, 116: 56-68.
[19]赵银兵, 蔡婷婷, 孙然好, 等. 海绵城市研究进展综述: 从水文过程到生态恢复[J]. 生态学报, 2019, 39(13): 4638-4646.
[20]CHUI T F M, LIU X, ZHAN W. Assessing cost-effectiveness of specific LID practice designs in response to large storm events[J]. Journal of Hydrology, 2016, 533: 353-364.
[21]戴忱, 姚秀利, 陈凌. 海绵城市建设融入国土空间规划体系的路径与方法研究[J]. 现代城市研究, 2021(01): 72-78.
[22]鞠昌华, 裴文明, 张慧. 生态安全: 基于多尺度的考察[J]. 生态与农村环境学报, 2020, 36(5): 626-634.
[23]YANG Q, LIU G Y, HAO Y, et al. Quantitative analysis of the dynamic changes of ecological security in the provinces of China through emergy-ecological footprint hybrid indicators[J]. Journal of Cleaner Production, 2018, 184: 678-695.
[24]侯鹏, 杨旻, 翟俊, 等. 论自然保护与国家生态安全格局构建[J]. 地理研究, 2017, 36(3): 420-428.
[25]焦胜, 韩静艳, 周敏, 等. 基于雨洪安全格局的城市低影响开发模式研究[J]. 地理研究, 2018, 37(09): 1704-1713.
[26]韩静艳. 基于雨洪安全格局的城市低影响开发模型研究[D]. 长沙: 湖南大学, 2018: 12-18.
[27]郭嵘, 武彤, 黄梦石. 哈尔滨雨洪安全格局构建及规划措施研究[C]. 中国城市规划学会、贵阳市人民政府新常态: 传承与变革—2015中国城市规划年会论文集(01城市安全与防灾规划), 2015: 203-204.
[28]丁锶湲, 曾穗平, 田健. 基于内涝灾害防控的厦门雨洪安全格局模拟与设计策略研究[J]. 城市建筑, 2017, 11(33): 118-122.
[29]张青萍, 李晓策, 陈逸帆, 等. 海绵城市背景下的城市雨洪景观安全格局研究[J]. 现代城市研究, 2016(07): 6-11.
[30]吴健生, 王仰麟, 张小飞, 等. 景观生态学在国土空间治理中的应用[J]. 自然资源学报, 2020, 35(1): 14-25.
[31]SHI Y, KATZSCHNER L, NG E. Modelling the fine-scale spatiotemporal pattern of urban heat island effect using land use regressing approach in a megacity[J]. Science of the Total Environment, 2018, 618: 891-904.
[32]彭建, 赵会娟, 刘焱序, 等. 区域水安全格局构建:研究进展及概念框架[J]. 生态学报, 2016, 36(11): 3137-3145.
[33]戴冰武, 曾丽婷, 韩西丽. 基于生态安全格局的风景区游览线路最低成本路径选线—以湖南省平江县福桶景区为例[J]. 现代城市研究, 2015(01): 97-103.
[34]蒋鸿业, 邓苏衡, 祝慰. 多因子综合评价法在海绵城市专项规划中的实践探索[J]. 规划师, 2019(21): 77-84.
[35]魏博文, 李玥康, 漆宇豪, 等. 基于水动力与模糊综合模型的洪水风险评价[J]. 水利水电(中英文), 2022(9): 45-56.
[36]李建华, 张兴超, 任彬彬, 等. 韧性城乡理念下的区域雨洪安全格局研究—以北京市房山区为例[J]. 河北工业大学学报(社会科学版), 2021(2): 79-85.
[37]任智博, 付小莉, 李南生. 城市防涝风险分析研究—以武汉光谷中心城为例[J]. 土木工程, 2019, 8(2): 233-243.
[38]赵昌爽, 胡颖, 操家顺, 等. 适用于海绵城市建设的典型雨洪模型概述[J]. 净水技术, 2018, 37(8): 51-55, 60.
[39]蔡凌豪. 适用于“海绵城市”的水文水力模型概述[J]. 风景园林, 2016, 02, (0033): 33-43.
[40]康宏志, 陈亮, 郭祺忠, 等. 海绵城市建设地下水补给计算研究进展[J]. 地学前缘, 2019, 26(06): 58-65.
[41]彭辉, 孙晓文, 蒋竹青. 地表地下耦合的水量及溶质运移模拟研究进展[J]. 水文, 2021, 10301.
[42]王蕊, 王中根, 夏军. 地表水和地下水耦合模型研究进展[J]. 地理科学进展, 2008, 07: 37-41.
[43]ALIYARI F, BAILEY R T, TASDIGHI A, et al. Coupled SWAT-MODFLOW model for large-scale mixed agro-urban river basins[J]. Environmental Modelling & Software, 2019, 115: 200-210.
[44]APPLEYARD S J. Impact of storm water infiltration basins on groundwater quality, Perth metropolitan region, Western Australia[J]. Environmental Geology, 1993, 21(4): 227-236.
[45]THOMAS B F, VOGEL R M. Impact of storm water recharge practices on Boston groundwater elevations[J]. Journal of Hydrologic Engineering, 2012, 17(8): 923-932.
[46]BHASKAR A S, HOGAN D M, ARCHFIELD S A. Urban base flow with low impact developments[J]. Hydrological Processes, 2016, 30 (18): 3156-3171.
[47]MYER P E, COOPER R L, HAASE P H, et al. Santa cruz county LID groundwater recharge project, santa cruz, California, USA[C]. In: International Low Impact Development Conference 2015: LID: It Works in All Climates a Soils, 115-122.
[48]孙建伟. 邯郸市雨水利用及入渗补给地下水的研究[D]. 邯郸: 河北工程大学, 2007:3-5.
[49]郭超, 李家科, 李怀恩, 等. 雨水花园集中入渗对地下水水位和水质的影[J]. 水力发电学报, 2017, 36(12): 49-60.
[50]贾忠华, 吴舒然, 唐双成, 等. 雨水花园集中入渗对地下水水位与水质的影响[J]. 水科学进展, 2018, 29(2): 221-229.
[51]BROWN R A, BORST M. Evaluation of surface and subsurface processes in permeable pavement infiltration trenches[J]. Journal of Hydrologic Engineering, 2015, 20(2): 04014041.
[52]HERRERA C K. Community campus low impact development flow monitoring project, final project report[R]. Prepared for Kitsap County Public Works (Surface and Stormwater Management Program), Port Orchard, Washington, by Herrera Environmental Consultants, Inc., Seattle, Washington. 2013, 0204.
[53]FOX G A, MUNOZ-CARPENA R, PURVIS R A. Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables[J]. Journal of Hydrology, 2018, 556: 1-9.
[54]LAUVERNET C, MUNOZ-CARPENA R, et al. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips-part 2: Model coupling, application, factor importance, and uncertainty[J]. Hydrology and Earth System Sciences, 2018, 22: 71-87.
[55]MUNOZ-CARPENA R, LAUVERNET C, CARLUER N. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips-part 1: nonuniform infiltration and soil water redistribution[J]. Hydrology and Earth System Sciences, 2018, 22(1): 53-70.
[56]DUSSAILLANT A R, WU C H, POTTER K W. Richards equation model of a rain garden[J]. Journal of Hydrologic Engineering, 2004, 9(3): 219-225.
[57]NEWCOMER E M, GURDAK J J, SKLAR S L, et al. Urban recharge beneath low impact development and effects of climate variability and change[J]. Water Resources Research, 2014: 1716-1734.
[58]LOCATELLI L, MARK O, MIKKELSEN P S, et al. Determining the extent of groundwater interference on the performance of infiltration trenches[J]. Journal of Hydrology, 2015, 529: 1360-1372.
[59]CHAVEZ R A, BROWN G O, STORM D E. Impact of variable hydraulic conductivity on bioretention cell performance and implications for construction standards[J]. Journal of Hydraulic Engineering-Asce, 2013, 139(7): 707-715.
[60]SANSALONE L, RAJE S, KERTESZ R, et al. Retrofitting impervious urban infrastructure with green technology for rainfall-runoff restoration, indirect reuse and pollution load reduction[J]. Environmental Pollution, 2013, 183: 204-212.
[61]STEWART R D, LEE J G, SHUSTER W D, et al. Modeling hydrological response to a fully-monitored urban bioretention cell[J]. Hydrological Processes, 2017, 31(26): 4626-4638.
[62]ZHENG Y, CHEN S D, QIN H P, et al. Modeling the spatial and seasonal variations of groundwater head in an urbanized area under low impact development[J]. Water, 2018, 10(6): 803.
[63]ROLDIN M, LOCATELLI L, MARK O, et al. A simplified model of soakaway infiltration interaction with a shallow groundwater table[J]. Journal of Hydrology, 2013, 497(1): 165-175.
[64]MASSOUDIEH A, MAGHREBI M, KAMRANI B, et al. A flexible modeling framework for hydraulic and water quality performance assessment of storm water green infrastructure[J]. Environmental Modelling & Software, 2017, 92: 57-73.
[65]唐双成, 罗纨, 贾忠华, 等. 雨水花园对不同赋存形态氮磷的去除效果及土壤中优先流的影响[J]. 水利学报, 2015, 46(8): 943-950.
[66]王文亮, 李俊奇, 宫永伟, 等. 基于SWMM模型的低影响开发雨洪控制效果模拟[J]. 中国给水排水, 2012, 28(21): 42-44.
[67]张晓昕, 王强, 马洪涛. 奥林匹克公园地区雨水系统研究[J]. 给水排水,2008, (11): 7-14.
[68]ZHANG K, CHUI T F M. Evaluating hydrologic performance of bioretention cells in shallow groundwater[J]. Hydrological Processes, 2017, 31(23): 4122-4135.
[69]ENDRENY T, COLLINS V. Implications of bioretention basin spatial arrangements on stormwater recharge and groundwater mounding[J]. Ecological Engineering, 2009, 35(5): 670-677.
[70]KIDMOSE J, TROLDDORG L, REFSGAA J C, et al. Coupling of a distributed hydrological model with an urban storm water model for impact analysis of forced infiltration[J]. Journal of Hydrology, 2015, 525: 506-520.
[71]ZHANG K, CHUI T, YANG Y. Simulating the hydrological performance of low impact development in shallow groundwater via a modified SWMM[J]. Journal of Hydrology, 2018, 566: 313-331.
[72]冯艳如, 肖鸿, 彭引, 等. 地表水与地下水耦合模型开发与验证[J]. 水电能源科学, 2018, 36(5): 31-34.
[73]初亚奇. 水生态与水安全关联耦合视角下的寒地海绵城市规划研究[D]. 天津: 天津大学, 2020:15-17.
[74]夏楚瑜. 基于土地利用视角的多尺度城市碳代谢及“减排”情景模拟研究[D]. 杭州: 浙江大学, 2019:38-40.
[75]LIU Q H, CUI W H, TIAN Z, et al. Stormwater management modeling in sponge City construction: Current state and future directions[J]. Frontiers in Environmental Science, 2021, 816093.
[76]RANDALL M, SUN F, ZHANG Y Y, et al. Evaluating sponge city volume capture ratio at the catchment scale using SWMM[J]. Journal of Environmental Management, 2019, 246: 745-757.
[77]LIAO X, ZHENG J, HUANG C, et al. Approach for evaluating LID measure layout scenarios based on random forest: Case of Guangzhou-China[J]. Water, 2018, 10, 894.
[78]CHARBONNEAU C, BRADFORD A. Wetland modeling in PCSWMM:Exploring options to define wetland features and incorporate groundwater exchange[J]. Journal of Water Management Modeling, 2016, 25, C411.
[79]中国地质调查局. 中华人民共和国水文地质图[Q]. 1979. http://en.cgs.gov.cn/
[80]中国地质调查局. 地质和水文地质资料库[K]. 2021. https://geocloud.cgs.gov.cn
[81]YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth Science Frontiers, 2006, 1, 131: 163-164.
[82]LI J, ZHANG Y, DONG S, et al. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth-Science Reviews, 2014, 134: 98-136.
[83]ZHANG Z K, LING M X, LIN W, et al. "Yanshanian movement" induced by the westward subduction of the paleo-pacific plate[J]. Solid Earth Science,2020, 5(2): 103-114.
[84]张鹏, 张瑞瑾, 黄靖茗, 等. 基于FVCOM模型的海州湾纳潮量和水交能力研究[J]. 水利水电技术(中英文), 2021, 52(7): 143-151.
[85]CHEN C S, LIU H D, BEARDSLEY R C, et al. An unstructured grid, finite-volume,three-dimensional,primitive equations ocean model: Application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 20(1): 159-186
[86]YANG Z, YI S, WANG X. Hydrogeological map of Shenzhen[Q]. Shenzhen Geological Contruction Engineering Company, 2007.
[87]LANCIA M, ZHENG C M, YI S P, et al. Analysis of groundwater resources in densely populated urban watersheds with a complex tectonic setting: Shenzhen, southern China[J]. Hydrogeology Journal, 2019, (27): 183-194.
[88]姚焕玫, 卢燕南, 王石. 基于SWMM模型的南宁市海绵城市建设优化模拟[J]. 环境工程, 2019, 37 (11): 105-112, 191.
[89]KONG F H, BAN Y L, YIN H W, et al. Modeling stormwater management at the city district level in response to changes in land use and low impact development[J]. Environmental Modelling&Software, 2017, 95: 132-142.
[90]ROSSMAN L A, HUBER W C. Storm water management model reference manual volume I-hydrology(revised)[M]. American Environmental Protection Agency, 2016.
[91]黄润影. 基于SWMM和MODFLOW耦合的海绵城市水文效应研究[D]. 重庆: 重庆交通大学, 2019:11-18.
[92]谢如意, 冯振鹏, 王家, 等. 基于SWMM模型的公共建筑海绵设施应用研究[J]. 给水排水, 2022, 58(S1): 57-62.
[93]梅超, 刘家宏, 王浩, 等. SWMM原理解析与应用展望[J]. 水利水电技术, 2017, 48(05): 33-42.
[94]王泽阳. 海绵城市LID设施模型参数敏感性研究[J]. 给水排水, 2019, 45(11): 57-62.
[95]李思祎, 张建, 李涛, 等. 基于SWMM模型的LID设施的雨洪控制效果分析[J]. 中国农村水利水电, 2019(6): 60-65.
[96]ZHANG K, CHUI T, YANG Y. Simulating the hydrological performance of low impact development in shallow groundwater via a modified SWMM[J]. Journal of Hydrology, 2018, 566: 313-331.
[97]刘中培, 李鑫, 陈莹, 等. 基于MODFLOW与气候模式的矿区地下水流模拟[J]. 农村水利水电, 2021, 05: 113-117.
[98]SHU L, ULLEICH P A, DUFFY C J. Solver for hydrologic unstructured domain(SHUD): Numerical modeling of watershed hydrology with the finite volume method[R]. Hydrology, 2020.
[99]MOOERS E W, JAMIESON R C, HAYWARD J L, et al. Low-impact development effects on aquifer recharge using coupled surface and groundwater models[J]. Journal of Hydrologic Engineering, 2018, 23(9): 04018040.
[100]ZHANG K, CHUI T F M. Assessing the impact of spatial allocation of bioretention cells on shallow groundwater-an integrated surface-subsurface catchment-scale analysis with SWMM-MODFLOW[J]. Journal of Hydrology, 2020, 586, 124910.
[101]WANG Y, ZHENG C, MA R. Review: Safe and sustainable groundwater supply in China[J]. Hydrogeology Journal, 2018, 26: 1301-1324.
[102]BOWMAN D. Principles of alluvial fan morphology[M]. Berlin: Springer Verlag, 2017, 151.
[103]CGS. Chinese geological survey[P]. Beijing: Hydrogeological Map of People’s Republic of China, 1979.
[104]张兆吉. 华北平原地下水可持续利用图集[M]. 北京: 中国地图出版社, 2009, 185.
[105]LANCIA M, SU H, TIAN Y. Hydrogeology of the pearl river delta, southern China[J]. Journal of Maps, 2020, 16(2): 388-395.
[106]FREEZE R A, CHERRY J A. Groundwater[M]. Englewood Cliff, NJ: Prentice Hall, 1979, 606.
[107]ZHENG C M, LIU R, CAO G, et al. Can China cope with its water crisis? Perspectives from the North China Plain[J]. Groundwater, 2010, 48(4): 350-354.
[108]CAO G, ZHENG C M, SCANLON B R, et al. Use of flow modeling to assess sustainability of groundwater resources in the North China Plain[J]. Water Resource Research, 2013, 49: 159-175.
[109]WU C, XU Q, ZHANG X, et al. Palaeochannels on the North China Plain: Types and distributions[J]. Geomorphology, 1996, 18: 5-14.
[110]韩建秀, 王炳均, 曹邦卿. 南阳市城区地下水系统划分及供水意义[J].地下水, 2004, 26(1): 14-16.
[111]XU Y S, SHEN S L, DU Y J, et al. Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures[J]. Engineering Geology, 2009, 109: 241-254.
[112]ZHOU Y, XIAO W, WANG J, et al. Evaluating spatiotemporal variation of groundwater depth/level in Beijing Plain, a groundwater-fed area from 2001 to 2010[J]. Advances in Meteorology, 2016, 1-11.
[113]CHEN K L, WU H N, CHENG W C. Geological characteristics of strata in Chongqing, China, and mitigation of the environmental impacts of tunneling-induced geo-hazards[J]. Environmental Earth Science, 2017, 76(1): 10-16.
[114]RONG X, LU H, WANG M, et al. Cutter wear evaluation from operational parameters in EPB tunneling of Chengdu metro[J]. Tunnelling Underground Space Technology, 2019, 93, 103043,1-8.
[115]CHEN C, PEI S, JIAO J. Land subsidence caused by groundwater exploitation in Suzhou city, China[J]. Hydrogeology Journal, 2003, 11: 275-287.
[116]WU Y X, LYU H M, SHEN J S, et al. Geological and hydrogeological environment in Tianjin with potential geohazards and groundwater control during excavation[J]. Environmental Earth Sciences, 2018, 77(10): 392.
[117]HA D, ZHENG G, LOAICIGA H A, et al. Long-term groundwater level changes and land subsidence in Tianjin, China[J]. Acta Geotechnica, 2021, 4: 1303-1314.
[118]LI C, TANG X, MA T. Land subsidence caused by groundwater exploitation in the Hangzhou-Jiaxing-Huzhou Plain, China[J]. Hydrogeology Journal, 2006, 14(8): 1652-1665.
[119]SUN R, JIN M, GIORDANO M, et al. Urban and rural groundwater use in Zhengzhou, China: Challenges in joint management[J]. Hydrogeology Journal, 2009, 17(6): 1495-1506.
[120]周浩, 王殿武, 孙才志. 沈阳中心城区水源地漏斗恢复调蓄模拟研究[J]. 水文, 2011, 31(5): 47-51.
[121]DAI C L, LI Z J, DU S M, et al. Evaluation of shallow groundwater quantity in Harbin by numerical modeling[J]. Advanced Materials Research, 2011, 255-260: 2745-2750.
[122]SHEN Y, TANG C, XIAO J, et al. Effects of urbanization on water resource development and its problems in Shijiazhuang, China[C]. "Sustainable water management solutions for large cities" in proceedings of symposium S2 held during the seventh IAHS scientific assembly, 2005, 04.
[123]韩建秀, 王炳均, 曹邦卿. 南阳市城市地下水系统划分及供水意义[J] 地下水, 2004, 26(01): 14-16.
[124]LANCIA M, ZHENG C M, HE X, et al. Hydrogeological constraints and opportunities for "Sponge City" development: Shenzhen,southern China[J]. Jounal of Hydrology: Regional Studies, 2020, 28, 100679.
[125]赵茹玥. 海绵城市规划中的生态敏感性分析—以宜兴市为例[J]. 建筑节能,2017(09): 159-160.
[126]欧阳章智, 范世平, 孙健. 海绵城市专项规划的生态敏感性分析研究[J]. 人民黄河, 2020(6): 33-35.
[127]邬建国. 景观生态学—格局、过程、尺度与等级[M]. 北京: 高等教育出版社. 2007.
[128]吴健生, 张朴华. 城市景观格局对城市内涝的影响研究—以深圳市为例[J]. 地理学报, 2017, 72(03): 444-456.
[129]GAO H, SABO J L, CHEN X, et al. Landscape heterogeneity and hydrological process: A review of landscape-based hydrological models[J]. Landscape ecology, 2018, 33(9): 1460-1480.
[130]O DONNELL E, THORNE C, AHILAN S et al. The blue-green path to urban flood resilience[J]. Blue-Green Systems, 2019, 2(1): 28-45.
[131]胡文华. 新桥河挡潮闸建立前后流域水环境变化机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019:7-10.
[132]ZHANG K, CHUI T F M. A comprehensive review of spatial allocation of LID-BMP-GI practices: Strategies and optimization tools[J]. Science of the Total Environment, 2018, 621: 915-929.
[133]ZHAO Y B, YANG M Z, NI H G. An emergy-GIS method of selecting areas for sponge-like urban reconstruction[J]. Journal of Hydrology, 2018, 564: 640-650.
[134]HU H Z, TIAN Z, SUN L X, et al. Synthesized trade-off analysis of flood control solutions under future deep uncertainty:An application to the central business district of Shanghai[J]. Water Research, 2019, 166, 115067
[135]MORRIS M D. Factorial sampling plans for preliminary computational experiments[J]. Technometrics, 1991, 33(2): 161-174.
[136]CAMPOLONGO F, CARIBONI J, SALTELLI A. An effective screening design for sensitivity analysis of large model[J]. Environmental Modelling &Software, 2007, 22(10): 1509-1518.
[137]孙梦醒, 陈元芳, 王安琪. 基于Morris法的HBV模型参数敏感性分析[J]. 水电能源科学, 2020, 38(2): 40-43.
[138]SOBOL I M. Sensitivity estimates for nonlinear mathematical models[J]. Mathematical Modeling and Computational Experiment, 1993, (1): 407-414.
[139]李美水, 杨晓华. 基于Sobol方法的SWMM模型参数全局敏感性分析[J].中国给水排水, 2020, 36(17): 95-102.
[140]SALTELLI A, TARANTOLA S, CHAN K P S. A quantitative model-independent method for global sensitivity analysis of model output[J]. Technometrics, 1999, 41(1): 39-56.
[141]崔金涛, 丁继辉, YESIEKIN N, 等. 基于EFAST的CERES-Wheat模型土壤参数敏感性分析[J]. 农业机械学报, 2020, 51(12): 276-283.
[142]马冰然, 曾逸凡, 曾维华, 等. 气候变化背景下城市应对极端降水的适应性方案研究: 以西宁海绵城市试点区为例[J]. 环境科学学报, 2019, 39(4): 1361-1370.
[143]马雨露, 赖成光, 习树峰, 等. 南方高度城市化地区极端降雨特征分析及阈值确定: 以深圳市为例[J]. 水资源与水工程学报, 2017, 28(2): 76-81.
[144]MOOERS E W, JAMIESON R C, HAYWARD J L, et al. Low-Impact Development effects on aquifer recharge using coupled surface and groundwater models[J]. Journal of Hydrologic Engineering, 2018, 23(9): 04018040.
[145]杜新强, 贾思达, 方敏. 海绵城市建设对区域地下水资源的补给效应[J]. 水资源保护, 2019, 35(2): 13-24.
[146]郑宇. 低影响开发下沿海地区地下水位及氯离子时空变化的模拟研究—以深圳南山半岛为例[D]. 北京: 北京大学, 2019:15-20.
[147]JACOB K, LARS T, JENS C R, et al. Coupling of a distributed hydrological model with an urban storm water model for impact analysis of forced infiltration[J]. Journal of Hydrology, 2015, 525: 506-520.
[148]BAEK S S, CHOI D H, JUNG J W, et al. Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach[J]. Water Research, 2015, 86(1): 122-131.
[149]BHASKAR A S, HOGAN D M, NIMMO J R, et al. Groundwater recharge amidst focused stormwater infiltration[J]. Hydrological Processes, 2018, 1: 1-11.
修改评论