中文版 | English
题名

制备条件对水凝胶力学性质的影响机理研究

其他题名
EFFECTS OF SYNTHESIS CONDITION ON THE MECHANICAL PROPERTIES OF HYDROGELS
姓名
姓名拼音
SUN Xingjian
学号
11930828
学位类型
博士
学位专业
080102 固体力学
学科门类/专业学位类别
08 工学
导师
洪伟
导师单位
力学与航空航天工程系
论文答辩日期
2023-05-19
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

水凝胶等软物质材料具备诸多优点,例如优异的柔韧性,较强的环境适应性,灵活可调的力学性能以及良好的生物相容性等,其可在微小的外界环境刺激下(例如细微的温度或载荷变化)产生较大的变形。在未来的科学和工程领域发展中,作为一个重要前沿方向,软材料会在人类社会的生产和生活中起到举足轻重的作用。因此,研究水凝胶等软物质材料的基本力学性质以及影响这些力学性质的因素和背后的理论机理,对于推动软物质材料的广泛应用具有至关重要的意义。对于传统的固体结构性材料,其力学性质不仅与构成该材料的化学成分有关,更与其内部微观结构等因素有关,大量的研究表明结构性材料的力学性质会受到诸多因素的影响,例如合成该材料时的初始制备条件,后续的加工过程以及微观结构等。然而对于水凝胶等软物质材料,目前关于除了其材料构成组分以外的其他因素对其力学性质影响以及机理的研究还非常有限,例如软材料内部聚合物网络的微观结构,制备软材料时的初始条件以及随后的制备流程等因素,都会对其力学性质产生较为显著的影响,这对水凝胶等软材料在各科学和工程领域的应用带来了挑战。从微观结构的层面出发,研究软材料的制备条件和制备流程对其微观网络结构产生的影响,从而研究微观结构的改变对软材料的力学性质产生的影响及其背后的物理机理,是软材料力学研究的重要方向之一。本文以聚丙烯酰胺为研究对象,分别研究了初始制备条件和制备流程的改变对聚丙烯酰胺水凝胶的弹性刚度,断裂韧性,疲劳阈值以及溶胀性能的影响,并从微观网络结构的层面解释了这些影响因素背后的物理机理。文中的主要研究工作包括:

1)从实验和理论上研究分析了初始制备条件和制备流程的改变对聚丙烯酰胺水凝胶弹性模量的影响,建立了可以精准描述水凝胶的弹性模量随其初始制备条件和制备流程变化关系的理论标度律模型,实现了在各种制备状态以及溶胀和退溶胀状态下精确预测水凝胶的弹性模量,并且提出了一种当化学交联剂不足时拓扑交联点补偿化学交联点的理论思路。实验结果表明,通过溶剂交换至组分完全相同的水凝胶会表现出差异很大的力学行为,水凝胶的弹性刚度在很大程度上依赖于其制备条件和制备流程。通过该模型可以实现对水凝胶弹性刚度的灵活调控。

2)通过实验测量和理论分析,研究了聚丙烯酰胺水凝胶的断裂韧性和疲劳阈值随其初始制备条件和制备流程的变化关系,建立了精准描述初始制备条件和制备流程对水凝胶疲劳阈值影响机理的理论模型,提出了悬挂链和网络缺陷导致的粘弹性是造成退溶胀状态水凝胶断裂韧性剧烈增加主要原因,成功地解释了初始制备状态以及溶胀和退溶胀状态下水凝胶的断裂韧性随其初始体积分数的变化规律,阐明了制备条件和制备流程对水凝胶断裂韧性的影响机理。实验结果表明水凝胶的断裂韧性和疲劳阈值在很大程度上会受其制备条件和制备流程的影响,尤其是对于初始体积分数很低接近临界成胶点的水凝胶,退溶胀会导致其断裂能的急剧增加,甚至接近一些双网络水凝胶的断裂能。这部分研究在一定程度上揭示了聚合物凝胶的制备条件与力学性质之间的耦合关系,这对于未来设计制造高韧性的新型软材料及其在各领域中的广泛应用都具有重要意义。

3)从微观网络结构的层面出发,通过实验和理论系统地分析研究了聚丙烯酰胺水凝胶的溶胀性能与初始制备条件之间的耦合关系,提出了一种新的计算混合自由能的模型,代替了Flory-Huggins模型,并改进了Flory-Rehner溶胀理论中的弹性自由能部分,建立了描述水凝胶溶胀性能随初始制备条件变化关系的完整理论模型。实验结果表明,在不同交联剂/单体摩尔比的制备条件下合成的一系列水凝胶会表现出差异很大的溶胀性能。通过对不同范围内的交联剂/单体摩尔比下水凝胶的聚合物网络结构进行分析研究,建立了精准预测平衡溶胀率随制备浓度以及交联密度变化关系的理论模型。在以上关于平衡溶胀率研究的基础上,通过调整溶剂的渗透压来改变水凝胶与溶剂分子相互作用的净渗透压,研究分析了在非平衡状态下时水凝胶的溶胀行为随制备浓度和交联密度的变化关系,建立了在非平衡状态下描述水凝胶溶胀和退溶胀行为的完整理论模型。这部分研究对于水凝胶等软材料在卫生用品等工业领域中的应用具有重要的价值,例如对于一些高吸水性的聚合物软材料产品,利用该溶胀模型理论上可以通过控制初始制备条件来使材料的吸水性达到最优化。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] De Gennes P G. Soft matter[J]. Science, 1992, 256(5056): 495-497.
[2] Liu X, Liu J, Lin S, et al. Hydrogel machines[J]. Materials Today, 2020, 36: 102-124.
[3] Boyce M C, Arruda E M. Swelling and mechanical stretching of elastomeric materials[J]. Mathematics and Mechanics of Solids, 2001, 6(6): 641-659.
[4] Haider H, Yang C H, Zheng W J, et al. Exceptionally tough and notch-insensitive magnetic hydrogels[J]. Soft Matter, 2015, 11(42): 8253-8261.
[5] Osada Y, Gong J P. Soft and wet materials: polymer gels[J]. Advanced materials, 1998, 10(11): 827-837.
[6] Miyata T, Uragami T, Nakamae K. Biomolecule-sensitive hydrogels[J]. Advanced drug delivery reviews, 2002, 54(1): 79-98.
[7] Schadt M. Liquid crystal materials and liquid crystal displays[J]. Annual review of materials science, 1997, 27(1): 305-379.
[8] Oka M, Noguchi T, Kumar P, et al. Development of an artificial articular cartilage[J]. Clinical materials, 1990, 6(4): 361-381.
[9] Yip E, Cacioli P. The manufacture of gloves from natural rubber latex[J]. Journal of allergy and clinical immunology, 2002, 110(2): S3-S14.
[10] Saville B, Watson A A. Structural characterization of sulfur-vulcanized rubber networks[J]. Rubber chemistry and technology, 1967, 40(1): 100-148.
[11] Tybrandt K, Khodagholy D, Dielacher B, et al. High‐density stretchable electrode grids for chronic neural recording[J]. Advanced Materials, 2018, 30(15): 1706520.
[12] Byun J, Lee Y, Yoon J, et al. Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots[J]. Science Robotics, 2018, 3(18): eaas9020.
[13] Gong J P, Katsuyama Y, Kurokawa T, et al. Double‐network hydrogels with extremely high mechanical strength[J]. Advanced materials, 2003, 15(14): 1155-1158.
[14] Gong J P. Why are double network hydrogels so tough?[J]. Soft Matter, 2010, 6(12): 2583-2590.
[15] Hennink W E, van Nostrum C F. Novel crosslinking methods to design hydrogels[J]. Advanced drug delivery reviews, 2002, 54(1): 13-36.
[16] Maitra J, Shukla V K. Cross-linking in hydrogels-a review[J]. Am. J. Polym. Sci, 2014, 4(2): 25-31.
[17] Hu W, Wang Z, Xiao Y, et al. Advances in crosslinking strategies of biomedical hydrogels[J]. Biomaterials science, 2019, 7(3): 843-855.
[18] Orakdogen N, Okay O. Correlation between crosslinking efficiency and spatial inhomogeneity in poly (acrylamide) hydrogels[J]. Polymer Bulletin, 2006, 57: 631-641.
[19] Zhuang Y, Yu F, Chen J, et al. Batch and column adsorption of methylene blue by graphene/alginate nanocomposite: Comparison of single-network and double-network hydrogels[J]. Journal of environmental chemical engineering, 2016, 4(1): 147-156.
[20] Sun J Y, Zhao X, Illeperuma W R K, et al. Highly stretchable and tough hydrogels[J]. Nature, 2012, 489(7414): 133-136.
[21] Yang C H, Wang M X, Haider H, et al. Strengthening alginate/polyacrylamide hydrogels using various multivalent cations[J]. ACS applied materials & interfaces, 2013, 5(21): 10418-10422.
[22] Oyen M L. Mechanical characterisation of hydrogel materials[J]. International Materials Reviews, 2014, 59(1): 44-59.
[23] Kloxin A M, Kloxin C J, Bowman C N, et al. Mechanical properties of cellularly responsive hydrogels and their experimental determination[J]. Advanced materials, 2010, 22(31): 3484-3494.
[24] Tse J R, Engler A J. Preparation of hydrogel substrates with tunable mechanical properties[J]. Current protocols in cell biology, 2010, 47(1): 10.16. 1-10.16. 16.
[25] Stammen J A, Williams S, Ku D N, et al. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression[J]. Biomaterials, 2001, 22(8): 799-806.
[26] Vedadghavami A, Minooei F, Mohammadi M H, et al. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications[J]. Acta biomaterialia, 2017, 62: 42-63.
[27] Banquy X, Suarez F, Argaw A, et al. Effect of mechanical properties of hydrogel nanoparticles on macrophage cell uptake[J]. Soft Matter, 2009, 5(20): 3984-3991.
[28] Skardal A, Devarasetty M, Kang H W, et al. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs[J]. Acta biomaterialia, 2015, 25: 24-34.
[29] George J, Hsu C C, Nguyen L T B, et al. Neural tissue engineering with structured hydrogels in CNS models and therapies[J]. Biotechnology advances, 2020, 42: 107370.
[30] Maitra J, Shukla V K. Cross-linking in hydrogels-a review[J]. Am. J. Polym. Sci, 2014, 4(2): 25-31.
[31] Koc J, Schönemann E, Wanka R, et al. Effects of crosslink density in zwitterionic hydrogel coatings on their antifouling performance and susceptibility to silt uptake[J]. Biofouling, 2020, 36(6): 646-659.
[32] Lei J, Li Z, Xu S, et al. Recent advances of hydrogel network models for studies on mechanical behaviors[J]. Acta Mechanica Sinica, 2021, 37: 367-386.
[33] Eichenbaum G M, Kiser P F, Simon S A, et al. pH and ion-triggered volume response of anionic hydrogel microspheres[J]. Macromolecules, 1998, 31(15): 5084-5093.
[34] Fennell E, Huyghe J M. Chemically responsive hydrogel deformation mechanics: A review[J]. Molecules, 2019, 24(19): 3521.
[35] Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery[J]. Advanced drug delivery reviews, 2008, 60(15): 1638-1649.
[36] Dreiss C A. Hydrogel design strategies for drug delivery[J]. Current opinion in colloid & interface science, 2020, 48: 1-17.
[37] Sun Z, Song C, Wang C, et al. Hydrogel-based controlled drug delivery for cancer treatment: a review[J]. Molecular pharmaceutics, 2019, 17(2): 373-391.
[38] Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing[J]. ACS nano, 2021, 15(8): 12687-12722.
[39] Nguyen K T, West J L. Photopolymerizable hydrogels for tissue engineering applications[J]. Biomaterials, 2002, 23(22): 4307-4314.
[40] Caliari S R, Burdick J A. A practical guide to hydrogels for cell culture[J]. Nature methods, 2016, 13(5): 405-414.
[41] Zhou Y, Wan C, Yang Y, et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics[J]. Advanced Functional Materials, 2019, 29(1): 1806220.
[42] Lee Y, Song W J, Sun J Y. Hydrogel soft robotics[J]. Materials Today Physics, 2020, 15: 100258.
[43] Fu R, Tu L, Zhou Y, et al. A tough and self-powered hydrogel for artificial skin[J]. Chemistry of Materials, 2019, 31(23): 9850-9860.
[44] Rong Q, Lei W, Liu M. Conductive hydrogels as smart materials for flexible electronic devices[J]. Chemistry–A European Journal, 2018, 24(64): 16930-16943.
[45] Birman V. Review of mechanics of shape memory alloy structures[J]. 1997.
[46] Silva V V, Domingues R Z, Lameiras F S. Microstructural and mechanical study of zirconia-hydroxyapatite (ZH) composite ceramics for biomedical applications[J]. Composites Science and Technology, 2001, 61(2): 301-310.
[47] Miotto J L, Dias A A. Structural efficiency of full-scale timber–concrete composite beams strengthened with fiberglass reinforced polymer[J]. Composite Structures, 2015, 128: 145-154.
[48] Roeseler W G, Sarh B, Kismarton M U, et al. Composite structures: the first 100 years[C]//16th International Conference on Composite Materials. Japan Society for Composite Materials Kyoto, Japan, 2007: 1-41.
[49] Johnson B D, Beebe D J, Crone W C. Effects of swelling on the mechanical properties of a pH-sensitive hydrogel for use in microfluidic devices[J]. Materials Science and Engineering: C, 2004, 24(4): 575-581.
[50] Haq M A, Su Y, Wang D. Mechanical properties of PNIPAM based hydrogels: A review[J]. Materials Science and Engineering: C, 2017, 70: 842-855.
[51] Long R, Hui C Y. Fracture toughness of hydrogels: measurement and interpretation[J]. Soft Matter, 2016, 12(39): 8069-8086.
[52] Bai R, Yang Q, Tang J, et al. Fatigue fracture of tough hydrogels[J]. Extreme Mechanics Letters, 2017, 15: 91-96.
[53] Lei H, Dong L, Li Y, et al. Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers[J]. Nature Communications, 2020, 11(1): 4032.
[54] Yang J, Bai R, Chen B, et al. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics[J]. Advanced Functional Materials, 2020, 30(2): 1901693.
[55] Ganji F, Vasheghani F S, Vasheghani F E. Theoretical description of hydrogel swelling: a review[J]. 2010.
[56] Yacob N, Hashim K. Morphological effect on swelling behaviour of hydrogel[C]//AIP Conference Proceedings. American Institute of Physics, 2014, 1584(1): 153-159.
[57] Li Z, Liu Z, Ng T Y, et al. The effect of water content on the elastic modulus and fracture energy of hydrogel[J]. Extreme Mechanics Letters, 2020, 35: 100617.
[58] Bai T, Zhang P, Han Y, et al. Construction of an ultrahigh strength hydrogel with excellent fatigue resistance based on strong dipole–dipole interaction[J]. Soft Matter, 2011, 7(6): 2825-2831.
[59] Zhang W, Hu J, Tang J, et al. Fracture toughness and fatigue threshold of tough hydrogels[J]. ACS Macro Letters, 2018, 8(1): 17-23.
[60] Chen Y, Li J, Lu J, et al. Synthesis and properties of poly (vinyl alcohol) hydrogels with high strength and toughness[J]. Polymer Testing, 2022, 108: 107516.
[61] Lin S, Liu X, Liu J, et al. Anti-fatigue-fracture hydrogels[J]. Science advances, 2019, 5(1): eaau8528.
[62] Chen T, Chen Y, Rehman H U, et al. Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing[J]. ACS applied materials & interfaces, 2018, 10(39): 33523-33531.
[63] Jung H, Kim M K, Lee J Y, et al. Adhesive hydrogel patch with enhanced strength and adhesiveness to skin for transdermal drug delivery[J]. Advanced Functional Materials, 2020, 30(42): 2004407.
[64] Chen J, Wang D, Wang L H, et al. An adhesive hydrogel with “Load‐Sharing” effect as tissue bandages for drug and cell delivery[J]. Advanced Materials, 2020, 32(43): 2001628.
[65] Ghobril C, Grinstaff M W. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial[J]. Chemical Society Reviews, 2015, 44(7): 1820-1835.
[66] Ma X, Zhou X, Ding J, et al. Hydrogels for underwater adhesion: Adhesion mechanism, design strategies and applications[J]. Journal of Materials Chemistry A, 2022, 10(22): 11823-11853.
[67] Li Z, Yu C, Kumar H, et al. The Effect of Crosslinking Degree of Hydrogels on Hydrogel Adhesion[J]. Gels, 2022, 8(10): 682.
[68] Gong J P. Friction and lubrication of hydrogels—its richness and complexity[J]. Soft matter, 2006, 2(7): 544-552.
[69] He H, Li L, Lee L J. Photopolymerization and structure formation of methacrylic acid based hydrogels: the effect of light intensity[J]. Reactive and Functional Polymers, 2008, 68(1): 103-113.
[70] Dang Q F, Zou S H, Chen X G, et al. Characterizations of chitosan‐based highly porous hydrogel—The effects of the solvent[J]. Journal of Applied Polymer Science, 2012, 125(S2): E88-E98.
[71] Ahmed E M. Hydrogel: Preparation, characterization, and applications: A review[J]. Journal of advanced research, 2015, 6(2): 105-121.
[72] Appel E A, Loh X J, Jones S T, et al. Sustained release of proteins from high water content supramolecular polymer hydrogels[J]. Biomaterials, 2012, 33(18): 4646-4652.
[73] Jiang G, Liu C, Liu X, et al. Network structure and compositional effects on tensile mechanical properties of hydrophobic association hydrogels with high mechanical strength[J]. Polymer, 2010, 51(6): 1507-1515.
[74] Yang C, Yin T, Suo Z. Polyacrylamide hydrogels. I. Network imperfection[J]. Journal of the Mechanics and Physics of Solids, 2019, 131: 43-55.
[75] Flory P J. Statistical mechanics of swelling of network structures[J]. The Journal of Chemical Physics, 1950, 18(1): 108-111.
[76] Lake G J, Thomas A G. The strength of highly elastic materials[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1967, 300(1460): 108-119.
[77] Baker J P, Hong L H, Blanch H W, et al. Effect of initial total monomer concentration on the swelling behavior of cationic acrylamide-based hydrogels[J]. Macromolecules, 1994, 27(6): 1446-1454.
[78] Bai R, Yang J, Morelle X P, et al. Fatigue fracture of self-recovery hydrogels[J]. ACS Macro Letters, 2018, 7(3): 312-317.
[79] Richbourg N R, Wancura M, Gilchrist A E, et al. Precise control of synthetic hydrogel network structure via linear, independent synthesis-swelling relationships[J]. Science Advances, 2021, 7(7): eabe3245.
[80] Mirfakhrai T, Madden J D W, Baughman R H. Polymer artificial muscles[J]. Materials today, 2007, 10(4): 30-38.
[81] Kornbluh R, Pelrine R, Eckerle J, et al. Electrostrictive polymer artificial muscle actuators[C]//Proceedings. 1998 IEEE international conference on robotics and automation (Cat. No. 98CH36146). IEEE, 1998, 3: 2147-2154.
[82] Bay L, West K, Sommer‐Larsen P, et al. A conducting polymer artificial muscle with 12% linear strain[J]. Advanced Materials, 2003, 15(4): 310-313.
[83] Paquette J W, Kim K J. Ionomeric electroactive polymer artificial muscle for naval applications[J]. IEEE journal of oceanic engineering, 2004, 29(3): 729-737.
[84] Baughman R H. Conducting polymer artificial muscles[J]. Synthetic metals, 1996, 78(3): 339-353.
[85] Madden J D W, Vandesteeg N A, Anquetil P A, et al. Artificial muscle technology: physical principles and naval prospects[J]. IEEE Journal of oceanic engineering, 2004, 29(3): 706-728.
[86] Takashima K, Rossiter J, Mukai T. McKibben artificial muscle using shape-memory polymer[J]. Sensors and Actuators A: Physical, 2010, 164(1-2): 116-124.
[87] Lin S, Liu J, Liu X, et al. Muscle-like fatigue-resistant hydrogels by mechanical training[J]. Proceedings of the National Academy of Sciences, 2019, 116(21): 10244-10249.
[88] Bai T, Zhang P, Han Y, et al. Construction of an ultrahigh strength hydrogel with excellent fatigue resistance based on strong dipole–dipole interaction[J]. Soft Matter, 2011, 7(6): 2825-2831.
[89] Wu H, Sariola V, Zhu C, et al. Transfer Printing of Metallic Microstructures on Adhesion‐Promoting Hydrogel Substrates[J]. Advanced Materials, 2015, 27(22): 3398-3404.
[90] ZOHOURIAN M M, Kabiri K. Superabsorbent polymer materials: a review[J]. 2008.
[91] Devi A , Nautiyal U , Kaur S , et al. Hydrogels: a smart drug delivery device. 2014.
[92] Flory P J. Fundamental principles of condensation polymerization[J]. Chemical Reviews, 1946, 39(1): 137-197.
[93] Ghumman A S M, Nasef M M, Shamsuddin M R, et al. Evaluation of properties of sulfur-based polymers obtained by inverse vulcanization: Techniques and challenges[J]. Polymers and Polymer Composites, 2021, 29(8): 1333-1352.
[94] Ivin K J. Thermodynamics of addition polymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38(12): 2137-2146.
[95] Doi M. Introduction to polymer physics[M]. Oxford university press, 1996.
[96] Balberg I, Anderson C H, Alexander S, et al. Excluded volume and its relation to the onset of percolation[J]. Physical review B, 1984, 30(7): 3933.
[97] Flory P J. The configuration of real polymer chains[J]. The Journal of Chemical Physics, 1949, 17(3): 303-310.
[98] Price G J, Smith P F. Ultrasonic degradation of polymer solutions—III. The effect of changing solvent and solution concentration[J]. European polymer journal, 1993, 29(2-3): 419-424.
[99] Seuring J, Agarwal S. Polymers with upper critical solution temperature in aqueous solution[J]. Macromolecular rapid communications, 2012, 33(22): 1898-1920.
[100] Kurata M, Yamakawa H. Theory of dilute polymer solution. II. Osmotic pressure and frictional properties[J]. The Journal of Chemical Physics, 1958, 29(2): 311-325.
[101] Rubinstein M, Colby R H. Polymer physics[M]. New York: Oxford university press, 2003.
[102] Patel S S, Takahashi K M. Polymer dynamics in dilute and semidilute solutions[J]. Macromolecules, 1992, 25(17): 4382-4391.
[103] Ying Q, Chu B. Overlap concentration of macromolecules in solution[J]. Macromolecules, 1987, 20(2): 362-366.
[104] Broseta D, Leibler L, Lapp A, et al. Universal properties of semi-dilute polymer solutions: A comparison between experiments and theory[J]. Europhysics Letters, 1986, 2(9): 733.
[105] Muthukumar M. Thermodynamics of polymer solutions[J]. The Journal of chemical physics, 1986, 85(8): 4722-4728.
[106] Peng H T, Martineau L, Shek P N. Hydrogel–elastomer composite biomaterials: 1. Preparation of interpenetrating polymer networks and in vitro characterization of swelling stability and mechanical properties[J]. Journal of Materials Science: Materials in Medicine, 2007, 18(6): 975-986.
[107] Baumgart E. Stiffness-an unknown world of mechanical science[J]. Injury, 2000, 31(Suppl 2): B14-23.
[108] Hamilton M F, Ilinskii Y A, Zabolotskaya E A. Separation of compressibility and shear deformation in the elastic energy density (L)[J]. The Journal of the Acoustical Society of America, 2004, 116(1): 41-44.
[109] Treloar L R G. The physics of rubber elasticity[J]. 1975.
[110] Head D A, Levine A J, MacKintosh F C. Deformation of cross-linked semiflexible polymer networks[J]. Physical review letters, 2003, 91(10): 108102.
[111] Akagi Y, Gong J P, Chung U, et al. Transition between phantom and affine network model observed in polymer gels with controlled network structure[J]. Macromolecules, 2013, 46(3): 1035-1040.
[112] Khajehsaeid H, Arghavani J, Naghdabadi R. A hyperelastic constitutive model for rubber-like materials[J]. European Journal of Mechanics-A/Solids, 2013, 38: 144-151.
[113] Kim B, Lee S B, Lee J, et al. A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13: 759-764.
[114] Arruda E M, Boyce M C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412.
[115] Liu I S. A note on the Mooney–Rivlin material model[J]. Continuum Mechanics and Thermodynamics, 2012, 24(4-6): 583-590.
[116] Pucci E, Saccomandi G. A note on the Gent model for rubber-like materials[J]. Rubber chemistry and technology, 2002, 75(5): 839-852.
[117] Richbourg N R, Rausch M K, Peppas N A. Cross-evaluation of stiffness measurement methods for hydrogels[J]. Polymer, 2022, 258: 125316.
[118] Launey M E, Ritchie R O. On the fracture toughness of advanced materials[J]. Advanced Materials, 2009, 21(20): 2103-2110.
[119] Barr B, Gettu R, Al-Oraimi S K A, et al. Toughness measurement—the need to think again[J]. Cement and Concrete Composites, 1996, 18(4): 281-297.
[120] Wang S, Panyukov S, Rubinstein M, et al. Quantitative adjustment to the molecular energy parameter in the Lake–Thomas theory of polymer fracture energy[J]. Macromolecules, 2019, 52(7): 2772-2777.
[121] Rivlin R S, Thomas A G. Rupture of rubber. I. Characteristic energy for tearing[J]. Journal of polymer science, 1953, 10(3): 291-318.
[122] Moreira D C, Nunes L C S. Comparison of simple and pure shear for an incompressible isotropic hyperelastic material under large deformation[J]. Polymer Testing, 2013, 32(2): 240-248.
[123] Lake G J, Lindley P B. Cut growth and fatigue of rubbers. II. Experiments on a noncrystallizing rubber[J]. Journal of Applied Polymer Science, 1964, 8(2): 707-721.
[124] Stoček R, Heinrich G, Gehde M, et al. A new testing concept for determination of dynamic crack propagation in rubber materials[J]. KGK-Kautschuk, Gummi, Kunststoffe, 2012.
[125] Roucou D, Diani J, Brieu M, et al. Critical strain energy release rate for rubbers: single edge notch tension versus pure shear tests[J]. International Journal of Fracture, 2019, 216: 31-39.
[126] Fatigue of structures and materials[M]. Dordrecht: Springer Netherlands, 2009.
[127] Fatigue of composite materials[M]. Elsevier, 2012.
[128] Wu J Y, Li J, Faria R. An energy release rate-based plastic-damage model for concrete[J]. International journal of Solids and Structures, 2006, 43(3-4): 583-612.
[129] Lake G J, Lawrence C C, Thomas A G. High-speed fracture of elastomers: Part I[J]. Rubber chemistry and technology, 2000, 73(5): 801-817.
[130] Bai R, Yang J, Suo Z. Fatigue of hydrogels[J]. European Journal of Mechanics-A/Solids, 2019, 74: 337-370.
[131] Wang C, Li Y, Hu Z. Swelling kinetics of polymer gels[J]. Macromolecules, 1997, 30(16): 4727-4732.
[132] Bouklas N, Huang R. Swelling kinetics of polymer gels: comparison of linear and nonlinear theories[J]. Soft Matter, 2012, 8(31): 8194-8203.
[133] English A E, Mafé S, Manzanares J A, et al. Equilibrium swelling properties of polyampholytic hydrogels[J]. The Journal of chemical physics, 1996, 104(21): 8713-8720.
[134] Flory P J, Rehner Jr J. Statistical mechanics of cross‐linked polymer networks I. Rubberlike elasticity[J]. The journal of chemical physics, 1943, 11(11): 512-520.
[135] Onuki A. Theory of phase transition in polymer gels[J]. Responsive Gels: Volume Transitions I, 2005: 63-121.
[136] Huggins M L. Solutions of long chain compounds[J]. The Journal of chemical physics, 1941, 9(5): 440-440.
[137] Banerjee A, Arha M, Choudhary S, et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells[J]. Biomaterials, 2009, 30(27): 4695-4699.
[138] Spiller K L, Maher S A, Lowman A M. Hydrogels for the repair of articular cartilage defects[J]. Tissue engineering part B: reviews, 2011, 17(4): 281-299.
[139] Li Y, Zhang Y, Shi F, et al. Modulus-regulated 3D-cell proliferation in an injectable self-healing hydrogel[J]. Colloids and Surfaces B: Biointerfaces, 2017, 149: 168-173.
[140] Lei J, Li Z, Xu S, et al. Recent advances of hydrogel network models for studies on mechanical behaviors[J]. Acta Mechanica Sinica, 2021, 37: 367-386.
[141] Fang H, Wang J, Li L, et al. A novel high-strength poly (ionic liquid)/PVA hydrogel dressing for antibacterial applications[J]. Chemical Engineering Journal, 2019, 365: 153-164.
[142] Li J, Pan K, Tian H, et al. The Potential of electrospinning/electrospraying technology in the rational design of hydrogel structures[J]. Macromolecular Materials and Engineering, 2020, 305(8): 2000285.
[143] Richbourg N R, Peppas N A. The swollen polymer network hypothesis: Quantitative models of hydrogel swelling, stiffness, and solute transport[J]. Progress in Polymer Science, 2020, 105: 101243.
[144] Kim S, Iyer G, Nadarajah A, et al. Polyacrylamide hydrogel properties for horticultural applications[J]. International Journal of Polymer Analysis and Characterization, 2010, 15(5): 307-318.
[145] Christensen L H, Breiting V B, Aasted A, et al. Long-term effects of polyacrylamide hydrogel on human breast tissue[J]. Plastic and reconstructive surgery, 2003, 111(6): 1883-1890.
[146] Vignaud T, Ennomani H, Théry M. Polyacrylamide hydrogel micropatterning[M]//Methods in cell biology. Academic Press, 2014, 120: 93-116.
[147] Nakayama A, Kakugo A, Gong J P, et al. High mechanical strength double‐network hydrogel with bacterial cellulose[J]. Advanced functional materials, 2004, 14(11): 1124-1128.
[148] Nonoyama T, Gong J P. Double-network hydrogel and its potential biomedical application: A review[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2015, 229(12): 853-863.
[149] Grad E M, Tunn I, Voerman D, et al. Influence of network topology on the viscoelastic properties of dynamically crosslinked hydrogels[J]. Frontiers in chemistry, 2020, 8: 536.
[150] Yang J, Bai R, Chen B, et al. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics[J]. Advanced Functional Materials, 2020, 30(2): 1901693.
[151] Peak C W, Wilker J J, Schmidt G. A review on tough and sticky hydrogels[J]. Colloid and Polymer Science, 2013, 291: 2031-2047.
[152] Yang H, Van Ruymbeke E, Fustin C A. Influence of Network Topology on the Viscoelastic Properties of Double Dynamics Hydrogels[J]. Macromolecules, 2022, 55(12): 5058-5070.
[153] Bi S, Wang P, Hu S, et al. Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair[J]. Carbohydrate polymers, 2019, 224: 115176.
[154] Kamoun E A, Kenawy E R S, Tamer T M, et al. Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation[J]. Arabian Journal of Chemistry, 2015, 8(1): 38-47.
[155] Mir M, Ali M N, Sami J, et al. Review of mechanics and applications of auxetic structures[J]. Advances in Materials Science and Engineering, 2014, 2014.
[156] Yanping L, Hong H. A review on auxetic structures and polymeric materials[J]. Scientific Research and Essays, 2010, 5(10): 1052-1063.
[157] Schwerdtfeger J, Wein F, Leugering G, et al. Design of auxetic structures via mathematical optimization[J]. Advanced materials, 2011, 23(22‐23): 2650-2654.
[158] Kelkar P U, Kim H S, Cho K H, et al. Cellular auxetic structures for mechanical metamaterials: A review[J]. Sensors, 2020, 20(11): 3132.
[159] Yang C, Vora H D, Chang Y. Behavior of auxetic structures under compression and impact forces[J]. Smart Materials and Structures, 2018, 27(2): 025012.
[160] Yang H, Wang B, Ma L. Mechanical properties of 3D double-U auxetic structures[J]. International Journal of Solids and Structures, 2019, 180: 13-29.
[161] Subramani P, Rana S, Oliveira D V, et al. Development of novel auxetic structures based on braided composites[J]. Materials & Design, 2014, 61: 286-295.
[162] Nonoyama T. Robust hydrogel–bioceramics composite and its osteoconductive properties[J]. Polymer Journal, 2020, 52(7): 709-716.
[163] Wang Z, Zheng X, Ouchi T, et al. Toughening hydrogels through force-triggered chemical reactions that lengthen polymer strands[J]. Science, 2021, 374(6564): 193-196.
[164] Li Q Y, Xu Z Y, Zhang D F, et al. T-shaped trifunctional crosslinker-toughening hydrogels[J]. Science China Technological Sciences, 2020, 63(9): 1721-1729.
[165] Fukao K, Tanaka K, Kiyama R, et al. Hydrogels toughened by biominerals providing energy-dissipative sacrificial bonds[J]. Journal of materials chemistry B, 2020, 8(24): 5184-5188.
[166] Lin X, Wang X, Zeng L, et al. Stimuli-responsive toughening of hydrogels[J]. Chemistry of Materials, 2021, 33(19): 7633-7656.
[167] Gan Y, Li P, Wang L, et al. An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration[J]. Biomaterials, 2017, 136: 12-28.
[168] Nakajima T, Sato H, Zhao Y, et al. A universal molecular stent method to toughen any hydrogels based on double network concept[J]. Advanced functional materials, 2012, 22(21): 4426-4432.
[169] Eisenbach C D. Isomerization of aromatic azo chromophores in poly (ethyl acrylate) networks and photomechanical effect[J]. Polymer, 1980, 21(10): 1175-1179.
[170] Espiard P, Guyot A. Poly (ethyl acrylate) latexes encapsulating nanoparticles of silica: 2. Grafting process onto silica[J]. Polymer, 1995, 36(23): 4391-4395.
[171] Rault J, Lucas A, Neffati R, et al. Thermal transitions in hydrogels of poly (ethyl acrylate)/poly (hydroxyethyl acrylate) interpenetrating networks[J]. Macromolecules, 1997, 30(25): 7866-7873.
[172] Sánchez M S, Pradas M M, Ribelles J L G. Thermal transitions of benzene in a poly (ethyl acrylate) network[J]. Journal of non-crystalline solids, 2002, 307: 750-757.
[173] Olmedilla M P, Garcia-Giralt N, Pradas M M, et al. Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers[J]. Biomaterials, 2006, 27(7): 1003-1012.
[174] Shepherd D E, Seedhom B B. The'instantaneous' compressive modulus of human articular cartilage in joints of the lower limb[J]. Rheumatology (Oxford, England), 1999, 38(2): 124-132.
[175] Schinagl R M, Gurskis D, Chen A C, et al. Depth‐dependent confined compression modulus of full‐thickness bovine articular cartilage[J]. Journal of Orthopaedic Research, 1997, 15(4): 499-506.
[176] Simha N K, Carlson C S, Lewis J L. Evaluation of fracture toughness of cartilage by micropenetration[J]. Journal of Materials Science: Materials in Medicine, 2004, 15(5): 631-639.
[177] Chin-Purcell M V, Lewis J L. Fracture of articular cartilage[J]. 1996.
[178] Xu J, Jin R, Ren X, et al. Cartilage-inspired hydrogel strain sensors with ultrahigh toughness, good self-recovery and stable anti-swelling properties[J]. Journal of Materials Chemistry A, 2019, 7(44): 25441-25448.
[179] Ahsan T, Sah R L. Biomechanics of integrative cartilage repair[J]. Osteoarthritis and cartilage, 1999, 7(1): 29-40.
[180] Xiao Y, Rennerfeldt D A, Friis E A, et al. Evaluation of apparent fracture toughness of articular cartilage and hydrogels[J]. Journal of tissue engineering and regenerative medicine, 2017, 11(1): 121-128.
[181] Adams D J, Brosche K M, Lewis J L. Effect of specimen thickness on fracture toughness of bovine patellar cartilage[J]. J. Biomech. Eng., 2003, 125(6): 927-929.
[182] Jo B H, Van Lerberghe L M, Motsegood K M, et al. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer[J]. Journal of microelectromechanical systems, 2000, 9(1): 76-81.
[183] Zhou J, Ellis A V, Voelcker N H. Recent developments in PDMS surface modification for microfluidic devices[J]. Electrophoresis, 2010, 31(1): 2-16.
[184] Mata A, Fleischman A J, Roy S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems[J]. Biomedical microdevices, 2005, 7: 281-293.
[185] Fujii T. PDMS-based microfluidic devices for biomedical applications[J]. Microelectronic Engineering, 2002, 61: 907-914.
[186] Toepke M W, Beebe D J. PDMS absorption of small molecules and consequences in microfluidic applications[J]. Lab on a Chip, 2006, 6(12): 1484-1486.
[187] Eddings M A, Johnson M A, Gale B K. Determining the optimal PDMS–PDMS bonding technique for microfluidic devices[J]. Journal of Micromechanics and Microengineering, 2008, 18(6): 067001.
[188] Armani D, Liu C, Aluru N. Re-configurable fluid circuits by PDMS elastomer micromachining[C]//Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291). IEEE, 1999: 222-227.
[189] Jiang S, Liu S, Feng W. PVA hydrogel properties for biomedical application[J]. Journal of the mechanical behavior of biomedical materials, 2011, 4(7): 1228-1233.
[190] Sharma S, Tiwari S. A review on biomacromolecular hydrogel classification and its applications[J]. International journal of biological macromolecules, 2020, 162: 737-747.
[191] Deligkaris K, Tadele T S, Olthuis W, et al. Hydrogel-based devices for biomedical applications[J]. Sensors and Actuators B: Chemical, 2010, 147(2): 765-774.
[192] Cha G D, Lee W H, Lim C, et al. Materials engineering, processing, and device application of hydrogel nanocomposites[J]. Nanoscale, 2020, 12(19): 10456-10473.
[193] Cao H, Duan L, Zhang Y, et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity[J]. Signal transduction and targeted therapy, 2021, 6(1): 426.
[194] Sun W, Xue B, Li Y, et al. Polymer‐supramolecular polymer double‐network hydrogel[J]. Advanced Functional Materials, 2016, 26(48): 9044-9052.
[195] Haque M A, Kurokawa T, Gong J P. Super tough double network hydrogels and their application as biomaterials[J]. Polymer, 2012, 53(9): 1805-1822.
[196] Wang X, Hong W. Pseudo-elasticity of a double network gel[J]. Soft Matter, 2011, 7(18): 8576-8581.
[197] Chen Q, Chen H, Zhu L, et al. Fundamentals of double network hydrogels[J]. Journal of Materials Chemistry B, 2015, 3(18): 3654-3676.
[198] Na Y H, Kurokawa T, Katsuyama Y, et al. Structural characteristics of double network gels with extremely high mechanical strength[J]. Macromolecules, 2004, 37(14): 5370-5374.
[199] Kamio E, Yasui T, Iida Y, et al. Inorganic/Organic Double‐Network Gels Containing Ionic Liquids[J]. Advanced Materials, 2017, 29(47): 1704118.
[200] Chen J, Ao Y, Lin T, et al. High-toughness polyacrylamide gel containing hydrophobic crosslinking and its double network gel[J]. Polymer, 2016, 87: 73-80.
[201] Yang W, Furukawa H, Gong J P. Highly extensible double‐network gels with self‐assembling anisotropic structure[J]. Advanced Materials, 2008, 20(23): 4499-4503.
[202] Diani J, Fayolle B, Gilormini P. A review on the Mullins effect[J]. European Polymer Journal, 2009, 45(3): 601-612.
[203] Marckmann G, Verron E, Gornet L, et al. A theory of network alteration for the Mullins effect[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(9): 2011-2028.
[204] Bueche F. Molecular basis for the Mullins effect[J]. Journal of Applied Polymer Science, 1960, 4(10): 107-114.
[205] Bueche F. Mullins effect and rubber–filler interaction[J]. Journal of applied polymer Science, 1961, 5(15): 271-281.
[206] Govindjee S, Simo J C. Mullins' effect and the strain amplitude dependence of the storage modulus[J]. International journal of solids and structures, 1992, 29(14-15): 1737-1751.
[207] Zhao X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks[J]. Soft matter, 2014, 10(5): 672-687.
[208] Zhang E, Bai R, Morelle X P, et al. Fatigue fracture of nearly elastic hydrogels[J]. Soft matter, 2018, 14(18): 3563-3571.
[209] Dubrovskii S A, Rakova G V. Elastic and osmotic behavior and network imperfections of nonionic and weakly ionized acrylamide-based hydrogels[J]. Macromolecules, 1997, 30(24): 7478-7486.
[210] Rahmani P, Shojaei A. Developing tough terpolymer hydrogel with outstanding swelling ability by hydrophobic association cross-linking[J]. Polymer, 2022, 254: 125037.
[211] Li X, Wang H, Li D, et al. Dual ionically cross-linked double-network hydrogels with high strength, toughness, swelling resistance, and improved 3D printing processability[J]. ACS applied materials & interfaces, 2018, 10(37): 31198-31207.
[212] Takeno H, Kimura Y, Nakamura W. Mechanical, swelling, and structural properties of mechanically tough clay-sodium polyacrylate blend hydrogels[J]. Gels, 2017, 3(1): 10.
[213] Fan H, Wang J, Jin Z. Tough, swelling-resistant, self-healing, and adhesive dual-cross-linked hydrogels based on polymer–tannic acid multiple hydrogen bonds[J]. Macromolecules, 2018, 51(5): 1696-1705.
[214] Zhang L, Zhang Y, Ma F, et al. A low-swelling and toughened adhesive hydrogel with anti-microbial and hemostatic capacities for wound healing[J]. Journal of Materials Chemistry B, 2022, 10(6): 915-926.
[215] Naficy S, Brown H R, Razal J M, et al. Progress toward robust polymer hydrogels[J]. Australian Journal of Chemistry, 2011, 64(8): 1007-1025.
[216] Cui J, Lackey M A, Tew G N, et al. Mechanical properties of end-linked PEG/PDMS hydrogels[J]. Macromolecules, 2012, 45(15): 6104-6110.
[217] Jiang X, Xiang N, Zhang H, et al. Preparation and characterization of poly (vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity[J]. Carbohydrate polymers, 2018, 186: 377-383.
[218] Rubin R J. A random walk model of chain polymer adsorption at a surface. iii. mean square end-to-end distance[J]. Journal of research of the National Bureau of Standards. B-Mathematical sciences B, 1966, 70: 237-247.
[219] Webber R E, Creton C, Brown H R, et al. Large strain hysteresis and mullins effect of tough double-network hydrogels[J]. Macromolecules, 2007, 40(8): 2919-2927.
[220] Caurie M. Bound water: its definition, estimation and characteristics[J]. International Journal of Food Science & Technology, 2011, 46(5): 930-934.
[221] Lee D J, Hsu Y H. Measurement of bound water in sludges: a comparative study[J]. Water Environment Research, 1995, 67(3): 310-317.
[222] Nakamura K, Hatakeyama T, Hatakeyama H. Studies on bound water of cellulose by differential scanning calorimetry[J]. Textile research journal, 1981, 51(9): 607-613.
[223] Popineau S, Rondeau-Mouro C, Sulpice-Gaillet C, et al. Free/bound water absorption in an epoxy adhesive[J]. Polymer, 2005, 46(24): 10733-10740.
[224] Nakamura K, Hatakeyama T, Hatakeyama H. Relationship between hydrogen bonding and bound water in polyhydroxystyrene derivatives[J]. Polymer, 1983, 24(7): 871-876.
[225] Bhat T N, Bentley G A, Boulot G, et al. Bound water molecules and conformational stabilization help mediate an antigen-antibody association[J]. Proceedings of the National Academy of Sciences, 1994, 91(3): 1089-1093.
[226] Smith J K, Vesilind P A. Dilatometric measurement of bound water in wastewater sludge[J]. Water Research, 1995, 29(12): 2621-2626.
[227] Hatakeyema T, Yamauchi A, Hatakeyema H. Studies on bound water in poly (vinyl alcohol). Hydrogel by DSC and FT-NMR[J]. European Polymer Journal, 1984, 20(1): 61-64.
[228] Wang T, Gunasekaran S. State of water in chitosan–PVA hydrogel[J]. Journal of applied polymer science, 2006, 101(5): 3227-3232.
[229] Yoshida H, Hatakeyama T, Hatakeyama H. Characterization of water in polysaccharide hydrogels by DSC[J]. Journal of Thermal Analysis and Calorimetry, 1993, 40(2): 483-489.
[230] Gun’ko V M, Savina I N, Mikhalovsky S V. Properties of water bound in hydrogels[J]. Gels, 2017, 3(4): 37.
[231] Li W, Xue F, Cheng R. States of water in partially swollen poly (vinyl alcohol) hydrogels[J]. Polymer, 2005, 46(25): 12026-12031.
[232] Lee H B, Jhon M S, Andrade J D. Nature of water in synthetic hydrogels. I. Dilatometry, specific conductivity, and differential scanning calorimetry of polyhydroxyethyl methacrylate[J]. Journal of colloid and interface science, 1975, 51(2): 225-231.
[233] Jackle J. Models of the glass transition[J]. Reports on Progress in Physics, 1986, 49(2): 171.
[234] Biroli G, Garrahan J P. Perspective: The glass transition[J]. The Journal of chemical physics, 2013, 138(12): 12A301.
[235] Sillescu H. Heterogeneity at the glass transition: a review[J]. Journal of Non-Crystalline Solids, 1999, 243(2-3): 81-108.
[236] Panagopoulou A, Molina J V, Kyritsis A, et al. Glass transition and water dynamics in hyaluronic acid hydrogels[J]. Food biophysics, 2013, 8: 192-202.
[237] Díez-Peña E, Quijada-Garrido I, Barrales-Rienda J M. Hydrogels based on N-isopropylacrylamide and methacrylic acid: thermal stability and glass transition behaviour[J]. Polymer bulletin, 2002, 48: 83-91.
[238] Zarzyka I, Pyda M, Di Lorenzo M L. Influence of crosslinker and ionic comonomer concentration on glass transition and demixing/mixing transition of copolymers poly (N-isopropylacrylamide) and poly (sodium acrylate) hydrogels[J]. Colloid and polymer science, 2014, 292: 485-492.
[239] DeRossi D, Kajiwara K, Osada Y, et al. Polymer gels[M]//Fundamentals and Biomedical Applications. Plenum Press New York, 1991.
[240] West J L, Hubbell J A. Photopolymerized hydrogel materials for drug delivery applications[J]. Reactive Polymers, 1995, 25(2-3): 139-147.
[241] Cheng S Y, Heilman S, Wasserman M, et al. A hydrogel-based microfluidic device for the studies of directed cell migration[J]. Lab on a Chip, 2007, 7(6): 763-769.
[242] Hong W, Zhao X, Zhou J, et al. A theory of coupled diffusion and large deformation in polymeric gels[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1779-1793.
[243] De Groot S R, Mazur P. Non-equilibrium thermodynamics[M]. Courier Corporation, 2013.
[244] Hong W, Liu Z, Suo Z. Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load[J]. International Journal of Solids and Structures, 2009, 46(17): 3282-3289.
[245] Baker J P, Stephens D R, Blanch H W, et al. Swelling equilibria for acrylamide-based polyampholyte hydrogels[J]. Macromolecules, 1992, 25(7): 1955-1958
[246] Shibayama M, Shirotani Y, Hirose H, et al. Simple scaling rules on swollen and shrunken polymer gels[J]. Macromolecules, 1997, 30(23): 7307-7312.
[247] MacQueen J T. Some observations concerning the van't Hoff equation[J]. Journal of Chemical Education, 1967, 44(12): 755.
[248] Bruck S D. Properties of biomaterials in the physiological environment[M]. Crc Press, 2019.
[249] Lindvig T, Michelsen M L, Kontogeorgis G M. A Flory–Huggins model based on the Hansen solubility parameters[J]. Fluid Phase Equilibria, 2002, 203(1-2): 247-260.
[250] Fredrickson G H, Liu A J, Bates F S. Entropic corrections to the Flory-Huggins theory of polymer blends: Architectural and conformational effects[J]. Macromolecules, 1994, 27(9): 2503-2511.
[251] Willis J D, Beardsley T M, Matsen M W. Simple and accurate calibration of the Flory–Huggins interaction parameter[J]. Macromolecules, 2020, 53(22): 9973-9982.
[252] Flory P J. Thermodynamics of high polymer solutions[J]. The Journal of chemical physics, 1942, 10(1): 51-61.
[253] Huggins M L. The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration[J]. Journal of the American Chemical Society, 1942, 64(11): 2716-2718.
[254] Zhang W, Gomez E D, Milner S T. Predicting Flory-Huggins χ from simulations[J]. Physical review letters, 2017, 119(1): 017801.
[255] Schulze K D, Hart S M, Marshall S L, et al. Polymer osmotic pressure in hydrogel contact mechanics[J]. Biotribology, 2017, 11: 3-7.

所在学位评定分委会
力学
国内图书分类号
O34
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544504
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
孙行健. 制备条件对水凝胶力学性质的影响机理研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930828-孙行健-力学与航空航天(8733KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[孙行健]的文章
百度学术
百度学术中相似的文章
[孙行健]的文章
必应学术
必应学术中相似的文章
[孙行健]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。