中文版 | English
题名

PVC 塑料协同热解回收再生锂离子电池正 极材料工艺的研究

其他题名
RECYCLING AND REGENERATION OF LITHIUM-ION BATTERY CATHODE MATERIAS BY SYNERGETIC PYROLYSIS WITH PVC PLASTIC
姓名
姓名拼音
DAI Jinchuan
学号
12032342
学位类型
硕士
学位专业
070301 无机化学
学科门类/专业学位类别
07 理学
导师
唐圆圆
导师单位
环境科学与工程学院
论文答辩日期
2023-05-12
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

通过高效且绿色的方法从退役锂离子电池正极材料中回收有价金属一
直是环境领域的重大挑战,对于基于火法冶金的回收工艺来说,降低能耗
和材料消耗是目前的主要方向。此外,聚氯乙烯(PVC)塑料作为另一种
引起严重环境问题的固体废弃物,其合理的处理方式也是目前亟待深入研
究 的 课 题 。 因 此 本 研 究 分 别 选 取 了 层状结 构 的 镍 钴 锰 酸 锂
(Li(Ni1/3Co1/3Mn1/3)O2,NCM)和尖晶石结构的锰酸锂(LiMn2O4,LMO)作为回收技术的研究对象,提出 PVC 协同热解以回收电池材料中有价金属的工艺。为了减少处理步骤,最大化金属利用率,本研究进一步提出基于
热解产物的高温固相的再生处理。
结果表明,对于 NCM 的回收研究,当 NCM/PVC 以质量比为 1:0.35 混
合后,在 550C 下热解 90min 可以获得 Li2CO3、MnO、NixCo1-x 以及金属氯化物,Li、Ni、Co、Mn 的平均回收率分别为 91.3%、93.47%、93.59%、
94.51%。与文献中记载的相关热解体系相比,完全反应所需的温度明显降
低。研究进一步结合材料表征和密度泛函计算,首先说明了 PVC 上 Cl 与
NCM 表面金属形成多种吸附构型,其中以 Cl-plane 构型最为稳定,同时
PVC 自身受热裂解会产生多种碳氢小分子,这两者是驱动协同热解进行的
关键因素。Li2CO3、MnO、NixCo1-x 等主要热解产物在经过高温固相处理后,
能再生出在结构形貌和电化学性能上均与商业 NCM 相似的正极材料。
对于 LMO 的回收研究,当 LMO/PVC 在配料比为 1:0.75,热解温度为
600C 时热解 60min 可以完全反应,此时 LMO 的分解产物为 Li2CO3、MnO
和少量金属氯化物,Li 和 Mn 的平均回收率分别为 91.2%和 93.1%。其反应
路径和 NCM-PVC 体系相似。同时相比于文献报导的其他 LMO 热解体系,
本研究因 Li2CO3 在 500C 即出现而说明具有更好的处理效果。对 Li2CO3、
MnO 等热解产物进行高温固相再生后,再生材料也表现出理想的晶体结构
和电化学性能。
综上所述,基于 PVC 协同热解的回收工艺能够达到降低温度和以废治
废的目的,为锂离子电池回收提供了一种经济、绿色的回收策略。
 

 

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-05
参考文献列表

[1] HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86.
[2] ZHANG X, LI L, FAN E, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19): 7239-302.
[3] FAN E, LI L, WANG Z, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-63.
[4] LU B, LIU J, YANG J. Substance flow analysis of lithium for sustainable management in mainland China: 2007–2014[J]. Resources, Conservation and Recycling, 2017, 119: 109-16.
[5] NITTA N, WU F, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-64.
[6] SHEN W, HAN W, WALLINGTON T J, et al. China electricity generation greenhouse gas emission intensity in 2030: Implications for electric vehicles[J]. EnvironmentalScience & Technology, 2019, 53(10): 6063-72.
[7] XU K. Li-ion battery electrolytes[J]. Nature Energy, 2021, 6(7): 763-763.
[8] DANG H, LI N, CHANG Z, et al. Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery[J]. Separation and Purification Technology, 2020, 233.
[9] MARKETSANDMARKETS. Lithium-ion battery recycling market by end use (automotive, non-automotive), battery chemistry, battery components, recyclingprocess (hydrometallurgical process, pyrometallurgy process, physical/mechanical process), and region─global forecast to 2030[EB/OL].
[01-17 2022] https://www.marketsandmarkets.com/Market-Reports/lithium-ion-battery-recycling-market-153488928.html.
[10] SUBRAMANYAN K, NATARAJAN S, LEE Y-S, et al. Exploring the usage of LiCrTiO4 as cathode towards constructing 1.4 V class Li-ion cells with graphite anode recovered from spent Li-Ion battery[J]. Chemical Engineering Journal, 2020, 397.
[11] ZENG X, LI J, LIU L. Solving spent lithium-ion battery problems in China: Opportunities and challenges[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 1759-67.
[12] ORDOñEZ J, GAGO E J, GIRARD A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 195-205.
[13] XIAO J, LI J, XU Z. Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives[J]. Environmental Science & Technology, 2020, 54(1): 9-25.
[14] 李之钦, 庄绪宁, 宋小龙, 等. 废锂离子电池正极材料的火法资源化技术研究进展[J]. 环境工程, 2021, 39: 116-46.
[15] DEWULF J, VAN DER VORST G, DENTURCK K, et al. Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings[J]. Resources, Conservation and Recycling, 2010, 54(4): 229-34.
[16] 郝涛, 张英杰, 董鹏, 等. 废旧三元动力锂离子电池正极材料回收的研究进展[J]. 硅酸盐通报, 2018, 37: 2451-5.
[17] ARAL H, VECCHIO-SADUS A. Toxicity of lithium to humans and the environment a literature review[J]. Ecotoxicology Environmental Safety, 2008, 70(3): 349-56.
[18] FOSTER M, ISELY P, STANDRIDGE C R, et al. Feasibility assessment of remanufacturing, repurposing, and recycling of end of vehicle application lithium ion batteries[J]. Journal of Industrial Engineering and Management, 2014, 7(3).
[19] GOTTESFELD P, POKHREL A K. Review: Lead exposure in battery manufacturing and recycling in developing countries and among children in nearby communities [J]. Journal of Occupational and Environmental Hygiene, 2011, 8(9): 520-32.
[20] SHIN S M, KIM N H, SOHN J S, et al. Development of a metal recovery process from Li-ion battery wastes[J]. Hydrometallurgy, 2005, 79(3-4): 172-81.
[21] CHAGNES A, POSPIECH B. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(7): 1191-9.
[22] DUNN J B, GAINES L, SULLIVAN J, et al. Impact of recycling on cradle -to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries[J]. Environmental Science & Technology, 2012, 46(22): 12704-10.
[23] HAO H, QIAO Q, LIU Z, et al. Impact of recycling on energy consumption and greenhouse gas emissions from electric vehicle production: The China 2025 case[J]. Resources, Conservation and Recycling, 2017, 122: 114-25.
[24] 材料科学姑苏实验室, 生态环境部固体废物与化学品管理技术中心, 苏州博萃循环科技有限公司. 退役动力锂电池再生利用蓝皮书[M]. 北京: 科学技术文献出版社, 2022.
[25] 吴星宇, 阮丁山, 唐贺 胜, 等. 退役动力锂离 子电池梯次利用概述 [J]. 电池, 2020, 50: 594-6.
[26] 昝文宇, 马北越, 刘国强. 动力锂电池回收利用现状与展望[J]. 稀有金属与硬质合金, 2020, 48: 5-9.
[27] 王伟东, 邱卫华, 丁倩倩, 等. 锂离子电池三元材料—工艺技术及生产应用[M]. 北京: 化学工业出版社, 2015.
[28] CHEN X, MA H, LUO C, et al. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid[J]. Journal ofHazardous Materials, 2017, 326: 77-86.
[29] JOO S-H, SHIN D J, OH C, et al. Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I[J]. Hydrometallurgy, 2016, 159: 65-74.
[30] WU Z, SOH T, CHAN J J, et al. Repurposing of fruit peel waste as a green reductant for recycling of spent Lithium-ion batteries[J]. Environmental Science & Technology, 2020, 54(15): 9681-92.
[31] IJADI BAJESTANI M, MOUSAVI S M, SHOJAOSADATI S A. Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: Statistical evaluation and optimization[J]. Separation and Purification Technology, 2014, 132: 309-16.
[32] LV W, WANG Z, CAO H, et al. A critical review and analysis on the recycling of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1504-21.
[33] NIU Z, ZOU Y, XIN B, et al. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration[J]. Chemosphere, 2014, 109: 92 -8.
[34] XIN B, ZHANG D, ZHANG X, et al. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria[J]. Bioresource Technology, 2009, 100(24): 6163-9.
[35] ZENG G, DENG X, LUO S, et al. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries[J]. Journal ofHazardous Materials, 2012, 199-200: 164-9.
[36] HONG Y, VALIX M. Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria [J]. Journal of Cleaner Production, 2014, 65: 465-72.
[37] CHEN M, MA X, CHEN B, et al. Recycling end-of-life electric vehicle lithium-ion batteries[J]. Joule, 2019, 3(11): 2622-46.
[38] JIANG G, ZHANG Y, MENG Q, et al. Direct regeneration of LiNi0.5Co0.2Mn0.3O2cathode from spent lithium-ion batteries by the molten salts method[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 18138-47.
[39] SHI W, HU X, WANG J, et al. Analysis of thermal aging paths for large-format LiFePO4/Graphite battery[J]. Electrochimica Acta, 2016, 196: 13-23.
[40] WANG L, LI J, ZHOU H, et al. Regeneration cathode material mixture from spent lithium iron phosphate batteries[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(11): 9283-90.
[41] XU P, DAI Q, GAO H, et al. Efficient direct recycling of lithium-ion battery cathodes by targeted healing[J]. Joule, 2020, 4(12): 2609-26.
[42] HU J, ZHANG J, LI H, et al. A promising approach for the recovery of high value -added metals from spent lithium-ion batteries[J]. Journal of Power Sources, 2017, 351: 192-9.
[43] LI J, WANG G, XU Z. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries[J]. Journal of Hazardous Materials, 2016, 302: 97-104.
[44] MAO J, LI J, XU Z. Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries[J]. Journal of Cleaner Production, 2018, 205: 923-9.
[45] TANG Y, XIE H, ZHANG B, et al. Recovery and regeneration of LiCoO2-based spent lithium-ion batteries by a carbothermic reduction vacuum pyrolysis approach: Controlling the recovery of CoO or Co[J]. Waste Management, 2019, 97: 140-8.
[46] XIAO J, LI J, XU Z. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy[J]. Journal of Hazardous Materials, 2017, 338: 124-31.
[47] ZHAO Y, YUAN X, JIANG L, et al. Regeneration and reutilization of cathode materials from spent lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 383.
[48] 张涛, 吴彩斌, 王成彦, 等. 废弃手机锂离子电池机械破碎的基础研究[J]. 中南大学学报(自然科学版), 2012, 43: 3356-62.
[49] CONTESTABILE. M, PANERO. S, SCROSATI. B. A laboratory-scale lithium-ion battery recycling process[J]. Journal of Power Sources, 2001, 92: 65-9.
[50] ZHANG X, XIE Y, LIN X, et al. An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries[J]. Journal of Material Cycles and Waste Management, 2013, 15(4): 420-30.
[51] WANG F, ZHANG T, HE Y, et al. Recovery of valuable materials from spent lithium ion batteries by mechanical separation and thermal treatment[J]. Journal of Cleaner Production, 2018, 185: 646-52.
[52] ZHANG T, HE Y, GE L, et al. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries[J]. Journal of Power Sources, 2013, 240: 766-71.
[53] BALᎠP, ACHIMOVIČOVá M, BALᎠM, et al. Hallmarks of mechanochemistry: from nanoparticles to technology[J]. Chemical Society Reviews, 2013, 42(18): 7571-637.
[54] OU Z, LI J, WANG Z. Application of mechanochemistry to metal recovery from second-hand resources: a technical overview[J]. Environmental Science: Processes& Impacts, 2015, 17(9): 1522-30.
[55] ZHANG. Q, LU. J, SAITO. F, et al. Room temperature acid extraction of Co from LiCo0.2Ni0.8O2 scrap by a mechanochemical treatment[J]. Advanced Powder Technology, 2000, 11: 353-9.
[56] SAEKI S, LEE J, ZHANG Q, et al. Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product[J]. International Journal of Mineral Processing, 2004, 74: S373-S8.
[57] SWAIN B. Recovery and recycling of lithium: A review[J]. Separation and Purification Technology, 2017, 172: 388-403.
[58] INNOCENZI V, IPPOLITO N M, DE MICHELIS I, et al. A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries[J]. Journal of Power Sources, 2017, 362: 202-18.
[59] LI L, FAN E, GUAN Y, et al. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5224-33.
[60] SENANAYAKE G, SHIN S M, SENAPUTRA A, et al. Comparative leaching of spent zinc-manganese-carbon batteries using sulfur dioxide in ammoniacal and sulfuric acid solutions[J]. Hydrometallurgy, 2010, 105(1-2): 36-41.
[61] ZHENG X, GAO W, ZHANG X, et al. Spent lithium-ion battery recycling -Reductive ammonia leaching of metals from cathode scrap by sodium sulphite[J]. Waste Management, 2017, 60: 680-8.
[62] BARIK S P, PRABAHARAN G, KUMAR L. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study[J]. Journal of Cleaner Production, 2017, 147: 37-43.
[63] HE L P, SUN S Y, SONG X F, et al. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries[J]. Waste Management, 2017, 64: 171-81.
[64] WANG F, SUN R, XU J, et al. Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid–liquid separation and solvent extraction[J]. RSC Advances, 2016, 6(88): 85303-11.
[65] JOULIé M, LAUCOURNET R, BILLY E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries[J]. Journal of Power Sources, 2014, 247: 551-5.
[66] CHEN L, TANG X, ZHANG Y, et al. Process for the recovery of cobalt oxalate from spent lithium-ion batteries[J]. Hydrometallurgy, 2011, 108(1-2): 80-6.
[67] XU J, THOMAS H R, FRANCIS R W, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries[J]. Journal of Power Sources, 2008, 177(2): 512-27.
[68] MESHRAM P, PANDEY B D, MANKHAND T R. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects[J]. Waste Management, 2015, 45: 306-13.
[69] CHEN X, FAN B, XU L, et al. An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2016, 112: 3562-70.
[70] LI L, BIAN Y, ZHANG X, et al. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching[J]. Waste Management, 2018, 71: 362-71.
[71] LI L, GE J, WU F, et al. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant[J]. Journal of Hazardous Materials, 2010, 176(1-3): 288-93.
[72] ZENG X, LI J, SHEN B. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid[J]. Journal of Hazardous Materials, 2015, 295: 112-8.
[73] ZHANG X, CAO H, XIE Y, et al. A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis[J]. Separation and Purification Technology, 2015, 150: 186-95.
[74] HE L P, SUN S Y, MU Y Y, et al. Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using l-tartaric acid as a leachant[J]. ACS Sustainable Chemistry & Engineering, 2016, 5(1): 714-21.
[75] CHEN Y, LIU N, HU F, et al. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries[J]. Waste Management, 2018, 75: 469-76.
[76] KU H, JUNG Y, JO M, et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching[J]. Journal of Hazardous Materials, 2016, 313: 138-46.
[77] KOMNITSAS. C, POOLEY. F D. Optimization of the bacterial oxidation of anarsenical gold sulphide concentrate from Olympias, Greece[J]. Minerals Engineering, 1991, 4: 1297-303.
[78] XIN Y, GUO X, CHEN S, et al. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery[J]. Journal of Cleaner Production, 2016, 116: 249-58.
[79] ROY J J, CAO B, MADHAVI S. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach[J]. Chemosphere, 2021, 282: 130944.
[80] HOREH N B, MOUSAVI S M, SHOJAOSADATI S A. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger[J]. Journal of Power Sources, 2016, 320: 257-66.
[81] SONG X, HU T, LIANG C, et al. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method[J]. RSC advances, 2017, 7(8): 4783-90.
[82] HENDRICKSON T P, KAVVADA O, SHAH N, et al. Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California[J]. Environmental Research Letters, 2015, 10(1): 014011.
[83] GAINES L, DAI Q, VAUGHEY J T, et al. Direct recycling R&D at the recell center[J]. Recycling, 2021, 6(2): 31.
[84] MENG Z, HUANG W, GAO L, et al. Green and energy-saving recycling of LiCoO2by synergetic pyrolysis with polyvinyl chloride plastics[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(37): 12329-41.
[85] GUOXING R, SONGWEN X, MEIQIU X, et al. Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO-SiO2-Al2O3slag system; proceedings of the Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016, F, 2016[C]. Springer.
[86] MAKUZA B, TIAN Q, GUO X, et al. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review[J]. Journal of Power Sources, 2021, 491.
[87] DANG H, WANG B, CHANG Z, et al. Recycled lithium from simulated pyrometallurgical slag by chlorination roasting[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13160-7.
[88] FAN E, LI L, LIN J, et al. Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16144-50.
[89] LIU K, YANG J, LIANG S, et al. An emission-free vacuum chlorinating process for simultaneous sulfur fixation and lead recovery from spent lead-acid batteries[J]. Environmental Science & Technology, 2018, 52(4): 2235-41.
[90] LIN J, LIU C, CAO H, et al. Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting[J]. Green Chemistry, 2019, 21(21): 5904-13.
[91] MA Y, TANG J, WANALDI R, et al. A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching[J]. Journal of Hazardous Materials, 2021, 402.
[92] PINDAR S, DHAWAN N. Kinetic evaluation of in-situ carbothermic processing ofmixed electrode material of discarded li-ion batteries[J]. Metallurgical and Materials Transactions B, 2021, 52(5): 3078-92.
[93] ZHANG Y, WANG W, FANG Q, et al. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching[J]. Waste Management, 2020, 102: 847-55.
[94] ZHOU F, QU X, WU Y, et al. Vacuum pyrolysis of pine sawdust to recover spent lithium ion batteries: The synergistic effect of carbothermic reduction and pyrolysis gas reduction[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(3): 1287 -97.
[95] XIAO J, GAO R, ZHAN L, et al. Unveiling the control mechanism of the carbothermal reduction reaction for waste Li-ion battery recovery: Providing instructions for its practical applications[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(28): 9418-25.
[96] YANG C, ZHANG J, CAO Z, et al. Sustainable and facile process for lithium recovery from spent LiNixCoyMnzO2 cathode materials via selective sulfation with ammonium sulfate[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(41): 15732-9.
[97] LIN J, CUI C, ZHANG X, et al. Closed-loop selective recycling process of spent LiNiCoMnO2 batteries by thermal-driven conversion[J]. Journal of Hazardous Materials, 2022, 424.
[98] HE S, LIU Z. Efficient process for recovery of waste LiMn2O4 cathode material: Low-temperature (NH4)2SO4 calcination mechanisms and water-leaching characteristics[J]. Waste Management, 2020, 108: 28-40.
[99] HUANG Y, SHAO P, YANG L, et al. Thermochemically driven crystal phase transfer via chlorination roasting toward the selective extraction of lithium from spent LiNi1/3Co1/3Mn1/3O2[J]. Resources, Conservation and Recycling, 2021, 174.
[100] BARRIOS O C, GONZáLEZ Y C, BARBOSA L I, et al. Chlorination roasting of the cathode material contained in spent lithium-ion batteries to recover lithium, manganese, nickel and cobalt[J]. Minerals Engineering, 2022, 176.
[101] ZHAO Y, LIU B, ZHANG L, et al. Microwave pyrolysis of macadamia shells for efficiently recycling lithium from spent lithium-ion batteries[J]. Journal ofHazardous Materials, 2020, 396: 122740.
[102] 王芳, 张邦胜, 刘贵清, 等. 废旧动力电池资源再生利用技术进展[J]. 中国资源综合利用, 2018, 36: 106-11.
[103] 郭学益, 田庆华, 刘咏, 等. 有色金属资源循环研究应用进展[J]. 中国有色金属学报, 2019, 29: 1859-901.
[104] WANG W, ZHANG Y, LIU X, et al. A simplified process for recovery of Li and Co from spent LiCoO2 cathode using Al foil as the in situ reductant[J]. ACS Sustainable Chemistry & Engineering, 2019.
[105] YUE Y, WEI S, YONGJIE B, et al. Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10445 -53.
[106] HUANG Z, ZHU J, QIU R, et al. A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2019, 229: 1148-57.
[107] XU P, LIU C, ZHANG X, et al. Synergic mechanisms on carbon and sulfur during the selective recovery of valuable metals from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(5): 2271-9.
[108] ZENG X, LI J, SINGH N. Recycling of spent lithium-ion battery: A critical review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(10): 1129 -65.
[109] CHAGNES A, SWIATOWSKA J. Lithium process chemistry: Resources, extraction, batteries, and recycling[M]. Elsevier, 2015.
[110] KNIGHTS B, SALOOJEE F. Lithium batteries recycling[J]. Metallurgical Consultancy & Laboratories, South Africa, 2015.
[111] MARINOS D. An approach to beneficiation of spent lithium-ion batteries for recovery of materials[M]. Colorado School of Mines, 2014.
[112] QUIRIJNEN L. How to implement efficient local lead–acid battery recycling[J]. Journal of Power Sources 1999, 78: 267-9.
[113] VALIO J. Critical review on Li ion battery recycling technologies[J]. 2017.
[114] EUROPE P. Plastics—The Facts 2016[J]. An Analysis of European Plastics Production, Demand and Waste Data, 2016: 1-38.
[115] YU J, SUN L, MA C, et al. Thermal degradation of PVC: A review[J]. Waste Management, 2016, 48: 300-14.
[116] ÇEPELIOĞULLAR Ö, PüTüN A E. Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis[J]. Energy Conversion and Management, 2013, 75: 263-70.
[117] CZéGéNY Z, JAKAB E, BOZI J, et al. Pyrolysis of wood–PVC mixtures. Formation of chloromethane from lignocellulosic materials in the presence of PVC[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 123-32.
[118] MATSUZAWA Y, AYABE M, NISHINO J. Acceleration of cellulose co-pyrolysis with polymer[J]. Polymer Degradation and Stability, 2001, 71(3): 435-44.
[119] ÖZSIN G, PüTüN A E. TGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis process[J]. Energy Conversion and Management, 2019, 182: 143-53.
[120] ZHOU H, WU C, ONWUDILI J A, et al. Effect of interactions of PVC and biomass components on the formation of polycyclic aromatic hydrocarbons (PAH) during fast co-pyrolysis[J]. RSC advances, 2015, 5(15): 11371-7.
[121] TASAKI K, KANDA K, NAKAMURA S, et al. Decomposition of LiPF6 and stability of PF5 in Li-ion battery electrolytes: Density functional theory and molecular dynamics studies[J]. Journal of The Electrochemical Society, 2003, 150(12): A1628.
[122] HU W, LUO W, WANG H, et al. Adsorption of propylene carbonate on the LiMn 2O4(100) surface investigated by DFT + U calculations*[J]. Chinese Physics B, 2021, 30(3)
[123] HANADA T, SEO K, YOSHIDA W, et al. DFT-Based investigation of amic–acid extractants and their application to the recovery of Ni and Co from spent automotive lithium–ion batteries[J]. Separation and Purification Technology, 2022, 281.
[124] GUO Y, ZHAO Y L, LOU X, et al. Efficient degradation of industrial pollutants with sulfur (IV) mediated by LiCoO2 cathode powders of spent lithium ion batteries: A "treating waste with waste" strategy[J]. Journal of Hazardous Materials, 2020, 399: 123090.
[125] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169.
[126] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865.
[127] CONTARINI S, RABALAIS J W. Ion bombardment-induced decomposition of Li and Ba sulfates and carbonates studied by X-ray photoelectron spectroscopy[J]. Journal of Electron Spectroscopy and Related Phenomena, 1985, 35(2): 191-201.
[128] WREN A G, PHILLIPS R W, TOLENTINO L U. Surface reactions of chlorine molecules and atoms with water and sulfuric acid at low temperatures[J]. Journal of Colloid and Interface Science, 1979, 70(3): 544-57.
[129] MANSOUR A. Characterization of NiO by XPS[J]. Surface Science Spectra, 1994, 3(3): 231-8.
[130] SUMMA P, ŚWIRK K, WANG Y, et al. Effect of cobalt promotion on hydrotalcite -derived nickel catalyst for CO2 methanation[J]. Applied Materials Today, 2021, 25: 101211.
[131] TAN B J, KLABUNDE K J, SHERWOOD P M. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica[J]. Journal of the American Chemical Society, 1991, 113(3): 855 -61.
[132] TURNER N, SINGLE A. Determination of peak positions and areas from wide-scan XPS spectra[J]. Surface and Interface Analysis, 1990, 15(3): 215-22.
[133] KLEIN J C, HERCULES D M. Surface characterization of model Urushibara catalysts[J]. Journal of Catalysis, 1983, 82(2): 424-41.
[134] CHEN Y X, YUAN Y F, YAO Z J, et al. CoCl2 encapsulated in nitrogen-doped carbon hollow cubic nanobox enabling long-life and high-rate lithium storage[J]. Electrochimica Acta, 2022, 430.
[135] 韩 斌 . 聚 氯 乙 烯等 塑 料废 弃 物 热 解特 性 及动力 学 研 究 [D]. 天 津 : 天津 大 学 , 2012.
[136] 潘贵英, 黄金保, 程小彩, 等. 聚氯乙烯热降解机理的理论研究[J]. 分子科学学报: 中英文版, 2019, (1): 29-40.
[137] LóPEZ A, DE MARCO I, CABALLERO B M, et al. Dechlorination of fuels in pyrolysis of PVC containing plastic wastes[J]. Fuel Processing Technology, 2011, 92(2): 253-60.
[138] ZHOU H, LONG Y, MENG A, et al. Interactions of three municipal solid waste components during co-pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2015, 111: 265-71.
[139] MARCILLA A, BELTRAN M. Thermogravimetric kinetic study of poly (vinyl chloride) pyrolysis[J]. Polymer Degradation and Stability, 1995, 48(2): 219 -29.
[140] JORDAN K, SUIB S, KOBERSTEIN J. Determination of the degradation mechanism from the kinetic parameters of dehydrochlorinated poly (vinyl chloride) decomposition[J]. The Journal of Physical Chemistry B, 2001, 105(16): 3174-81.
[141] 任浩华, 王帅, 王芳杰, 等. PVC 热解过程中 HCl 的生成及其影响因素[J]. 中国环境科学, 2015, 35(8): 2460-9.
[142] 王蒋镔. 聚氯乙烯氯化焙烧-水浸回收废弃锂离子电池中的钴和锂[D]; 上海第二工业大学, 2020.
[143] BENNETT J W, JONES D, HUANG X, et al. Dissolution of complex metal oxides from first-principles and thermodynamics: Cation removal from the (001) surface of Li (Ni1/3Mn1/3Co1/3) O2[J]. Environmental Science & Technology, 2018, 52(10): 5792-802.
[144] LIU Y, YAO W, LEI C, et al. Ni-rich oxide LiNi0.85Co0.05Mn0.1O2 for lithium ion battery: effect of microwave radiation on its morphology and electrochemical property[J]. Journal of The Electrochemical Society, 2019, 166(8): A1300.
[145] XIAO J, LI J, XU Z. Novel approach for in situ recovery of lithium carbonate from spent lithium ion batteries using vacuum metallurgy[J]. Environmental Science &Technology, 2017, 51(20): 11960-6.
[146] GAO A, HOU X, SUN Z, et al. Lithium-desorption mechanism in LiMn2O4, Li1.33Mn1.67O4, and Li1.6Mn1.6O4 according to precisely controlled acid treatment and density functional theory calculations[J]. Journal of Materials Chemistry A, 2019, 7(36): 20878-90.
[147] HU W, WANG H, LUO W, et al. Formation and thermodynamic stability of oxygen vacancies in typical cathode materials for Li-ion batteries: Density functional theory study[J]. Solid State Ionics, 2020, 347.
[148] TAO R, XING P, LI H, et al. In situ reduction of cathode material by organics and anode graphite without additive to recycle spent electric vehicle LiMn 2O4batteries[J]. Journal of Power Sources, 2022, 520.
[149] ALLEN G, HARRIS S, JUTSON J, et al. A study of a number of mixed transition metal oxide spinels using X-ray photoelectron spectroscopy[J]. Applied Surface Science, 1989, 37(1): 111-34.
[150] ANSELL R, DICKINSON T, POVEY A. An X-ray photo-electron spectroscopic study of the films on coloured stainless steel and coloured ‘Nilomag’alloy 771[J]. Corrosion Science, 1978, 18(3): 245-56.
[151] SANDRA U I, ISHMAEL A V, RAPHAEL O, et al. Palicourea croceiodes leaves extract[J]. American Journal of Biological Chemistry, 2018, 5(2): 6 -14.
[152] SHI Z, SANGUINITO S, GOODMAN A, et al. Investigation of mass transfer and sorption in CO2/Brine/Rock systems via in situ FT-IR[J]. Industrial & Engineering Chemistry Research, 2020, 59(45): 20181-9.
[153] KIM S, AYKOL M, WOLVERTON C. Surface phase diagram and stability of (001) and (111) LiMn2O4 spinel oxides[J]. Physical Review B, 2015, 92(11): 115411.
[154] WANG M, TAN Q, LIU L, et al. Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8287-94.
[155] 吕正中, 周震涛. 后续反应温度对 LiMn2O4 结构和性能的影响[J]. 中国锰业, 2003, 21(4): 33-5.
[156] HE L-P, SUN S-Y, YU J-G. Performance of LiNi1/3Co1/3Mn1/3O2 prepared from spent lithium-ion batteries by a carbonate co-precipitation method[J]. Ceramics International, 2018, 44(1): 351-7.
[157] REFLY S, FLOWERI O, MAYANGSARI T R, et al. Regeneration of LiNi1/3Co1/3Mn1/3O2 cathode active materials from end-of-life lithium-ion batteries through ascorbic acid leaching and oxalic acid coprecipitation processes[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(43): 16104-14.
[158] YANG Y, HUANG G, XIE M, et al. Synthesis and performance of spherical LiNixCoyMn1-x-yO2 regenerated from nickel and cobalt scraps[J]. Hydrometallurgy, 2016, 165: 358-69.
[159] KONG J-Z, REN C, TAI G-A, et al. Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material[J]. Journal of Power Sources, 2014, 266: 433-9.
[160] HABIBI A, JALALY M, RAHMANIFARD R, et al. The effect of calcination conditions on the crystal growth and battery performance of nanocrystalline Li(Ni1/3Co1/3Mn1/3)O2 as a cathode material for Li-ion batteries[J]. New Journal of Chemistry, 2018, 42(23): 19026-33.
[161] LI D, ZHANG B, YE L, et al. Regeneration of high-performance Li1.2Mn0.54Ni0.13Co0.13O2 cathode material from mixed spent lithium-ion batteries through selective ammonia leaching[J]. Journal of Cleaner Production, 2022, 349: 131373.
[162] LIU D, SU Z, WANG L. Pyrometallurgically regenerated LiMn2O4 cathode scrap material and its electrochemical properties[J]. Ceramics International, 2021, 47(1): 42-7.
[163] YAO L, XI Y, HAN H, et al. LiMn2O4 prepared from waste lithium ion batteries through sol-gel process[J]. Journal of Alloys and Compounds, 2021, 868.

所在学位评定分委会
化学
国内图书分类号
X705
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544512
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
代金川. PVC 塑料协同热解回收再生锂离子电池正 极材料工艺的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032342-代金川-环境科学与工程(11406KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[代金川]的文章
百度学术
百度学术中相似的文章
[代金川]的文章
必应学术
必应学术中相似的文章
[代金川]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。