中文版 | English
题名

阿塔卡马海沟水体微生物呼吸速率驱动的有机碳循环研究

其他题名
ORGANIC CARBON CYCLING IN THE PELAGIC ATACAMA TRENCH: DRIVEN BY MICROBIAL COMMUNITY RESPIRATION
姓名
姓名拼音
ZHAO Xin
学号
11930932
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
李芯芯
导师单位
海洋科学与工程系
论文答辩日期
2023-05-22
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

海沟约占海洋总面积的2%,具有最完整的海层分布,其深度范围覆盖了海洋总深度范围的45%。海沟具有更高的静水压力和独特的水文条件及地质构造,因而海沟的碳循环机制有别于其他深海区域。但目前对海沟水柱>6000 m水深的水体颗粒有机碳(particulate organic carbon,POC)循环过程和机制的研究寥寥无几。尤其是微生物的固碳和呼吸作用对海沟POC收支、传输效率和生物可利用性的调节未见报道。因此,本研究主要聚焦阿塔卡马海沟水体中微生物的无机碳固定和有机碳代谢两个过程,结合有机碳的性质来源等特征,以及参与上述过程的微生物的丰度及群落组成系统探究阿塔卡马海沟水体中微生物驱动下的有机碳循环过程及相关机制:

阿塔卡马海沟表层水体POC含量及其稳定同位素组成(δ13C)、分粒径微生物群落呼吸作用(microbial community respiration,MCR)时空变化的分析表明,表层MCR的昼夜变化与光照强度密切相关,且0.8–3.0 μm的MCR在三个粒径中(0.2–0.8 μm,0.8–3.0 μm和>3.0 μm)贡献最大。同时MCR在昼夜的时间尺度上会对研究区内的POC同位素产生一定的分馏作用,改变POC的稳定同位素特征。在阿塔卡马海沟,>0.8 μm的MCR在大尺度的区域范围内与初级生产力密切相关,0.2–0.8 μm MCR则主要受控于POC的浓度及性质。估算阿塔卡马海沟表层水体的MCR对该区域初级生产力降解比例约为0.5%–4.6%,较大洋平均水平偏低,意味着该区域初级生产的POC能够更多地向深海传输。

深海的POC、深海固碳(dark carbon fixation,DCF)和MCR的深度剖面,都遵循从表层到中层海快速衰减,在深海(1000–6000 m)保持相对稳定的变化趋势。但海沟深渊层则表现出与上覆海水完全不同的性质,具有高度变异性,反映了海沟内复杂强烈的沉积动力过程。深海、海沟的MCR与表层海类似,由0.8–3.0 μm的MCR占主导。颗粒附着态(>0.8 μm)的MCR平均占比为71±12%,突出了颗粒物在深海,尤其是海沟,作为微生物活动“热点”的重要性。阿塔卡马海沟内POC为自生的海源来源和外来的陆源物质的混合,并受水动力过程及水体微生物代谢过程改造影响明显。全水深积分的DCF占海沟年均净初级生产力比例高达33.0±13.0%,其中海沟深渊层DCF占2.9±0.4%,定量证明了深海内原位微生物化能自养合成“新碳源”的重要性,不仅增加了海沟的生产力,而且有助于海沟内生命的维持及碳储存。

阿塔卡马海沟从表层到7500 m的分粒径(0.3–0.7 μm,0.7–2.7 μm和>2.7 μm)的细菌群落的研究表明,阿塔卡马海沟水体中的优势菌群主要为厚壁菌门、变形菌门、放线菌门和拟杆菌门,其相对丰度分布与其他海沟略有不同,表明不同海沟间微生物群落的异质性,且富营养海域中有机碳的变化对微生物多样性有调节作用。此外,研究区的细菌群落分布与上覆深海相似,但个别海沟的样品可能受沉积物–水界面的过程表现出其独特性。阿塔卡马海沟的主要细菌群落在三个粒径范围均有分布,但某些细菌的生活方式存在一定偏好性,或依赖于颗粒物,或偏好自由生活态。总体而言,海洋表层的初级生产力和输出通量对深海细菌群落有重要影响,不同的细菌在深海有机碳生物地球化学循环中发挥着不同的作用。

本研究通过阿塔卡马海沟全水深POC特征和微生物活动分析,揭示了海沟内的有机碳迁移转化和微生物活动具有“海沟特性”,丰度和速率随深度呈现高度可变性,不能够简单的用深海平原中的规律进行理解与推演;

这为海沟碳循环研究提供了有力的数据支持和认识创新,深化了我们对海沟有机碳降解过程的理解,填补了海沟研究中“表层–底层”耦合理论中全水体研究的空白,对评估海沟对全球海洋碳收支平衡的贡献、了解和开发海洋碳汇具有重要科学意义。

其他摘要

Hadal trenches cover only 2% of the ocean area, but have the most complete oceanic layers. The depth range of the hadalpelagic cover 45% of the total oceanic depth and have the highest hydrostatic pressure, unique hydrological conditions, and geological structures. The organic carbon biogeochemistry has also been reported to be different from those found in the abyssal plains. However, few studies have investigated the processes and mechanisms of particulate organic carbon (POC) in the trench water column. In particular, the regulation of the dark carbon fixation (DCF) and microbial community respiration (MCR) on the organic carbon balance, transfer efficiency, and bioavailability of POC. Therefore, this study focused on the microbial processes of inorganic carbon fixation and organic carbon metabolism in the pelagic Atacama Trench. Based on the characteristics and sources of organic carbon, as well as the abundance and community structure of the microorganisms involved in these processes, the study systematically discussed the mechanisms of organic carbon cycling in the whole water column of pelagic Atacama Trench:

The temporal and spatial variation of POC and its stable isotope composition (δ13C), and size fractionated MCR in the surface water of the Atacama Trench showed that the diurnal variation of MCR was closely related to light intensity, and MCR of 0.8-3.0 μm dominated the total MCR rates among the 0.2–0.8 μm, 0.8–3.0 μm, and >3.0 μm fractions in the surface water of the Atacama Trench. At the same time, MCR would cause isotopic fractionation and element composition of the POC in the daily variation. In the Atacama Trench, MCR of >0.8 μm were closely related to net primary productivity of all the sampling sites, while MCR of 0.2–0.8 μm were mainly regulated by the concentration and properties of POC. It was estimated that the ratio of MCR to net primary production in the surface water of the Atacama Trench was 0.5%–4.6%, which was lower than the average oceanic value, indicating higher export flux of POC to the deep-sea in the study area.

The depth profiles of POC, DCF, and MCR of the whole water column in Atacama Trench all followed a rapid decline from the surface to the mesopelagic, and remained relatively stable in the dark ocean (1000–6000 m). They show completely different properties in the hadalpelagic from the overlying water that high variability of these parameters in the hadal depth may reflect the complex and intense sedimentary dynamics within the trenches. MCR in the pelagic Atacama Trench is dominated by particle-associated (PA) fractions (>0.8 μm). The average proportion of PA-MCR can reach 71 ± 12%, highlighting the importance of particulate matter as a "hotspot" for microbial activities in the deep sea, especially the hadalpelagic. The POC in the Atacama Trench was a mixture of autochthonous marine sources and allochthonous terrestrial source, significantly affected by hydrodynamic processes and microbial metabolism. The depth-integrated DCF over the entire water depth accounted for 33.0 ± 13.0% of the annual average net primary production of the trench, of which the hadalpelagic DCF accounted for 2.9 ± 0.4%. This result quantitatively proved that in situ microbial chemosynthesis may serve as a new source of organic carbon in the dark ocean, which significantly increased the productivity of the hadalpelagic, and helped to maintain life and carbon storage within the trench.

Finally, we studied the size-fractionated bacterial community structure (0.3–0.7 μm, 0.7–2.7 μm, and >2.7 μm) of the Atacama Trench from the surface to 7500 m. The results showed that the dominant bacterial groups in the Atacama Trench were Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. The relative abundance distribution was slightly different from other trenches, indicating heterogeneity of microbial communities among trenches. Changes in organic carbon in eutrophic ocean may regulate microbial diversity. In addition, the distribution of bacterial communities in the hadalpelagic Atacama Trench were similar to that in the overlying dark ocean, but individual samples of the hadalpelagic exhibited uniqueness. This may be related to the sediment-water interface process. Though no significant differences among size fractions of bacterial community were observed in the pelagic Atacama Trench, lifestyle preferences existed that some relied on particulate matter, and some preferred to live freely. Overall, net primary production and export flux of the surface ocean had an important impact on the deep-sea bacterial community, and bacteria played different roles in the biogeochemical cycling of organic carbon in the deep ocean.

Overall, this study revealed that organic carbon transportation and microbial activities in the Atacama Trench were "trench-specific", with high variability in biogeochemical and microbial activities in the hadopelagic, and cannot be simply extrapolated from findings in the shallower dark ocean. This also provided solid data and innovative insights into the carbon cycling in trenches, and filled the gap of the pelagic realm in the "benthic–pelagic coupling" in trench researches. This is of great scientific significance for evaluating the contribution of the trench to the global oceanic carbon budget and for understanding and exploiting oceanic carbon sinks.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] DENMAN K L, BRASSEUR G, CHIDTHAISONG A, et al., Couplings between changes in the climate system and biogeochemistry[M]. Climate Change 2007: The Physical Science Basis., ed. S. Solomon and e. al. Cambridge: Cambridge University Press. 2007: 501-568.
[2] JOOS F, PRENTICE I, SITCH S, et al. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) Emission Scenarios[J]. Global Biogeochemical Cycles, 2001, 15(4): 891-907.
[3] BIANCHI T S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect[J]. Proceedings of the National Academy of Sciences, 2011, 108(49): 19473-81.
[4] ROCA-MARTí M, PUIGCORBé V, IVERSEN M H, et al. High particulate organic carbon export during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 138: 102-115.
[5] BOYD P W, CLAUSTRE H, LEVY M, et al. Multi-faceted particle pumps drive carbon sequestration in the ocean[J]. Nature, 2019, 568: 327-335.
[6] COSTELLO M J, CHEUNG A, DE HAUWERE N. Surface area and the seabed area, volume, depth, slope, and topographic variation for the world’s seas, oceans, and countries[J]. Environmental Science & Technology, 2010, 44(23): 8821-8828.
[7] 李栋, 赵军, 刘诚刚,等. 超深渊生境特征及生物地球化学过程研究进展[J]. 地球科学, 2018, 43(S2): 162-178.
[8] AGASSIZ A and MURRAY J, Reports on the scientific results of the expedition to the tropical Pacific, in charge of Alex and er Agassiz, by the U.S. fish commission steamer "Albatross" from August, 1899, to March, 1900[M]. London: Forgotten Books 1902.
[9] JAMIESON A J and FUJII T. Trench connection[J]. Biology Letters, 2011, 7 (5): 641-643.
[10] JAMIESON A J, FUJII T, MAYOR D J, et al. Hadal trenches: the ecology of the deepest places on Earth[J]. Trends in Ecology & Evolution, 2010, 25(3): 190-197.
[11] FUJII T, KILGALLEN N M, ROWDEN A A, et al. Deep-sea amphipod community structure across abyssal to hadal depths in the Peru-Chile and Kermadec trenches[J]. Marine Ecology Progress Series, 2013, 492: 125-138.
[12] ITOU M, MATSUMURA I, NORIKI S. A large flux of particulate matter in the deep Japan Trench observed just after the 1994 Sanriku-Oki earthquake[J]. Deep-Sea Research Part I, 2000, 47(10): 1987-1998.
[13] TODO Y, KITAZATO H, HASHIMOTO J, et al. Simple Foraminifera Flourish at the Ocean's Deepest Point[J]. Science, 2005, 307(5710): 689.
[14] CHEN M, SONG Y, FENG X, et al. Genomic characteristics and potential metabolic adaptations of hadal trench Roseobacter and Alteromonas bacteria based on single-cell genomics analyses[J]. Frontiers in Microbiology, 2020, 11: 1739.
[15] GLUD R N, WENZHöFER F, MIDDELBOE M, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth[J]. Nature Geoscience, 2013, 6(4): 284-288.
[16] EPPING E. Life in an oceanic extreme[J]. Nature Geoscience, 2013, 6(4): 252-253.
[17] GLUD R N, BERG P, THAMDRUP B, et al. Hadal trenches are dynamic hotspots for early diagenesis in the deep sea[J]. Communications Earth & Environment, 2021, 2(1): 21.
[18] DANOVARO R, DELLA CROCE N, DELL’ANNO A, et al. A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean[J]. Deep-Sea Research Part I, 2003, 50(12): 1411-1420.
[19] XU Y, LI X, LUO M, et al. Distribution, Source, and Burial of Sedimentary Organic Carbon in Kermadec and Atacama Trenches[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(5): e2020JG006189.
[20] FUJIO S, YANAGIMOTO D, TAIRA K. Deep current structure above the Izu-Ogasawara Trench[J]. Journal of Geophysical Research: Oceans, 2000, 105(C3): 6377-6386.
[21] HALLOCK Z R and TEAGUE W J. Evidence for a North Pacific Deep Western Boundary Current[J]. Journal of Geophysical Research: Oceans, 1996, 101(C3): 6617-6624.
[22] ADMINISTRATION N O A A, There are five pelagic depth zones that range from the surface to a depth of more than 36,000 feet. 2001. http://www.srh.noaa.gov/jetstream//ocean/oceanprofile.htm.
[23] MOORE C M, MILLS M M, ARRIGO K R, et al. Processes and patterns of oceanic nutrient limitation[J]. Nature Geoscience, 2013, 6: 701-710.
[24] JIAO N, HERNDL G J, HANSELL D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8): 593-599.
[25] WENZHöFER F, OGURI K, MIDDELBOE M, et al. Benthic carbon mineralization in hadal trenches: Assessment by in situ O2 microprofile measurements[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 116: 276-286.
[26] DELONG E F. Microbial domains in the ocean: A lesson from the archaea[J]. Oceanography, 2007, 20(2): 124-129.
[27] NUNOURA T, HIRAI M, YOSHIDA-TAKASHIMA Y, et al. Distribution and Niche Separation of Planktonic Microbial Communities in the Water Columns from the Surface to the Hadal Waters of the Japan Trench under the Eutrophic Ocean[J]. Frontiers in Microbiology, 2016, 7: 1261.
[28] TARN J, PEOPLES L M, HARDY K, et al. Identification of Free-Living and Particle-Associated Microbial Communities Present in Hadal Regions of the Mariana Trench[J]. Frontiers in Microbiology, 2016, 7: 665.
[29] FOLLETT C L, REPETA D J, ROTHMAN D H, et al. Hidden cycle of dissolved organic carbon in the deep ocean[J]. Proceedings of the National Academy of Sciences, 2014, 111(47): 16706-16711.
[30] GUERRERO-FEIJOO E, SINTES E, HERNDL G J, et al. High dark inorganic carbon fixation rates by specific microbial groups in the Atlantic off the Galician coast (NW Iberian margin)[J]. Environ Microbiol, 2018, 20(2): 602-611.
[31] Hadal Zone. How the Ocean Works; Available from: https://www.whoi.edu/know-your-ocean/ocean-topics/how-the-ocean-works/ocean-zones/hadal-zone/.
[32] ARISTEGUI J, DUARTE C M, GASOL J M, et al. Active mesopelagic prokaryotes support high respiration in the subtropical northeast Atlantic Ocean[J]. Geophysical Research Letters, 2005, 32(3): L03608.
[33] ANDERSON S T and NEWELL R G. Information programs for technology adoption: the case of energy-efficiency audits[J]. Resource and Energy Economics, 2004, 26(1): 27-50.
[34] JAMIESON A J. A contemporary perspective on hadal science[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2018, 155: 4-10.
[35] RICHARDSON M D, BRIGGS K B, BOWLES F A, et al. A depauperate benthic assemblage from the nutrient-poor sediments of the Puerto-Rico Trench[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 1995, 42(3): 351-364.
[36] OGURI K, KAWAMURA K, SAKAGUCHI A, et al. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku–Oki Earthquake[J]. Scientific Reports, 2013, 3(1915): 1915.
[37] LUO M, GIESKES J, CHEN L, et al. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: Implication for carbon cycle and burial in hadal trenches[J]. Marine Geology, 2017, 386(2): 486-498.
[38] OGURI K, MASQUé P, ZABEL M, et al. Sediment accumulation and carbon burial in four hadal trench systems[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(10): e2022JG006814.
[39] PENG G, BELLERBY R, ZHANG F, et al. The ocean's ultimate trashcan: Hadal trenches as major depositories for plastic pollution[J]. Water Research, 2020, 168: 115121.
[40] KHARBUSH J J, CLOSE H G, VAN MOOY B A S, et al. Particulate Organic Carbon Deconstructed: Molecular and Chemical Composition of Particulate Organic Carbon in the Ocean[J]. Frontiers in Marine Science, 2020, 7: 518.
[41] WANG N, SHEN C, SUN W, et al. Penetration of bomb 14C into the deepest ocean trench[J]. Geophysical Research Letters, 2019, 46(10): 5413-5419.
[42] SHAN S, QI Y, TIAN J, et al. Carbon cycling in the deep Mariana Trench in the western north Pacific Ocean: Insights from radiocarbon proxy data[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 164.
[43] JAMIESON A J, The Hadal Zone: Life in the Deepest Oceans[M]. Cambridge: Cambridge University Press. 2015: 156-185.
[44] FERNáNDEZ‐URRUZOLA I, ULLOA O, GLUD R N, et al. Plankton respiration in the Atacama Trench region: Implications for particulate organic carbon flux into the hadal realm[J]. Limnology and Oceanography, 2021, 66(8): 3134-3148.
[45] GIOVANNONI S J and STINGL U. Molecular diversity and ecology of microbial plankton[J]. Nature, 2005, 437(7057): 343-348.
[46] DUNNE J P, SARMIENTO J L, GNANADESIKAN A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor[J]. Global Biogeochemical Cycles, 2007, 21(4): GB4006.
[47] BALTAR F and HERNDL G J. Ideas and perspectives: Is dark carbon fixation relevant for oceanic primary production estimates?[J]. Biogeosciences, 2019, 16(19): 3793-3799.
[48] OUVERNEY C C and FUHRMAN J A. Marine planktonic archaea take up amino acids[J]. Applied and Environmental Microbiology, 2000, 66(11): 4829-4833.
[49] TEIRA E, VAN AKEN H, VETH C, et al. Archaeal uptake of enantiomeric amino acids in the meso- and bathypelagic waters of the North Atlantic[J]. Limnology and Oceanography, 2006, 51(1): 60-69.
[50] HANSMAN R L, GRIFFIN S, WATSON J T, et al. The radiocarbon signature of microorganisms in the mesopelagic ocean[J]. Proceedings of the National Academy of Sciences, 2009, 106(16): 6513-6518.
[51] INGALLS A E, SHAH S R, HANSMAN R L, et al. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon[J]. Proceedings of the National Academy of Sciences, 2006, 103(17): 6442-6447.
[52] WUCHTER C, SCHOUTEN S, BOSCHKER H T S, et al. Bicarbonate uptake by marine Crenarchaeota[J]. FEMS Microbiology Letters, 2003, 219(2): 203-207.
[53] REINTHALER T, VAN AKEN H M, HERNDL G J. Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic’s interior[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(16): 1572-1580.
[54] HERNDL G J, BAYER B, BALTAR F, et al. Prokaryotic Life in the Deep Ocean's Water Column[J]. Annual Review of Marine Science, 2023, 15(1): 461-483.
[55] NIELSEN E S. Dark fixation of CO2 and measurements of organic productivity-with remarks on chemo-synthesis[J]. Physiologia Plantarum, 1960, 13(2): 348-357.
[56] PRAKASH A, SHELDON R W, SUTCLIFFE W H. Geographic-variation of oceanic 14C dark uptake[J]. Limnology and Oceanography, 1991, 36(1): 30-39.
[57] 焦念志. 海洋固碳与储碳——并论微型生物在其中的重要作用[J]. 中国科学:地球科学, 2012, 42(10): 1473-1486.
[58] MORAN M A, Genomics and metagenomics of marine prokaryotes[M]. 2nd Edn ed. Microbial ecology of the oceans. America: Wiley-Liss. 2008: 91-129.
[59] ALONSO-SAEZ L, GALAND P E, CASAMAYOR E O, et al. High bicarbonate assimilation in the dark by Arctic bacteria[J]. The ISME Journal, 2010, 4(12): 1581-1590.
[60] BALTAR F, ARISTEGUI J, SINTES E, et al. Significance of non-sinking particulate organic carbon and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic northeast Atlantic[J]. Geophysical Research Letters, 2010, 37(9): L09602.
[61] MIDDELBURG J J. Chemoautotrophy in the ocean[J]. Geophysical Research Letters, 2011, 38(34): L24604.
[62] FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere: Integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237-240.
[63] DUARTE C M, REGAUDIE-DE-GIOUX A, ARRIETA J M, et al. The oligotrophic ocean is heterotrophic[J]. Annual Review of Marine Science, 2013, 5(1): 551-569.
[64] WILLIAMS P J L B, QUAY P D, WESTBERRY T K, et al. The oligotrophic ocean is autotrophic[J]. Annual Review of Marine Science, 2013, 5(1): 535-549.
[65] BALTAR F, ARíSTEGUI J, GASOL J M, et al. Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic[J]. Limnology and Oceanography, 2009, 54(1): 182-193.
[66] MOLARI M, MANINI E, DELL'ANNO A. Dark inorganic carbon fixation sustains the functioning of benthic deep-sea ecosystems[J]. Global Biogeochemical Cycles, 2013, 27(1): 212-221.
[67] HERNDL G J, REINTHALER T, TEIRA E, et al. Contribution of Archaea to total prokaryotic production in the deep Atlantic ocean[J]. Applied and Environmental Microbiology, 2005, 71(5): 2303-2309.
[68] MARKAGER S. Dark uptake of inorganic 14C in oligotrophic oceanic waters[J]. Journal of Plankton Research, 1998, 20(9): 1813-1836.
[69] MOUSSEAU L, DAUCHEZ S, LEGENDRE L, et al. Photosynthetic carbon uptake by marine phytoplankton: comparison of the stable (13C) and radioactive (14C) isotope methods[J]. Journal of Plankton Research, 1995, 17(7): 1449-1460.
[70] ZHOU W, LIAO J, GUO Y, et al. High dark carbon fixation in the tropical South China Sea[J]. Continental Shelf Research, 2017, 146: 82-88.
[71] DE KLUIJVER A, SOETAERT K, CZERNY J, et al. 13C labelling study on carbon fluxes in Arctic plankton communities under elevated CO2 levels[J]. Biogeosciences, 2013, 10(3): 1425-1440.
[72] LóPEZ-SANDOVAL D C, DELGADO-HUERTAS A, AGUSTí S. The 13C method as a robust alternative to 14C-based measurements of primary productivity in the Mediterranean Sea[J]. Journal of Plankton Research, 2018, 40(5): 544-554.
[73] ROBINSON C. Microbial respiration, the engine of ocean deoxygenation[J]. Frontiers in Marine Science, 2019, 5: 533.
[74] DEL GIORGIO P A and DUARTE C M. Respiration in the open ocean[J]. Nature, 2002, 420: 379-384.
[75] WILSON J M, RODNEY S, MICHAEL B J, et al. Ocean-Scale Patterns in Community Respiration Rates along Continuous Transects across the Pacific Ocean[J]. Plos One, 2014, 9(7): e99821.
[76] KIM B, KIM S-H, KWAK J H, et al. Heterotrophic bacterial production, respiration, and growth efficiency associated with upwelling intensity in the Ulleung Basin, East Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 143: 24-35.
[77] PACKARD T T, OSMA N, FERNáNDEZ-URRUZOLA I, et al. Peruvian upwelling plankton respiration: calculations of carbon flux, nutrient retention efficiency, and heterotrophic energy production[J]. Biogeosciences, 2015, 12(9): 2641-2654.
[78] MARTíNEZ-GARCíA S. Microbial respiration in the mesopelagic zone at Station ALOHA[J]. Limnology and Oceanography, 2017, 62(1): 320-333.
[79] JIAMING SHEN N J, MINHAN DAI,HAILI WANG, GUOQIANG QIU,JIANFANG CHEN, HONGLIANG LI, SHUH-JI KAO,JIN-YUTERENCEYANG,PINGHE CAI, KUANBO ZHOU, WEIFENG YANG1,YIFAN ZHU,ZHIYU LIU, MINGMING CHEN,ZUHUI ZUO,BIRGIT GAYE, MARTIN G WIESNER,YAO ZHANG. Laterally transported particles from margins serve as a major carbon and energy source for dark ocean ecosystems[J]. Geophysical Research Letters, 2020, 47: e2020GL088971.
[80] JIAO N, ZHANG Y, ZHOU K, et al. Revisiting the CO2 "source" problem in upwelling areas — a comparative study on eddy upwellings in the South China Sea[J]. Biogeosciences, 2014, 11(9): 2465-2475.
[81] WEBER T and BIANCHI D. Efficient particle transfer to depth in oxygen minimum zones of the Pacific and Indian oceans[J]. Frontiers in Earth Science, 2020, 8: 376.
[82] BRYAN J R, RILEY J P, WILLIAMS P J L. Winkler procedure for making precise measurements of oxygen concentration for productivity and related studies[J]. Journal of Experimental Marine Biology and Ecology, 1976, 21(3): 191-197.
[83] PACKARD T T. Measurement of respiratory electron-transport activity in marine phytoplankton[J]. Journal of Marine Research, 1971, 29(3): 235-244.
[84] ARíSTEGUI J and MONTERO M F. The relationship between community respiration and ETS activity in the ocean[J]. Journal of Plankton Research, 1995, 17(7): 1563-1571.
[85] KENNER R A and AHMED S I. Measurements of electron-transport activities in marine phytoplankton[J]. Marine Biology, 1975, 33(2): 119-127.
[86] OWENS T G and KING F D. Measurement of respiratory electron-transport-system activity in marine zooplankton[J]. Marine Biology, 1975, 30(1): 27-36.
[87] OSMA N, FERNáNDEZ-URRUZOLA I, GóMEZ M, et al. Predicting in vivo oxygen consumption rate from ETS activity and bisubstrate enzyme kinetics in cultured marine zooplankton[J]. Marine Biology, 2016, 163(7): 146.
[88] VOSJAN J H and OLANCZUKNEYMAN K M. Influence of temperature on respiratory ETS-activity of microorganisms from Admiralty Bay , King George Island, Antarctica[J]. Netherlands Journal of Sea Research, 1991, 28(3): 221-225.
[89] CAMMEN L M, CORWIN S, CHRISTENSEN J P. Electron transport system (ETS) activity as a measure of benthic macrofaunal metabolism[J]. Marine Ecology Progress Series, 1990, 65(2): 171-182.
[90] REINTHALER T, VAN AKEN H, VETH C, et al. Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin[J]. Limnology and Oceanography, 2006, 51(3): 1262-1273.
[91] WEINBAUER M G, LIU J, MOTEGI C, et al. Seasonal variability of microbial respiration and bacterial and archaeal community composition in the upper twilight zone[J]. Aquatic Microbial Ecology, 2013, 71(2): 99-115.
[92] MAZUECOS I P, ARíSTEGUI J, VáZQUEZ-DOMíNGUEZ E, et al. Temperature control of microbial respiration and growth efficiency in the mesopelagic zone of the South Atlantic and Indian Oceans[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95: 131-138.
[93] FERNáNDEZ-CASTRO B, ARíSTEGUI J, ANDERSON L, et al. Mesopelagic respiration near the ESTOC (European Station for Time-Series in the Ocean, 15.5°W, 29.1°N) site inferred from a tracer conservation model[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 115: 63-73.
[94] FEELY R A, SABINE C L, SCHLITZER R, et al. Oxygen utilization and organic carbon remineralization in the upper water column of the Pacific ocean[J]. Journal of Oceanography, 2004, 60(1): 45-52.
[95] SONNERUP R E, MECKING S, BULLISTER J L, et al. Transit time distributions and oxygen utilization rates from chlorofluorocarbons and sulfur hexafluoride in the Southeast Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 2015, 120(5): 3761-3776.
[96] MARTíNEZ-GARCíA S, FERNáNDEZ E, ARANGUREN-GASSIS M, et al. In vivo electron transport system activity: a method to estimate respiration in natural marine microbial planktonic communities[J]. 2009, 7(6): 459-469.
[97] CAI M, LIU Y, YIN X, et al. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation[J]. Science China Life Sciences, 2020, 63(6): 886-897.
[98] JANNASCH H W, EIMHJELLEN K, WIRSEN C O, et al. Microbial degradation of organic matter in the deep sea[J]. Science, 1971, 171(3972): 672-675.
[99] BALTAR F, LUNDIN D, PALOVAARA J, et al. Prokaryotic responses to ammonium and organic carbon reveal alternative CO2 fixation pathways and importance of alkaline phosphatase in the mesopelagic north Atlantic[J]. Frontiers in Microbiology, 2016, 7: 1670.
[100] LI W-L, WU Y-Z, ZHOU G-W, et al. Metabolic diversification of anaerobic methanotrophic archaea in a deep-sea cold seep[J]. Marine Life Science & Technology, 2020, 2(4): 431-441.
[101] ARíSTEGUI J, GASOL J M, DUARTE C M, et al. Microbial oceanography of the dark ocean's pelagic realm[J]. Limnology and Oceanography, 2009, 54(5): 1501-1529.
[102] PEOPLES L M, DONALDSON S, OSUNTOKUN O, et al. Vertically distinct microbial communities in the Mariana and Kermadec trenches[J]. PLoS One, 2018, 13(4): e0195102.
[103] LIU J, ZHENG Y, LIN H, et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench[J]. Microbiome, 2019, 7(1): 47.
[104] ELOE E A, MALFATTI F, GUTIERREZ J, et al. Isolation and characterization of a psychropiezophilic Alphaproteobacterium[J]. Applied and Environmental Microbiology, 2011, 77(22): 8145-8153.
[105] NUNOURA T, TAKAKI Y, HIRAI M, et al. Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth[J]. Proceedings of the National Academy of Sciences, 2015, 112(11): E1230-E1236.
[106] ELOE E A, SHULSE C N, FADROSH D W, et al. Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment[J]. Environmental Microbiology Reports, 2011, 3(4): 449-458.
[107] GóMEZ-CONSARNAU L, NEEDHAM D M, WEBER P K, et al. Influence of light on particulate organic matter utilization by attached and free-living marine bacteria[J]. Frontiers in Microbiology, 2019, 10: 1204.
[108] TIAN J, FAN L, LIU H, et al. A nearly uniform distributional pattern of heterotrophic bacteria in the Mariana Trench interior[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2018, 142: 116-126.
[109] SIGMAN D and HAIN M. The Biological Productivity of the Ocean[J]. Nature Education, 2012, 3(6): 1-16.
[110] WEMHEUER F, VON HOYNINGEN-HUENE A J E, POHLNER M, et al. Primary production in the water column as major structuring element of the biogeographical distribution and function of archaea in deep-sea sediments of the central Pacific ocean[J]. Archaea, 2019, 2019: 3717239.
[111] GUO R, LIANG Y, XIN Y, et al. Insight into the pico- and nano-phytoplankton communities in the deepest biosphere, the Mariana Trench[J]. Frontiers in Microbiology, 2018, 9: 2289.
[112] HAND K P, BARTLETT D H, FRYER P, et al. Discovery of novel structures at 10.7 km depth in the Mariana Trench may reveal chemolithoautotrophic microbial communities[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 160: 103238.
[113] GAO C, LIANG Y, JIANG Y, et al. Virioplankton assemblages from challenger deep, the deepest place in the oceans[J]. iScience, 2022, 25(8): 104680.
[114] HASANUDIN U, FUJITA M, KOIBUCHI Y, et al. Dynamic changes in environment condition and microbial community structure in trench and flat seabed sediments of Tokyo Bay, Japan[J]. Water Science & Technology, 2005, 52(9): 107-114.
[115] KAWAGUCCI S, MAKABE A, KODAMA T, et al. Hadal water biogeochemistry over the Izu–Ogasawara Trench observed with a full-depth CTD-CMS[J]. Ocean Science, 2018, 14(4): 575-588.
[116] DANOVARO R, GAMBI C, DELLA CROCE N. Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(5): 843-857.
[117] SCHAUBERGER C, MIDDELBOE M, LARSEN M, et al. Spatial variability of prokaryotic and viral abundances in the Kermadec and Atacama Trench regions[J]. Limnology and Oceanography, 2021, 66(6): 2095-2109.
[118] LUO M, GIESKES J, CHEN L, et al. Sources, degradation, and transport of organic matter in the New Britain shelf‐trench continuum, Papua New Guinea[J]. Journal of Geophysical Research Biogeoences, 2019, 124(6): 1680-1695.
[119] XIAO W, XU Y, HAGHIPOUR N, et al. Efficient sequestration of terrigenous organic carbon in the New Britain Trench[J]. Chemical Geology, 2019, 533: 119446.
[120] LUO M, GLUD R N, PAN B, et al. Benthic carbon mineralization in hadal trenches: Insights from in situ determination of benthic oxygen consumption[J]. Geophysical Research Letters, 2018, 45(6): 2752-2760.
[121] LüTZOW M V, KOGEL-KNABNER I, EKSCHMITT K, et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms[J]. Soil Biology & Biochemistry, 2007, 39(9): 2183-2207.
[122] BEHRENFELD M J and FALKOWSKI P G. Photosynthetic rates derived from satellite-based chlorophyll concentration[J]. Limnology and Oceanography, 1997, 42(1): 1-20.
[123] PARSONS T R, Particulate organic carbon in the Sea. [M]. J.P. Riley and G. Skirrow, Editors. Chemical Oceanography London, UK: Academic Press, 1975: 365-383.
[124] BIANCHI D, STOCK C, GALBRAITH E D, et al. Diel vertical migration: Ecological controls and impacts on the biological pump in a one-dimensional ocean model[J]. Global Biogeochemical Cycles, 2013, 27(2): 478-491.
[125] FORWARD R B, Light and Diurnal Vertical Migration: Photobehavior and Photophysiology of Plankton[M]. Boston: Springer. 1976: 72-86.
[126] LóPEZ-LEGENTIL S, TURON X, ERWIN P M. Feeding cessation alters host morphology and bacterial communities in the ascidian Pseudodistoma crucigaster[J]. Frontiers in Zoology, 2016, 13: 2.
[127] TURON X and BECERRO M. Growth and survival of several asoidian species from Ihe northwestern Mediterranean[J]. Marine Ecology Progress Series, 1992, 82: 235-247.
[128] CASEY J R, FERRóN S, KARL D M. Light-enhanced microbial organic carbon yield[J]. Frontiers in Microbiology, 2017, 8: 2157.
[129] ALONSO-SAEZ L, GASOL J M, LEFORT T, et al. Effect of natural sunlight on bacterial activity and differential sensitivity of natural bacterioplankton groups in northwestern Mediterranean coastal waters[J]. Applied and Environmental Microbiology, 2006, 72(9): 5806-5813.
[130] ABRIL G, NOGUEIRA M, ETCHEBER H, et al. Behaviour of organic carbon in nine contrasting European estuaries[J]. Estuarine Coastal and Shelf Science, 2002, 54(2): 241-262.
[131] 张向上. 黄河口有机碳的时空分布及影响因素研究[D]. 2004: 24-26.
[132] 林晶. 长江口及其毗邻海区溶解有机碳和颗粒有机碳的分布[D]. 2007: 38-40.
[133] FISHER T R and ROCHELLE-NEWALL H E. Dissolved and particulate organic carbon in Chesapeake Bay[J]. Estuaries, 1998, 21(2): 215-229.
[134] LIU Z, PENG X, LI X, et al. Particulate organic carbon (POC) in Taiwan Strait during two cruses in summer 1997 and winter 1998[J]. Journal of Oceanography in Taiwan Strait, 2000, 19(1): 95-101.
[135] GUO L. Cycling of dissolved and colloidal organic matter in oceanic environments as revealed by carbon and thorium isotopes[D]. Doctor, 1995: 177-205.
[136] CAUWET G, MILLER A, BRASSE S, et al. Dissolved and particulate organic carbon in the western Mediterranean Sea[J]. Deep Sea Research Part II Topical Studies in Oceanography, 1997, 44(3): 769-779.
[137] RASSE R, DALL'OLMO G, GRAFF J, et al. Evaluating optical proxies of particulate organic carbon across the surface Atlantic Ocean[J]. Frontiers in Marine Science, 2017, 4: 367.
[138] TRéGUER P, GUENELEY S, KAMATANI A. Biogenic silica and particulate organic matter from the indian sector of the Southern Ocean[J]. Marine Chemistry, 1988, 23(1-2): 167-180.
[139] BECKER S, TEBBEN J, COFFINET S, et al. Laminarin is a major molecule in the marine carbon cycle[J]. Proceedings of the National Academy of Sciences, 2020, 117(12): 6599-6607.
[140] LIU R, WANG L, LIU Q, et al. Depth-resolved distribution of particle-attached and free-living bacterial communities in the water column of the New Britain Trench[J]. Frontiers in Microbiology, 2018, 9: 625.
[141] PAERL H W. Microbial attachment to particles in marine and freshwater ecosystems[J]. Microbial Ecology, 1975, 2(1): 73-83.
[142] 张乃星, 宋金明, 贺志鹏. 海水颗粒有机碳(POC)变化的生物地球化学机制[J]. 生态学报, 2006, 26(07): 2328-2339.
[143] LEGENDRE L and RIVKIN R B. Fluxes of carbon in the upper ocean: regulation by food-web control nodes[J]. Marine Ecology Progress Series, 2002, 242: 95-109.
[144] CALBET A and LANDRY M R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems[J]. Limnology and Oceanography, 2004, 49(1): 51-57.
[145] HOBSON K A, AMBROSE W G, JR., RENAUD P E. Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from δ13C and δ15N analysis[J]. Marine Ecology Progress Series, 1995, 128: 1-10.
[146] KELSEY L. ROGERS , SAMANTHA H. BOSMAN, SARAH WEBER, et al. Sources of carbon to suspended particulate organic matter in the northern Gulf of Mexico[J]. Elementa Science of the Anthropocene, 2019, 7(1): 51.
[147] AVNIMELECH Y. Carbon/nitrogen ratio as a control element in aquaculture systems[J]. Aquaculture, 1999, 176(3-4): 0-235.
[148] ROBIDART J C, MAGASIN J D, SHILOVA I N, et al. Effects of nutrient enrichment on surface microbial community gene expression in the oligotrophic North Pacific Subtropical Gyre[J]. The ISME Journal, 2019, 13(2): 374-387.
[149] MARAñóN E, LORENZO M P, CERMEñO P, et al. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates[J]. The ISME Journal, 2018, 12(7): 1836-1845.
[150] LONGHURST A, SATHYENDRANATH S, PLATT T, et al. An estimate of global primary production in the ocean from satellite radiometer data[J]. Journal of Plankton Research, 1995, 17(6): 1245-1271.
[151] CARVALHO M C, SCHULZ K G, EYRE B D. Respiration of new and old carbon in the surface ocean: Implications for estimates of global oceanic gross primary productivity[J]. Global Biogeochemical Cycles, 2017, 31(6): 975-984.
[152] HASHIMOTO S, HORIMOTO, N., YAMAGUCHI Y, et al. Relationship between net and gross primary production in the Sagami Bay, Japan[J]. Limnology and Oceanography, 2005, 50(6): 1830-1835.
[153] CERMEñO P, DUTKIEWICZ S, HARRIS R P, et al. The role of nutricline depth in regulating the ocean carbon cycle[J]. Proceedings of the National Academy of Sciences, 2008, 105(51): 20344-20349.
[154] TILSTONE G H, LANGE P K, MISRA A, et al. Micro-phytoplankton photosynthesis, primary production and potential export production in the Atlantic Ocean[J]. Progress in Oceanography, 2017, 158: 109-129.
[155] MATSUMOTO K, ABE O, FUJIKI T, et al. Primary productivity at the time-series stations in the northwestern Pacific Ocean: is the subtropical station unproductive?[J]. Journal of Oceanography, 2016, 72(3): 359-371.
[156] SCHROPE M. Journey to the Bottom of the Sea[J]. Scientific American, 2014, 310(4): 60-69.
[157] TURNER J T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump[J]. Progress in Oceanography, 2015, 130: 205-248.
[158] TURNEWITSCH R, FALAHAT S, STEHLIKOVA J, et al. Recent sediment dynamics in hadal trenches: Evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 90: 125-138.
[159] BURD A B, HANSELL D A, STEINBERG D K, et al. Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$♯! is wrong with present calculations of carbon budgets?[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(16): 1557-1571.
[160] DANG H and CHEN C-T A. Ecological Energetic Perspectives on Responses of Nitrogen-Transforming Chemolithoautotrophic Microbiota to Changes in the Marine Environment[J]. Frontiers in Microbiology, 2017, 8: 1246.
[161] GUERRERO‐FEIJóO E, SINTES E, HERNDL G J, et al. High dark inorganic carbon fixation rates by specific microbial groups in the Atlantic off the Galician coast (NW Iberian margin)[J]. Environmental Microbiology, 2018, 20(2): 602-611.
[162] CELUSSI M, MALFATTI F, ZIVERI P, et al. Uptake-release dynamics of the inorganic and organic carbon pool mediated by planktonic prokaryotes in the deep Mediterranean Sea[J]. Environmental Microbiology, 2017, 19(3): 1163-1175.
[163] LENGGER S K, RUSH D, MAYSER J P, et al. Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM)[J]. Global Biogeochemical Cycles, 2019, 33(12): 1715-1732.
[164] MCDONNELL A M P, BOYD P W, BUESSELER K O. Effects of sinking velocities and microbial respiration rates on the attenuation of particulate carbon fluxes through the mesopelagic zone[J]. Global Biogeochemical Cycles, 2015, 29(2): 175-193.
[165] HERNDL G J and REINTHALER T. Microbial control of the dark end of the biological pump[J]. Nature Geoscience, 2013, 6(9): 718-724.
[166] NAGATA T, TAMBURINI C, ARíSTEGUI J, et al. Emerging concepts on microbial processes in the bathypelagic ocean – ecology, biogeochemistry, and genomics[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(16): 1519-1536.
[167] HAMA T, MIYAZAKI T, OGAWA Y, et al. Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope[J]. Marine Biology, 1983, 73: 31-36.
[168] KWAK J H, LEE S H, PARK H J, et al. Monthly measured primary and new productivities in the Ulleung Basin as a biological "hot spot" in the East/Japan Sea[J]. Biogeosciences, 2013, 10(7): 4405-4417.
[169] MARTIN J H, KNAUER G A, KARL D M, et al. VERTEX: carbon cycling in the northeast Pacific[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1987, 34(2): 267-285.
[170] OMAND M M, GOVINDARAJAN R, HE J, et al. Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics[J]. Scientific Reports, 2020, 10(1): 5582.
[171] ANTIA A N, KOEVE W, FISCHER G, et al. Basin-wide particulate carbon flux in the Atlantic Ocean: Regional export patterns and potential for atmospheric CO2 sequestration[J]. Global Biogeochemical Cycles, 2001, 15(4): 845-862.
[172] XU Y, GE H, FANG J. Biogeochemistry of hadal trenches: Recent developments and future perspectives[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2018, 155: 19-26.
[173] THORNTON S F and MCMANUS J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland[J]. Estuarine, Coastal and Shelf Science, 1994, 38(3): 219-233.
[174] ALTABET M A, PILSKALN C, THUNELL R, et al. The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1999, 46(4): 655-679.
[175] FLORES E, CANTARERO S I, RUIZ-FERNáNDEZ P, et al. Bacterial and eukaryotic intact polar lipids point to in situ production as a key source of labile organic matter in hadal surface sediment of the Atacama Trench[J]. Biogeosciences, 2022, 19(5): 1395-1420.
[176] GLOEGE L, MCKINLEY G A, MOUW C B, et al. Global evaluation of particulate organic carbon flux parameterizations and implications for atmospheric pCO2[J]. Global Biogeochemical Cycles, 2017, 31(7): 1192-1215.
[177] HENSON S A, SANDERS R, MADSEN E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean[J]. Global Biogeochemical Cycles, 2012, 26: GB1028.
[178] GUIDI L, LEGENDRE L, REYGONDEAU G, et al. A new look at ocean carbon remineralization for estimating deepwater sequestration[J]. Global Biogeochemical Cycles, 2015, 29(7): 1044-1059.
[179] BUESSELER K, LAMBORG C, BOYD P, et al. Revisiting carbon flux through the ocean's twilight zone[J]. Science, 2007, 316: 567-70.
[180] HONDA M C. Effective vertical transport of particulate organic carbon in the western North Pacific subarctic region[J]. Frontiers in Earth Science, 2020, 8: 366.
[181] BERELSON W M. The flux of particulate organic carbon into the ocean interior: A comparison of four U.S. JGOFS regional studies[J]. Oceanography, 2001, 14(4): 59-67.
[182] SHIH Y-Y, LIN H-H, LI D, et al. Elevated carbon flux in deep waters of the South China Sea[J]. Scientific Reports, 2019, 9: 1496.
[183] BUESSELER K O and BOYD P W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean[J]. Limnology and Oceanography, 2009, 54(4): 1210-1232.
[184] BERELSON W M, PROKOPENKO M, SANSONE F J, et al. Anaerobic diagenesis of silica and carbon in continental margin sediments: Discrete zones of TCO2 production[J]. Geochimica Et Cosmochimica Acta, 2005, 69(19): 4611-4629.
[185] ANDREASSEN I J and WASSMANN P. Vertical flux of phytoplankton and particulate biogenic matter in the marginal ice zone of the Barents Sea in May 1993[J]. Marine Ecology Progress Series, 1998, 170: 1-14.
[186] ALONSO-GONZáLEZ I J, ARíSTEGUI J, VILAS J C, et al. Lateral POC transport and consumption in surface and deep waters of the Canary Current region: A box model study[J]. Global Biogeochemical Cycles, 2009, 23(2): GB2007.
[187] EDUARDO MENSCHEL A and GONZáLEZ H E. Carbon and calcium carbonate export driven by appendicularian faecal pellets in the Humboldt current system off Chile[J]. Scientific Reports, 2019, 9(1): 16501.
[188] STIEF P, ELVERT M, GLUD R N. Respiration by “marine snow” at high hydrostatic pressure: Insights from continuous oxygen measurements in a rotating pressure tank[J]. Limnology and Oceanography, 2021, 66(7): 2797-2809.
[189] LOVECCHIO E, GRUBER N, MüNNICH M, et al. On the long-range offshore transport of organic carbon from the Canary Upwelling System to the open North Atlantic[J]. Biogeosciences, 2017, 14(13): 3337-3369.
[190] ARíSTEGUI J, MONTERO M F, HERNáNDEZ-HERNáNDEZ N, et al. Variability in water-column respiration and its dependence on organic carbon sources in the Canary current upwelling region[J]. Frontiers in Earth Science, 2020, 8: 349.
[191] ISHIWATARI R, YAMADA K, MATSUMOTO K, et al., Source of organic matter in sinking particles in the Japan Trench: molecular composition and carbon isotopic analyses[M]. N. Handa, E. Tanoue, and T. Hama, Editors. Dynamics and characterization of marine organic matter Dordrecht: Springer Netherlands, 2000: 141-168.
[192] AMANO C, ZHAO Z, SINTES E, et al., Limited carbon cycling due to high-pressure effects on the deep-sea microbiome[J]. Nature Geoscience, 2022, 15: 1041-1047.
[193] GOMES H D R, GOES J I, PARULEKAR A H. Size-fractionated biomass, photosynthesis and dark CO2 fixation in a tropical oceanic environment[J]. Journal of Plankton Research, 1992, 14(9): 1307-1329.
[194] PACHIADAKI M G, SINTES E, BERGAUER K, et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation[J]. Science, 2017, 358(6366): 1046-1051.
[195] YAKIMOV M M, LA CONO V, SMEDILE F, et al. Heterotrophic bicarbonate assimilation is the main process ofde novoorganic carbon synthesis in hadal zone of the Hellenic Trench, the deepest part of Mediterranean Sea[J]. Environmental Microbiology Reports, 2014, 6(6): 709-722.
[196] YAKIMOV M M, CONO V L, SMEDILE F, et al. Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea)[J]. The ISME Journal, 2011, 5(6): 945-961.
[197] BERGAUER K, SINTES E, VAN BLEIJSWIJK J, et al. Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's interior[J]. FEMS Microbiology Ecology, 2013, 84(3): 461-473.
[198] RASTELLI E, CORINALDESI C, PETANI B, et al. Enhanced viral activity and dark CO2 fixation rates under oxygen depletion: the case study of the marine Lake Rogoznica[J]. Environmental Microbiology, 2016, 18(12): 4511-4522.
[199] SMEDILE F, MESSINA E, LA CONO V, et al. Metagenomic analysis of hadopelagic microbial assemblages thriving at the deepest part of Mediterranean Sea, Matapan-Vavilov Deep[J]. Environmental Microbiology, 2013, 15(1): 167-182.
[200] YAMADA N and SUZUMURA M. Methods for determining rates of protein synthesis via dark CO2 fixation by marine prokaryote[J]. Analytical Letters, 2011, 44(10): 1739-1745.
[201] TAMBURINI C, GAREL M, AL ALI B, et al. Distribution and activity of Bacteria and Archaea in the different water masses of the Tyrrhenian Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(11): 700-712.
[202] PODLASKA A, WAKEHAM S G, FANNING K A, et al. Microbial community structure and productivity in the oxygen minimum zone of the eastern tropical North Pacific[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 66: 77-89.
[203] LA CONO V, RUGGERI G, AZZARO M, et al. Contribution of bicarbonate assimilation to carbon pool dynamics in the deep Mediterranean Sea and cultivation of actively nitrifying and CO2-fixing bathypelagic prokaryotic consortia[J]. Frontiers in Microbiology, 2018, 9: 3.
[204] SCHUNCK H, LAVIK G, DESAI D K, et al. Giant hydrogen sulfide plume in the oxygen Minimum Zone off Peru Supports Chemolithoautotrophy[J]. PLoS ONE, 2013, 8(8): e68661.
[205] CALLBECK C M, LAVIK G, FERDELMAN T G, et al. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria[J]. Nature Communications, 2018, 9(1): 1729.
[206] PIMENOV N V, ZYAKUN A M, PRUSAKOVA T S, et al. Application of 13C mineral carbon for assessment of the primary production of organic matter in aquatic environments[J]. Microbiology, 2008, 77(2): 224-227.
[207] GLAUBITZ S, LUEDERS T, ABRAHAM W-R, et al. 13C-isotope analyses reveal that chemolithoautotrophicGamma- andEpsilonproteobacteriafeed a microbial food web in a pelagic redoxcline of the central Baltic Sea[J]. Environmental Microbiology, 2009, 11(2): 326-337.
[208] BRUCKNER C G, MAMMITZSCH K, JOST G, et al. Chemolithoautotrophic denitrification of epsilonproteobacteria in marine pelagic redox gradients[J]. Environmental Microbiology, 2013, 15(5): 1505-1513.
[209] SINGH A, BACH L T, LöSCHER C R, et al. Impact of increasing carbon dioxide on dinitrogen and carbon fixation rates under oligotrophic conditions and simulated upwelling[J]. Limnology and Oceanography, 2021, 66(7): 2855-2867.
[210] LUTZ M J, CALDEIRA K, DUNBAR R B, et al. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean[J]. Journal of Geophysical Research, 2007, 112: C10011.
[211] STUKEL M R, BENITEZ-NELSON C R, DéCIMA M, et al. The biological pump in the Costa Rica Dome: an open-ocean upwelling system with high new production and low export[J]. Journal of Plankton Research, 2015, 38(2): 348-365.
[212] RILEY J S, SANDERS R, MARSAY C, et al. The relative contribution of fast and slow sinking particles to ocean carbon export[J]. Global Biogeochemical Cycles, 2012, 26(1): GB1026.
[213] ZIGAH P K, MCNICHOL A P, XU L, et al. Allochthonous sources and dynamic cycling of ocean dissolved organic carbon revealed by carbon isotopes[J]. Geophysical Research Letters, 2017, 44(5): 2407-2415.
[214] IVERSEN M H and PLOUG H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates – potential implications for deep ocean export processes[J]. Biogeosciences, 2013, 10(6): 4073-4085.
[215] LEE C, Particulate Organic Matter Composition and Fluxes in the Sea[M]. Chemistry of Marine Water and Sediments: Springer Berlin Heidelberg, 2002: 125-146.
[216] XIAO W, XU Y, HAGHIPOUR N, et al. Efficient sequestration of terrigenous organic carbon in the New Britain Trench[J]. Chemical Geology, 2020, 533: 119446.
[217] GARRISON D L, GOWING M M, HUGHES M P, et al. Microbial food web structure in the Arabian Sea: a US JGOFS study[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(7): 1387-1422.
[218] BIANCHI T S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19473-19481.
[219] JING H, ZHU W, LIU H, et al. Particle-attached and free-living archaeal communities in the benthic boundary layer of the Mariana Trench[J]. Frontiers in Microbiology, 2018, 9: 2821.
[220] BAO R, STRASSER M, MCNICHOL A P, et al. Tectonically-triggered sediment and carbon export to the Hadal zone[J]. Nature Communications, 2018, 9(1): 121.
[221] DANOVARO R, MOLARI M, CORINALDESI C, et al. Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems[J]. Science Advances, 2016, 2(4): e1500961.
[222] ZIERVOGEL K, KARLSSON E, ARNOSTI C. Surface associations of enzymes and of organic matter: Consequences for hydrolytic activity and organic matter remineralization in marine systems[J]. Marine Chemistry, 2007, 104(3): 241-252.
[223] GROSSART H and GUST G. Hydrostatic pressure affects physiology and community structure of marine bacteria during settling to 4000 m: an experimental approach[J]. Marine Ecology Progress Series, 2009, 390: 97-104.
[224] ARNOSTI C. Microbial extracellular enzymes and the marine carbon cycle[J]. Annual Review of Marine Science, 2011, 3(1): 401-425.
[225] KARL D M, KNAUER G A, MARTIN J H. Downward flux of particulate organic matter in the ocean: a particle decomposition paradox[J]. Nature, 1988, 332(6163): 438-441.
[226] DELONG E F, PRESTON C M, MINCER T, et al. Community genomics among stratified microbial assemblages in the ocean's interior[J]. Science, 2006, 311(5760): 496-503.
[227] LAURO F M and BARTLETT D H. Prokaryotic lifestyles in deep sea habitats[J]. Extremophiles, 2008, 12(1): 15-25.
[228] ZHANG X, XU W, LIU Y, et al. Metagenomics Reveals Microbial Diversity and Metabolic Potentials of Seawater and Surface Sediment From a Hadal Biosphere at the Yap Trench[J]. Frontiers in Microbiology, 2018, 9: 2402.
[229] SCHAUBERGER C, GLUD R N, HAUSMANN B, et al. Microbial community structure in hadal sediments: high similarity along trench axes and strong changes along redox gradients[J]. The ISME Journal, 2021, 15(12): 3455-3467.
[230] DANG H, LI T, CHEN M, et al. Cross-Ocean Distribution of Rhodobacterales Bacteria as Primary Surface Colonizers in Temperate Coastal Marine Waters[J]. Applied and Environmental Microbiology, 2008, 74(1): 52-60.
[231] RIVERA I N G, LIPP E K, GIL A, et al. Method of DNA extraction and application of multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae O1 and O139 from aquatic ecosystems[J]. Environmental Microbiology, 2003, 5(7): 599-606.
[232] THIJS S, OP DE BEECK M, BECKERS B, et al. Comparative Evaluation of Four Bacteria-Specific Primer Pairs for 16S rRNA Gene Surveys[J]. Frontiers in Microbiology, 2017, 8: 494.
[233] TAKAHASHI S, TOMITA J, NISHIOKA K, et al. Development of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and Archaea Using Next-Generation Sequencing[J]. PLoS ONE, 2014, 9(8): e105592.
[234] XUE Y, BAO Y, ZHANG Z, et al. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2021[J]. Nucleic Acids Research, 2021, 49(D1): D18-D28.
[235] LIU R, WANG L, WEI Y, et al. The hadal biosphere: Recent insights and new directions[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2018, 155: 11-18.
[236] PAULMIER A, RUIZ-PINO D, GARçON V, et al. Maintaining of the Eastern South Pacific Oxygen Minimum Zone (OMZ) off Chile[J]. Geophysical Research Letters, 2006, 33(20): L20601.
[237] BRYANT J A, STEWART F J, EPPLEY J M, et al. Microbial community phylogenetic and trait diversity declines with depth in a marine oxygen minimum zone[J]. Ecology, 2012, 93(7): 1659-1673.
[238] FERNANDES G L, SHENOY B D, DAMARE S R. Diversity of Bacterial Community in the Oxygen Minimum Zones of Arabian Sea and Bay of Bengal as Deduced by Illumina Sequencing[J]. Frontiers in Microbiology, 2020, 10: 3153.
[239] LEVIN L A, ETTER R J, REX M A, et al. Environmental Influences on Regional Deep-Sea Species Diversity[J]. Annual Review of Ecology and Systematics, 2001, 32(1): 51-93.
[240] GRABOWSKI E, LETELIER R M, LAWS E A, et al. Coupling carbon and energy fluxes in the North Pacific Subtropical Gyre[J]. Nature Communications, 2019, 10(1): 1895.
[241] BIŽIĆ-IONESCU M, ZEDER M, IONESCU D, et al. Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization[J]. Environmental Microbiology, 2015, 17(10): 3500-3514.
[242] ROMáN S, ORTIZ-ÁLVAREZ R, ROMANO C, et al. Microbial Community Structure and Functionality in the Deep Sea Floor: Evaluating the Causes of Spatial Heterogeneity in a Submarine Canyon System (NW Mediterranean, Spain)[J]. Frontiers in Marine Science, 2019, 6: 108.
[243] BEN MAAMAR S, AQUILINA L, QUAISER A, et al. Groundwater isolation governs chemistry and microbial community structure along hydrologic flowpaths[J]. Frontiers in Microbiology, 2015, 6: 1457.
[244] SUNDARAKRISHNAN B, PUSHPANATHAN M, JAYASHREE S, et al. Assessment of Microbial Richness in Pelagic Sediment of Andaman Sea by Bacterial Tag Encoded FLX Titanium Amplicon Pyrosequencing (bTEFAP)[J]. Indian Journal of Microbiology, 2012, 52(4): 544-550.
[245] ZHAO D, CAO X, HUANG R, et al. Variation of bacterial communities in water and sediments during the decomposition of Microcystis biomass[J]. PLOS ONE, 2017, 12(4): e0176397.
[246] ZHAO X, LIU J, ZHOU S, et al. Diversity of culturable heterotrophic bacteria from the Mariana Trench and their ability to degrade macromolecules[J]. Marine Life Science & Technology, 2020, 2: 181-193.
[247] CONNELLY T L, BAER S E, COOPER J T, et al. Urea uptake and carbon fixation by marine pelagic bacteria and archaea during the Arctic summer and winter seasons[J]. Applied and Environmental Microbiology, 2014, 80(19): 6013-6022.
[248] ANAS A, E.M B T, C J, et al. Microbial community shifts along an estuarine to open ocean continuum[J]. Regional Studies in Marine Science, 2021, 41: 101587.
[249] SANTELLI C M, ORCUTT B N, BANNING E, et al. Abundance and diversity of microbial life in ocean crust[J]. Nature, 2008, 453(7195): 653-656.
[250] SIMON M, SCHEUNER C, MEIER-KOLTHOFF J P, et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats[J]. The ISME Journal, 2017, 11(6): 1483-1499.
[251] FERNANDEZ-GOMEZ B, RICHTER M, SCHULER M, et al. Ecology of marine Bacteroidetes: a comparative genomics approach[J]. The ISME Journal, 2013, 7(5): 1026-1037.
[252] HIRAOKA S, HIRAI M, MATSUI Y, et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments[J]. The ISME Journal, 2020, 14(3): 740-756.
[253] FU L, LI D, MI T, et al. Characteristics of the archaeal and bacterial communities in core sediments from Southern Yap Trench via in situ sampling by the manned submersible Jiaolong[J]. Science of The Total Environment, 2020, 703: 134884.
[254] ZHANG C, LIU Q, LI X, et al. Spatial patterns and co-occurrence networks of microbial communities related to environmental heterogeneity in deep-sea surface sediments around Yap Trench, Western Pacific Ocean[J]. Science of The Total Environment, 2021, 759: 143799.
[255] RICHARDSON T L and JACKSON G A. Small Phytoplankton and Carbon Export from the Surface Ocean[J]. Science, 2007, 315(5813): 838-840.
[256] RIECK A, HERLEMANN D P, JURGENS K, et al. Particle-Associated Differ from Free-Living Bacteria in Surface Waters of the Baltic Sea[J]. Frontiers in Microbiology, 2015, 6: 1297.
[257] BACHMANN J, HEIMBACH T, HASSENRüCK C, et al. Environmental drivers of free-living vs. particle-attached bacterial community composition in the Mauritania upwelling system[J]. Frontiers in Microbiology, 2018, 9: 2836.
[258] SALAZAR G, CORNEJO-CASTILLO F M, BORRULL E, et al. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes[J]. Molecular Ecology, 2015, 24(22): 5692-5706.
[259] ALLEN L Z, ALLEN E E, BADGER J H, et al. Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic[J]. The ISME Journal, 2012, 6(7): 1403-1414.
[260] COTTRELL M T and KIRCHMAN D L. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter[J]. Applied and Environmental Microbiology, 2000, 66(4): 1692-1697.
[261] LI J, GU L, BAI S, et al. Characterization of particle-associated and free-living bacterial and archaeal communities along the water columns of the South China Sea[J]. Biogeosciences, 2021, 18(1): 113-133.
[262] IGARZA M, DITTMAR T, GRACO M, et al. Dissolved Organic Matter Cycling in the Coastal Upwelling System Off Central Peru During an “El Niño” Year[J]. Frontiers in Marine Science, 2019, 6: 198.
[263] BOEUF D, EDWARDS B R, EPPLEY J M, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean[J]. Proceedings of the National Academy of Sciences, 2019, 116(24): 11824-11832.
[264] NAWAZ M Z, SUBIN SASIDHARAN R, ALGHAMDI H A, et al. Understanding Interaction Patterns within Deep-Sea Microbial Communities and Their Potential Applications[J]. Marine Drugs, 2022, 20(2): 108.
[265] KAISER K and BENNER R. Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen[J]. Limnology and Oceanography, 2008, 53(1): 99-112.
[266] BAYER B, MCBEAIN K, CARLSON C A, et al. Carbon content, carbon fixation yield and dissolved organic carbon release from diverse marine nitrifiers[J]. Limnology and Oceanography, 2023, 68(1): 84-96.
[267] BAYER B, HANSMAN R L, BITTNER M J, et al. Ammonia‐oxidizing archaea release a suite of organic compounds potentially fueling prokaryotic heterotrophy in the ocean[J]. Environmental Microbiology, 2019, 21(11): 4062-4075.
[268] ZHANG Y, QIN W, HOU L, et al. Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean[J]. Proceedings of the National Academy of Sciences, 2020, 117(9): 4823-4830.
[269] STEINBERG D K, GOLDTHWAIT S A, HANSELL D A. Zooplankton vertical migration and the active transport of dissolved organic and inorganic nitrogen in the Sargasso Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(8): 1445-1461.
[270] GAO Z-M, HUANG J-M, CUI G-J, et al. In situ meta-omic insights into the community compositions and ecological roles of hadal microbes in the Mariana Trench[J]. Environmental Microbiology, 2019, 21(11): 4092-4108.
[271] WANG Y, GAO Z-M, LI J, et al. Hadal water sampling by in situ microbial filtration and fixation (ISMIFF) apparatus[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 144: 132-137.
[272] SANDERS R, MORRIS P J, POULTON A J, et al. Does a ballast effect occur in the surface ocean?[J]. Geophysical Research Letters, 2010, 37(8): L08602.
[273] MARSAY C M, SANDERS R J, HENSON S A, et al. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean[J]. Proceedings of the National Academy of Sciences, 2015, 112(4): 1089-1094.
[274] SUNAGAWA S, COELHO L P, CHAFFRON S, et al. Structure and function of the global ocean microbiome[J]. Science, 2015, 348(6237) : 1261359.
[275] SANDERS R, HENSON S A, KOSKI M, et al. The biological carbon pump in the north Atlantic[J]. Progress in Oceanography, 2014, 129: 200-218.
[276] WANG W, LI Z, ZENG L, et al. The oxidation of hydrocarbons by diverse heterotrophic and mixotrophic bacteria that inhabit deep-sea hydrothermal ecosystems[J]. The ISME Journal, 2020, 14(8): 1994-2006.

所在学位评定分委会
生物学
国内图书分类号
P734
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544518
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
赵昕. 阿塔卡马海沟水体微生物呼吸速率驱动的有机碳循环研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930932-赵昕-海洋科学与工程系(7629KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵昕]的文章
百度学术
百度学术中相似的文章
[赵昕]的文章
必应学术
必应学术中相似的文章
[赵昕]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。