[1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451: 652-657.
[2] LI H, WANG Z X, CHEN L Q, et al. Research on advanced materials for Li-ion batteries[J]. Advanced Materials, 2009, 21: 4593-4607.
[3] QIAN J F, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode[J]. Nature Communications, 2015, 6: 6362.
[4] ZHANG X Q, CHEN X, XU R, et al. Columnar lithium metal anodes[J]. Angewandte Chemie-International Edition, 2017, 56: 14207-14211.
[5] GHAZI Z A, SUN Z H, SUN C G, et al. Key aspects of lithium metal anodes for lithium metal batteries[J]. Small, 2019, 15: 1900687.
[6] KAVANAGH L, KEOHANE J, CABELLOS G G, et al. Global lithium sources-industrial use and future in the electric vehicle industry: a review[J]. Resources, 2018, 7: 57.
[7] KIM H, KIM J C, BIANCHINI M, et al. Recent progress and perspective in electrode materials for K-ion batteries[J]. Advanced Energy Materials, 2018, 8: 1702384.
[8] ZHOU W D, LI Y T, XIN S, et al. Rechargeable sodium all-solid-state battery[J]. ACS Central Science, 2017, 3: 52-57.
[9] CHEN M Z, WANG E H, LIU Q N, et al. Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries[J]. Energy Storage Materials, 2019, 19: 163-178.
[10] WHITTINGHAM M S. Electrical energy-storage and intercalation chemistry[J]. Science, 1976, 192: 1126-1127.
[11] DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135: 4450-4456.
[12] LANG J L, QI L H, LUO Y Z, et al. High performance lithium metal anode: Progress and prospects[J]. Energy Storage Materials, 2017, 7: 115-129.
[13] GUO Y P, LI H Q, ZHAI T Y. Reviving lithium-metal anodes for next-generation high-energy batteries[J]. Advanced Materials, 2017, 29: 1700007.
[14] ONICIU L, MURESAN L. Some fundamental-aspects of leveling and brightening in metal electrodeposition[J]. Journal of Applied Electrochemistry, 1991, 21: 565-574.
[15] AETUKURI N B, KITAJIMA S, JUNG E, et al. Flexible ion-conducting composite membranes for lithium batteries[J]. Advanced Energy Materials, 2015, 5: 1500265.
[16] BAI P, LI J, BRUSHETT F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy & Environmental Science, 2016, 9: 3221-3229.
[17] XIAO J. How lithium dendrites form in liquid batteries[J]. Science, 2019, 366: 426-427.
[18] SEONG I W, HONG C H, KIM B K, et al. The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode[J]. Journal of Power Sources, 2008, 178: 769-773.
[19] RYOU M H, LEE Y M, LEE Y J, et al. Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating[J]. Advanced Functional Materials, 2015, 25: 834-841.
[20] WAN M T, KANG S J, WANG L, et al. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode[J]. Nature Communications, 2020, 11: 829.
[21] YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, 6: 8058.
[22] CHEN J Y, ZHAO J, LEI L N, et al. Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes[J]. Nano Letters, 2020, 20: 3403-3410.
[23] LIM G J H, LYU Z Y, ZHANG X, et al. Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes[J]. Journal of Materials Chemistry A, 2020, 8: 9058-9067.
[24] MUKHERJEE R, THOMAS A V, DATTA D, et al. Defect-induced plating of lithium metal within porous graphene networks[J]. Nature Communications, 2014, 5: 3710.
[25] CHEN Y Z, ELANGOVAN A, ZENG D L, et al. Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li-S batteries[J]. Advanced Functional Materials, 2020, 30: 1906444.
[26] LIN D, LIU Y, PEI A, et al. Nanoscale perspective: Materials designs and understandings in lithium metal anodes[J]. Nano Research, 2017, 10: 4003-4026.
[27] CHENG X B, YAN C, CHEN X, et al. Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem, 2017, 2: 258-270.
[28] BI D Q, GAO P, SCOPELLITI R, et al. High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3[J]. Advanced Materials, 2016, 28: 2910-2915.
[29] KOZEN A C, LIN C F, PEARSE A J, et al. Next-generation lithium metal anode engineering via atomic layer deposition[J]. ACS Nano, 2015, 9: 5884-5892.
[30] YAN K, LEE H W, GAO T, et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode[J]. Nano Letters, 2014, 14: 6016-6022.
[31] SHANG H, ZUO Z, DONG X, et al. Efficiently suppressing lithium dendrites on atomic level by ultrafiltration membrane of graphdiyne[J]. Materials Today Energy, 2018, 10: 191-199.
[32] WANG X, ZENG W, HONG L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates[J]. Nature Energy, 2018, 3: 227-235.
[33] CHUNG S H, HAN P, SINGHAL R, et al. Electrochemically stable rechargeable lithium-sulfur batteries with a microporous carbon nanofiber filter for polysulfide[J]. Advanced Energy Materials, 2015, 5: 1500738.
[34] SHIN W K, KANNAN A G, KIM D W. Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries[J]. ACS Applied Materials and Interfaces, 2015, 7: 23700-23707.
[35] YANG Y F, LI B C, LI L X, et al. A superlephilic/superhydrophobic and thermostable separator based on silicone nanofilaments for Li metal batteries[J]. Iscience, 2019, 16: 420.
[36] HAO X M, ZHU J, JIANG X, et al. Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators[J]. Nano Letters, 2016, 16: 2981-2987.
[37] LUO W, ZHOU L H, FU K, et al. A thermally conductive separator for stable Li metal anodes[J]. Nano Letters, 2015, 15: 6149-6154.
[38] WU H, ZHUO D, KONG D S, et al. Improving battery safety by early detection of internal shorting with a bifunctional separator[J]. Nature Communications, 2014, 5: 5193.
[39] LU Y Y, TU Z Y, ARCHER L A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes[J]. Nature Materials, 2014, 13: 961-969.
[40] SUO L M, HU Y S, LI H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4: 1481.
[41] DOI T, SHIMIZU Y, HASHINOKUCHI M, et al. Dilution of highly concentrated LiBF4/propylene carbonate electrolyte solution with fluoroalkyl ethers for 5-V LiNi0.5Mn1.5O4 positive electrodes[J]. Journal of the Electrochemical Society, 2017, 164: 6412-6416.
[42] LI Z Q, HUANG X L, KONG L, et al. Gradient nano-recipes to guide lithium deposition in a tunable reservoir for anode-free batteries[J]. Energy Storage Materials, 2022, 45: 40-47.
[43] LIN D C, LIU Y Y, LIANG Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nature Nanotechnology, 2016, 11: 626.
[44] ZHU B, JIN Y, HU X Z, et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes[J]. Advanced Materials, 2017, 29: 1603755.
[45] ZHANG W D, TU Z Y, QIAN J W, et al. Design principles of functional polymer separators for high-energy, metal-based batteries[J]. Small, 2018, 14: 1703001.
[46] PENG K, WANG B, LI Y M, et al. Magnetron sputtering deposition of TiO2 particles on polypropylene separators for lithium-ion batteries[J]. Rsc Advances, 2015, 5: 81468-81473.
[47] LU W J, YUAN Z Z, ZHAO Y Y, et al. Porous membranes in secondary battery technologies[J]. Chemical Society Reviews, 2017, 46: 2199-2236.
[48] ZHOU C, HE Q, LI Z H, et al. A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2020, 395: 124979.
[49] KONG L S, FU X W, FAN X, et al. A Janus nanofiber-based separator for trapping polysulfides and facilitating ion-transport in lithium-sulfur batteries[J]. Nanoscale, 2019, 11: 18090-18098.
[50] KIM M S, MA L, CHOUDHURY S, et al. Multifunctional separator coatings for high-performance lithium-sulfur batteries[J]. Advanced Materials Interfaces, 2016, 3: 1600450.
[51] LEE H, YANILMAZ M, TOPRAKCI O, et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7: 3857-3886.
[52] ZHU J, CHEN C, LU Y, et al. Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries[J]. Carbon, 2016, 101: 272-280.
[53] HU M F, MA Q Y, YUAN Y, et al. Grafting polyethyleneimine on electrospun nanofiber separator to stabilize lithium metal anode for lithium sulfur batteries[J]. Chemical Engineering Journal, 2020, 388: 124258.
[54] LIU K, ZHUO D, LEE H W, et al. Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator[J]. Advanced Materials, 2017, 29: 1603987.
[55] YE M H, XIAO Y K, CHENG Z H, et al. A smart, anti-piercing and eliminating-dendrite lithium metal battery[J]. Nano Energy, 2018, 49: 403-410.
[56] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22: 587-603.
[57] CHOUDHURY S, WEI S Y, OZHABES Y, et al. Designing solid-liquid interphases for sodium batteries[J]. Nature Communications, 2017, 8: 898.
[58] LI S, JIANG M W, XIE Y, et al. Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress[J]. Advanced Materials, 2018, 30: 1706375.
[59] XU K, VON CRESCE A, LEE U. Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface[J]. Langmuir, 2010, 26: 11538-11543.
[60] SHI S Q, LU P, LIU Z Y, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society, 2012, 134: 15476-15487.
[61] DING M S, VON CRESCE A, XU K. Conductivity, viscosity, and their correlation of a super concentrated aqueous electrolyte[J]. Journal of Physical Chemistry C, 2017, 121: 2149-2153.
[62] CHEN S R, ZHENG J M, MEI D H, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Advanced Materials, 2018, 30: 1706102.
[63] ZENG X Q, LI M, ABD EL-HADY D, et al. Commercialization of lithium battery technologies for electric vehicles[J]. Advanced Energy Materials, 2019, 9: 1900161.
[64] POMERANTSEVA E, BONACCORSO F, FENG X L, et al. Energy storage: The future enabled by nanomaterials[J]. Science, 2019, 366: 969.
[65] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7: 19-29.
[66] JIAN Z L, HWANG S, LI Z F, et al. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries[J]. Advanced Functional Materials, 2017, 27: 1700324.
[67] DOEFF M M, MA Y P, VISCO S J, et al. Electrochemical insertion of sodium into carbon[J]. Journal of the Electrochemical Society, 1993, 140: 169-170.
[68] XIONG H, SLATER M D, BALASUBRAMANIAN M, et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries[J]. Journal of Physical Chemistry Letters, 2011, 2: 2560-2565.
[69] NIU X G, ZHANG Y C, TAN L L, et al. Amorphous FeVO4 as a promising anode material for potassium-ion batteries[J]. Energy Storage Materials, 2019, 22: 160-167.
[70] WANG Q N, ZHAO X X, NI C L, et al. Reaction and capacity-fading mechanisms of tin nanoparticles in potassium-Ion batteries[J]. Journal of Physical Chemistry C, 2017, 121: 12652-12657.
[71] AI W, LUO Z M, JIANG J, et al. Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction[J]. Advanced Materials, 2014, 26: 6186.
[72] JIAN Z L, LUO W, JI X L. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137: 11566-11569.
[73] ZHU Y Y, WANG Y H, WANG Y T, et al. Research progress on carbon materials as negative electrodes in sodium- and potassium-ion batteries[J]. Carbon Energy, 2022, 4: 1182-1213.
[74] COHN A P, MURALIDHARAN N, CARTER R, et al. Anode-free sodium battery through in situ plating of sodium metal[J]. Nano Letters, 2017, 17: 1296-1301.
[75] WEI S Y, CHOUDHURY S, XU J, et al. Highly stable sodium batteries enabled by functional ionic polymer membranes[J]. Advanced Materials, 2017, 29: 1605512.
[76] YU B C, PARK K, JANG J H, et al. Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery[J]. ACS Energy Letters, 2016, 1: 633-637.
[77] XIAO N, MCCULLOCH W D, WU Y Y. Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries[J]. Journal of the American Chemical Society, 2017, 139: 9475-9478.
[78] XIONG X S, YAN W Q, YOU C L, et al. Methods to improve lithium metal anode for Li-S batteries[J]. Frontiers in Chemistry, 2019, 7: 827.
[79] MACHIDA N, KASHIWAGI J, NAITO M, et al. Electrochemical properties of all-solid-state batteries with ZrO2-coated LiNi1/3Mn1/3Co1/3O2 as cathode materials[J]. Solid State Ionics, 2012, 225: 354-358.
[80] YAMADA T, ITO S, OMODA R, et al. All solid-state lithium-sulfur battery using a glass-type P2S5-Li2S electrolyte: benefits on anode kinetics[J]. Journal of the Electrochemical Society, 2015, 162: 646-651.
[81] WEN J Y, HUANG Y, DUAN J, et al. Highly adhesive Li-BN nanosheet composite anode with excellent interfacial compatibility for solid-state Li metal batteries[J]. ACS Nano, 2019, 13: 14549-14556.
[82] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie-International Edition, 2007, 46: 7778-7781.
[83] YU S, SCHMIDT R D, GARCIA-MENDEZ R, et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chemistry of Materials, 2016, 28: 197-206.
[84] TSAI C L, RODDATIS V, CHANDRAN C V, et al. Li7La3Zr2O12 interface modification for Li dendrite prevention[J]. ACS Applied Materials and Interfaces, 2016, 8: 10617-10626.
[85] REN Y Y, SHEN Y, LIN Y H, et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte[J]. Electrochemistry Communications, 2015, 57: 27-30.
[86] NAGAO M, HAYASHI A, TATSUMISAGO M, et al. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte[J]. Physical Chemistry Chemical Physics, 2013, 15: 18600-18606.
[87] YU S, SIEGEL D J. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chemistry of Materials, 2017, 29: 9639-9647.
[88] HAN X G, GONG Y H, FU K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16: 572.
[89] LIU K, BAI P, BAZANT M Z, et al. A soft non-porous separator and its effectiveness in stabilizing Li metal anodes cycling at 10 mA cm-2 observed in situ in a capillary cell[J]. Journal of Materials Chemistry A, 2017, 5: 4300-4307.
[90] ZHENG Z F, FANG H Z, LIU Z K, et al. A Fundamental Stability Study for Amorphous LiLaTiO3 Solid Electrolyte[J]. Journal of the Electrochemical Society, 2015, 162: 244-248.
[91] WU Z J, XIE Z K, YOSHIDA A, et al. Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries[J]. Journal of Colloid and Interface Science, 2020, 565: 110-118.
[92] ZAGORSKI J, DEL AMO J M L, CORDILL M J, et al. Garnet-polymer composite electrolytes: new Insights on local Li-Ion dynamics and electrodeposition stability with Li metal anodes[J]. ACS Applied Energy Materials, 2019, 2: 1734-1746.
[93] WIERS B M, FOO M L, BALSARA N P, et al. A solid Lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites[J]. Journal of the American Chemical Society, 2011, 133: 14522-14525.
[94] WU J F, GUO X. Nanostructured metal-organic framework (MOF)-derived Solid electrolytes realizing fast lithium Ion transportation kinetics in solid-state batteries[J]. Small, 2019, 15: 1804413.
[95] ZHANG X Q, LI T, LI B Q, et al. A sustainable solid electrolyte interphase for high-energy-density lithium metal batteries under practical conditions[J]. Angewandte Chemie-International Edition, 2020, 59: 3252-3257.
[96] ZHANG G, HONG Y, NISHIYAMA Y, et al. Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte[J]. Journal of the American Chemical Society, 2019, 141: 1227-1234.
[97] CHI X, LI M, DI J, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery[J]. Nature, 2021, 592: 551-557.
[98] LAI G M, JIAO J Y, FANG C, et al. The mechanism of Li deposition on the Cu substrates in the anode-free Li metal batteries[J]. Small, 2023, 19: 1613-6810.
[99] WANG L F, REN N Q, YAO Y, et al. Designing solid electrolyte interfaces towards homogeneous Na deposition: Theoretical guidelines for electrolyte additives and superior high-rate cycling stability[J]. Angewandte Chemie-International Edition, 2022: 1433-7851.
[100] ZENG Y, OUYANG B, LIU J, et al. High-entropy mechanism to boost ionic conductivity[J]. Science, 2022, 378: 1320-1324.
[101] WANG S, BAI Q, NOLAN A M, et al. Lithium chlorides and bromides as promising solid-State chemistries for fast ion conductors with good electrochemical stability[J]. Angewandte Chemie-International Edition, 2019, 58: 8039-8043.
[102] WASALATHILAKE K C, AYOKO G A, YAN C. Effects of heteroatom doping on the performance of graphene in sodium-ion batteries: A density functional theory investigation[J]. Carbon, 2018, 140: 276-285.
[103] DIRAC P A M. Lectures on quantum mechanics[M]. New York: Courier Corporation, 2001: 3-50.
[104] COHEN M L, LOUIE S G. Fundamentals of condensed matter physics[M]. Berkeley: Cambridge University Press, 2016: 20-152.
[105] BORN M, OPPENHEIMER R. Zur Quantentheorie der Molekeln[J]. Annalen der Physik, 1927, 389: 457-484.
[106] HARTREE D R. The calculation of atomic structures[J]. Reports on Progress in Physics, 1947, 11: 113-143.
[107] SZABOO A, OSTLUND N. Modern Quantum Chemistry: Introduction to advanced eletronic structure theory[M]. New York: Dove Publications, 1996: 55-210.
[108] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136: 864-871.
[109] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140: 1133.
[110] MARTIN R M. Electronic structure: basic theory and practical methods[M]. Cambridge: Cambridge university press, 2020: 119-184.
[111] LANGRETH D C, MEHL M J. Beyond the local-density approximation in calculations of ground-state electronic-properties[J]. Physical Review B, 1983, 28: 1809-1834.
[112] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical Review B, 1981, 23: 5048-5079.
[113] COLE L A, PERDEW J P. Calculated electron affinities of the elements[J]. Physical Review A, 1982, 25: 1265-1271.
[114] VOSKO S H, WILK L, NUSAIR M. Accurate spin-dependent electron liquid correlation energiesfor local spin density calculations: a critical analysis[J]. Canadian Journal of Physics, 1980, 58: 1200.
[115] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77: 3865.
[116] WANG Y, PERDEW J P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling[J]. Physical Review B, 1991, 44: 13298-13307.
[117] HEYD J, E.SCUSERIA G, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential[J]. The Journal of Chemical Physics, 2003, 118: 8207-8215.
[118] WODRICH M D, CORMINBOEUF C M, SCHLEYER P V R. Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals[J]. Organic Letters, 2006, 8: 3631-3634.
[119] PAIER J, MARSMAN M, HUMMER K, et al. Screened hybrid density functionals applied to solids[J]. Journal of Chemical Physics, 2006, 124: 154709.
[120] KUKOL A. Molecular modeling of proteins[M]. Totowa: Humana Press, 2008: 4-7.
[121] KUO I F W, MUNDY C J. An ab initio molecular dynamics study of the aqueous liquid-vapor interface[J]. Science, 2004, 303: 658-660.
[122] LAIDLER K J, KING M C. The development of transition-state theory[J]. Journal of Physical Chemistry, 1983, 87: 2657-2664.
[123] HENKELMAN G, UBERUAGA B P, JONSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. Journal of Chemical Physics, 2000, 113: 9901-9904.
[124] SANNYAL A, AHN Y, JANG J. First-principles study on the two-dimensional siligene (2D SiGe) as an anode material of an alkali metal ion battery[J]. Computational Materials Science, 2019, 165: 121-128.
[125] ZHU L, ZENG Y R, WEN J, et al. Structural and electrochemical properties of Na2FeSiO4 polymorphs for sodium-ion batteries[J]. Electrochimica Acta, 2018, 292: 190-198.
[126] AN Y R, FAN X L, WANG S Y, et al. Pmma-XO (X = C, Si, Ge) monolayer as promising anchoring materials for lithium-sulfur battery: a first-principles study[J]. Nanotechnology, 2019, 30: 085405.
[127] HE Q, YU B, LI Z H, et al. Density functional theory for battery materials[J]. Energy & Environmental Materials, 2019, 2: 264-279.
[128] XIONG L X, HU J P, YU S C, et al. Density functional theory prediction of Mgs3N2 as a high-performance anode material for Li-ion batteries[J]. Physical Chemistry Chemical Physics, 2019, 21: 7053-7060.
[129] ZHAO X, ZHAO Y D, LIU Z H, et al. Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors[J]. Chemical Engineering Journal, 2018, 354: 1164-1173.
[130] MENG J S, HE Q, XU L H, et al. Identification of phase control of carbon-confined Nb2O5 nanoparticles toward high-performance lithium storage[J]. Advanced Energy Materials, 2019, 9: 1802695.
[131] LIANG Z, ZHENG G Y, LIU C, et al. Polymer nanofiber-guided uniform lithium deposition for battery electrodes[J]. Nano Letters, 2015, 15: 2910-2916.
[132] CHENG X B, HOU T Z, ZHANG R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Advanced Materials, 2016, 28: 2888-2895.
[133] WANG N, HE J, WANG K, et al. Graphdiyne-based materials: Preparation and application for electrochemical energy storage[J]. Advanced Materials, 2019, 31: 1803202.
[134] LI G, LI Y, LIU H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46: 3256-3258.
[135] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational physics, 1995, 117: 1-19.
[136] MARTINEZ L, ANDRADE R, BIRGIN E G, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations[J]. Journal of Computational Chemistry, 2009, 30: 2157-2164.
[137] KUMAR N, SEMINARIO J M. Lithium-ion model behavior in an ethylene carbonate electrolyte using molecular dynamics[J]. Journal of Physical Chemistry C, 2016, 120: 16322-16332.
[138] AJORI S, BOROUSHAK S H, HASSANI R, et al. A molecular dynamics study on the buckling behavior of x-graphyne based single- and multi-walled nanotubes[J]. Computational Materials Science, 2021, 191: 110333.
[139] MAPLE J R, HWANG M J, STOCKFISCH T P, et al. Derivation of class Ⅱ force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules[J]. Journal of Computational Chemistry, 1994, 15: 162-182.
[140] BLOCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50: 17953-17979.
[141] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54: 11169.
[142] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential[J]. Journal of Chemical Physics, 2003, 118: 8207-8215.
[143]GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. Journal of Chemical Physics, 2010, 132: 154104.
[144] AL-ALLAK H M, CLARK S J. Valence-band offset of the lattice-matched β−FeSi2 (100)/Si (001) heterostructure[J]. Physical Review B, 2001, 63: 033311.
[145] YAN K, LU Z, LEE H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy, 2016, 1: 1-3.
[146] LIU Y D, LIU Q, XIN L, et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction[J]. Nature Energy, 2017, 2: 17083.
[147] CHEN Y M, WANG Z Q, LI X Y, et al. Li metal deposition and stripping in a solid-state battery via Coble creep[J]. Nature, 2020, 578: 251.
[148] WEI P, CHENG Y, YAN X L, et al. Mechanistic probing of encapsulation and confined growth of lithium crystals in carbonaceous nanotubes[J]. Advanced Materials, 2021, 33: 2105228.
[149] YE W B, WANG L N, YIN Y C, et al. Lithium storage in bowl-like carbon: The effect of surface curvature and space geometry on Li metal deposition[J]. ACS Energy Letters, 2021, 6: 2145-2152.
[150] TAN W, WANG L N, LIU K, et al. Bitumen-derived onion-like soft carbon as high-performance potassium-ion battery anode[J]. Small, 2022, 18: 2203494.
[151] WANG H, YU D D, KUANG C W, et al. Alkali metal anodes for rechargeable batteries[J]. Chem, 2019, 5: 313-338.
[152] SWIFT M W, JAGAD H, PARK J, et al. Predicting low-impedance interfaces for solid-state batteries[J]. Current Opinion in Solid State & Materials Science, 2022, 26: 100990.
[153] SHI Q. Molecular dynamics simulation of diffusion and separation of CO2/CH4/N2 on MER zeolites[J]. Journal of Fuel Chemistry and Technology, 2021, 49: 1531-1539.
[154] BABARAO R, JIANG J W. Diffusion and separation of CO2 and CH4 in silicalite, C-168 schwarzite,and IRMOF-1: A comparative study from molecular dynamics simulation[J]. Langmuir, 2008, 24: 5474-5484.
[155] HAN K N, BERNARDI S, WANG L Z, et al. Water diffusion in zeolite membranes: molecular dynamics studies on effects of water loading and thermostat[J]. Journal of Membrane Science, 2015, 495: 322-333.
[156] BERMUDEZ-GARCIA J M, VICENT-LUNA J M, YANEZ-VILAR S, et al. Liquid self-diffusion of H2O and DMF molecules in Co-MOF-74: molecular dynamics simulations and dielectric spectroscopy studies[J]. Physical Chemistry Chemical Physics, 2016, 18: 19605-19612.
[157] BORAH B, ZHANG H, SNURR R Q. Diffusion of methane and other alkanes in metal-organic frameworks for natural gas storage[J]. Chemical Engineering Science, 2015, 124: 135-143.
[158] RANGANATHAN R, ROKKAM S, DESAI T, et al. Modeling high-temperature diffusion of gases in micro and mesoporous amorphous carbon[J]. Journal of Chemical Physics, 2015, 143: 084701.
[159] FREYSOLDT C, NEUGEBAUER J, VAN DE WALLE C G. Fully ab initio finite-size corrections for charged-defect supercell calculations[J]. Physical Review Letters, 2009, 102: 016402.
[160] PARK H, YU S, SIEGEL D J. Predicting charge transfer stability between sulfide solid electrolytes and Li metal anodes[J]. ACS Energy Letters, 2021, 6: 150-157.
[161] THOMPSON T, YU S H, WILLIAMS L, et al. Electrochemical window of the Li-Ion solid electrolyte Li7La3Zr2O12[J]. ACS Energy Letters, 2017, 2: 462-468.
[162] CHEN L H, VENKATRAM S, KIM C, et al. Electrochemical stability window of polymeric electrolytes[J]. Chemistry of Materials, 2019, 31: 4598-4604.
[163] LI J T, WU N Q. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review[J]. Catalysis Science & Technology, 2015, 5: 1360-1384.
[164] DORENBOS P. The electronic structure of lanthanide impurities in TiO2, ZnO, SnO2, and related compounds[J]. ECS Journal of Solid State Science and Technology, 2014, 3: 19-24.
[165] BAERLOCHER C, MCCUSKER L B. Database of Zeolite Structures [Z]. 2001
[166] ZHENG Y, YAO Y Z, OU J H, et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures[J]. Chemical Society Reviews, 2020, 49: 8790-8839.
[167] HE X F, ZHU Y Z, MO Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8: 15893.
[168] BUCKERIDGE J. Equilibrium point defect and charge carrier concentrations in a material determined through calculation of the self-consistent Fermi energy[J]. Computer Physics Communications, 2019, 244: 329-342.
[169] ZHENG J, JU Z, ZHANG B, et al. Lithium ion diffusion mechanism on the inorganic components of the solid–electrolyte interphase[J]. Journal of Materials Chemistry A, 2021, 9: 10251-10259.
修改评论