中文版 | English
题名

无序蛋白对拥挤环境的敏感度研究

其他题名
SENSITIVITY OF INTRINSICALLY DISORDERED PROTEINS TO CROWDED ENVIRONMENTS
姓名
姓名拼音
LI Qiang
学号
12132754
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
钟龙华
导师单位
化学系
外机构导师
黄恺
外机构导师单位
深圳湾实验室
论文答辩日期
2023-05-24
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

在细胞内,无序蛋白处于相对拥挤的环境中,因此探究无序蛋白在拥挤环境下的敏感性具有重要意义。

本文通过分子动力学模拟手段研究了IDR1 无序蛋白在拥挤环境中的构象变化,通过PEG 分子模拟拥挤环境,探究不同浓度和链长PEG 分子所造成的拥挤条件下IDR1 蛋白构象的变化。模拟结果表明环境拥挤程度对无序蛋白端到端距离和结构具有显著影响,在单体水平上证明了无序蛋白对拥挤环境的敏感性,并且模拟采用PEG 链长越长,无序蛋白结构和端到端距离收缩更明显。在不同环境拥挤程度对Part-IDR1 体系进行模拟分析,结果表明无序区域对IDR1 响应拥挤环境十分重要,并揭示了IDR1 蛋白无序结构域与有序结构域之间的相互调节机制,无序结构域使得IDR1 两个𝛼-螺旋更加开放的结构去响应拥挤环境,表现为有序结构域逐渐收缩。

总之,本论文为深入理解无序蛋白在拥挤环境下蛋白质各结构域之间相互调节进而响应外界环境等方面提供了新的思路。同时,研究结果也强调了无序区域在无序蛋白中的重要性,为未来相关领域的研究提供了参考。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1]WRIGHT P E, DYSON H J. Intrinsically disordered proteins in cellular signalling and regulation[J]. Nature Reviews Molecular Cell Biology, 2015, 16(1): 18-29.
[2] SORANNO A, KOENIG I, BORGIA M B, et al. Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(13): 4874-4879.
[3] KONIG I, SORANNO A, NETTELS D, et al. Impact of in-cell and in-vitro crowding on the conformations and dynamics of an intrinsically disordered protein[J].Angewandte Chemie International Edition in English, 2021, 60(19): 10724-10729.
[4] CINO E A, KARTTUNEN M, CHOY W Y. Effects of molecular crowding on the dynamics of intrinsically disordered proteins[J]. Public Library of Science, 2012,7(11): e49876.
[5] SASAHARA K, MCPHIE P, MINTON A P. Effect of dextran on protein stability and conformation attributed to macromolecular crowding[J]. Journal of Molecular Biology, 2003, 326(4): 1227-1237.
[6] DHAR A, SAMIOTAKIS A, EBBINGHAUS S, et al. Structure, function, and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding[J].Proceedings of the National Academy of Sciences of the United States of America,2010, 107(41): 17586-17591.
[7] STAGG L, ZHANG S-Q, CHEUNG M S, et al. Molecular crowding enhances native structure and stability of α/β protein flavodoxin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(48): 18976-18981.
[8] MCGUFFEE S R, ELCOCK A H. Diffusion, crowding & protein stability in a dynamicmolecular model of the bacterial cytoplasm[J]. Public Library of Science Computational Biology, 2010, 6(3): e1000694.
[9] YAQIANG W, CONGGANG L, J P G. Effects of proteins on protein diffusion[J].Journal of Chemical Physics, 2010, 132(27): 9392-9397.
[10] LEDUC C, PADBERG-GEHLE K, VARGA V, et al. Molecular crowding creates traffic jams of kinesin motors on microtubules[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6100-6105.
[11] ZHOU Z, YAN X, PAN K, et al. Fibril formation of the rabbit/human/bovine prion proteins[J]. Biophysical Journal, 2011, 101(6): 1483-1492.
[12] JOHANSEN D, JEFFRIES C M, HAMMOUDA B, et al. Effects of macromolecular crowding on an intrinsically disordered protein characterized by small-angle neutron scattering with contrast matching[J]. Biophysical Journal, 2011, 100(4): 1120-1128.
[13] FONIN A V, DARLING A L, KUZNETSOVA I M, et al. Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo[J]. Cellular and Molecular Life Sciences, 2018, 75(21): 3907-3929.
[14] MAXIMOVA K, WOJTCZAK J, TRYLSKA J. Enzyme kinetics in crowded solutions from isothermal titration calorimetry[J]. Analytical Biochemistry, 2019, 567: 96-105.
[15] FEIG M, YU I, WANG P H, et al. Crowding in cellular environments at an atomistic level from computer simulations[J]. Journal of Physical Chemistry B, 2017, 121(34):8009-8025.
[16] CHEN A, ZHAO N. Comparative study of the crowding-induced collapse effect in hard-sphere, flexible polymer and rod-like polymer systems[J]. Physical Chemistry Chemical Physics, 2019, 21(23): 12335-12345.
[17] ZEGARRA F C, HOMOUZ D, GASIC A G, et al. Crowding-Induced Elongated Conformation of Urea-Unfolded Apoazurin: Investigating the Role of Crowder Shape in Silico[J]. Journal of Chemical Physics, 2019, 123(17): 3607-3617.
[18] WANG X, BOWMAN J, TU S, et al. Polyethylene Glycol Crowder's Effect on Enzyme Aggregation, Thermal Stability, and Residual Catalytic Activity[J]. Langmuir, 2021,37(28): 8474-8485.
[19] QIN S, ZHOU H X. Atomistic modeling of macromolecular crowding predicts modest increases in protein folding and binding stability[J]. Journal of Chemical Physics, 2009, 97(1): 12-19.
[20] QIN S, ZHOU H X. Effects of macromolecular crowding on the conformational ensembles of disordered proteins[J]. Journal of Chemical Physics, 2013, 4(20):3429-3434.
[21] 白佳. 不同环境下α-突触核蛋白系综结构的核磁共振研究 [D]. 武汉: 中国科学院物理与数学研究所, 2016.
[22] VLACHAKIS D, BENCUROVA E, PAPANGELOPOULOS N, et al. Current state-ofthe-art molecular dynamics methods and applications[J]. Advances in Protein Chemistry and Structural Biology, 2014, 94: 269-313.
[23] STERNBERG U, WITTER R. Molecular dynamics simulations on PGLa using NMR orientational constraints[J]. Journal of Biomolecular NMR, 2015, 63(3): 265-274.
[24] MARTIN K. Molecular dynamics simulations of biomolecules[J]. Accounts of chemical research, 2002, 35(6): 321-323.
[25] MULHOLLAND A J. Introduction biomolecular simulation[J]. Journal of the Royal Society Interface, 2008, 5: 169-172.
[26] VAN DER KAMP M W, SHAW K E, WOODS C J, et al. Biomolecular simulation and modelling: status, progress and prospects[J]. Journal of the Royal Society Interface,2008, 5: 173-190.
[27] M K, J K. Molecular dynamics and protein function[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(19): 6679-6685.
[28] Lü S, LONG M. Molecular dynamics simulation and molecular biomechanics[J]. Acta Biophysica Sinica, 2012, 28(1): 6-14.
[29] VERLET L. Computer "Experiments" on classical fluids. ii. equilibrium correlation functions[J]. Physical Review, 1968, 165(1): 201-214.
[30] DUAN Y, KOLLMAN P A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution[J]. Science, 1998, 282(5389): 740-744.
[31] FRENKEL D, SMIT B, RATNER M A. Understanding molecular simulation: from algorithms to applications[J]. Physics Today, 2008, 50(7).
[32] GALINDO-MURILLO R, ROE D R, CHEATHAM T E. Convergence and repro ducibility in molecular dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC)[J]. BBA - General Subjects, 2015, 1850(5): 1041-1058.
[33] SHAW D E, MARAGAKIS P, LINDORFF-LARSEN K, et al. Atomic-Level characterization of the structural dynamics of proteins[J]. Science, 2010, 330(6002): 341-346.
[34] SHAW D E, DROR R O, SALMON J K, et al. Millisecond-scale molecular dynamics simulations on anton[J]. High Performance Computing Networking, Storage and Analysis, 2009: 341-346.
[35] RAVAL A, PIANA S, EASTWOOD M P, et al. Refinement of protein structure homology models via long, all-atom molecular dynamics simulations[J]. Proteins,2012, 80(8): 2071-2079.
[36] V L, J-M T, B R. Classical force field for hydrofluorocarbon molecular simulations application to the study of gas solubility in poly(vinylidene fluoride)[J]. Journal of Chemical Physics, 2015, 119(1): 140-151.
[37] HARDT S. Free-molecule heat transfer in a conservative force field between parallel surfaces[J]. Physical Review E, 2016, 93(5): 052139.
[38] BORN M, OPPENHEIMER R. Zur quantentheorie der molekeln[J]. Annalen der Physik, 1927, 389(20): 216-217.
[39] DICKSON C J, MADEJ B D, SKJEVIK A A, et al. Lipid14: The Amber lipid force field[J]. Journal of Chemical Physics, 2014, 10(2): 865-879.
[40] RODRIGO G-M, C R J, MARIE Z, et al. Assessing the current state of Amber force field modifications for DNA[J]. Journal of Chemical Physics, 2016, 12(8): 4114-4127.
[41] LIU H, TAN Q, HAN L, et al. Observations on AMBER Force Field Performance under the Conditions of Low pH and High Salt Concentrations[J]. Journal of Chemical Physics, 2017, 121(42): 9838-9847.
[42] BATISTA M L, PEREZ-SANCHEZ G, GOMES J R, et al. Evaluation of the GROMOS56ACARBO force field for the calculation of structural, Volumetric, and dynamic properties of aqueous glucose systems[J]. Journal of Chemical Physics, 2015, 119(49):15310-15319.
[43] HORTA B A, MERZ P T, FUCHS P F, et al. A GROMOS-Compatible force field for small organic molecules in the condensed phase[J]. Journal of Chemical Physics, 2016,12(8): 3825-3850.
[44] RAMOS SASSELLI I, ULIJN R V, TUTTLE T. CHARMM force field paramet erization protocol for self-assembling peptide amphiphiles: the Fmoc moiety[J].Journal of Chemical Physics, 2016, 18(6): 4659-4667.
[45] ADAM S, KNAPP-MOHAMMADY M, YI J, et al. Revised CHARMM force field parameters for iron-containing cofactors of photosystem II[J]. Journal of Chemical Physics, 2018, 39(1): 7-20.
[46] MACIEJEWSKI A, PASENKIEWICZ-GIERULA M, CRAMARIUC O, et al. Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration[J]. Journal of Chemical Physics, 118(17): 4571-4581.
[47] SMITH M D, RAO J S, SEGELKEN E, et al. Force-Field induced bias in the structure of Abeta21-30: A comparison of OPLS, AMBER, CHARMM, and GROMOS force fields[J]. Journal of Chemical Information and Modeling, 2015, 55(12): 2587-2595.
[48] WANG B, ZHANG H, HUAI J, et al. Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis[J]. Nature Chemical Biology, 2022, 18(12): 1361-1369.

所在学位评定分委会
化学
国内图书分类号
Q71
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544522
专题理学院_化学系
推荐引用方式
GB/T 7714
李强. 无序蛋白对拥挤环境的敏感度研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132754-李强-化学系.pdf(15654KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李强]的文章
百度学术
百度学术中相似的文章
[李强]的文章
必应学术
必应学术中相似的文章
[李强]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。