[1] Ouzounis C A, Valencia A. Early bioinformatics: the birth of a discipline—a personal view[J]. Bioinformatics, 2003, 19(17): 2176-2190.
[2] Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors[J]. Proc Natl Acad Sci U S A, 1977, 74(12): 5463-5467.
[3] Behjati S, Tarpey P S. What is next generation sequencing? [J]. Arch Dis Child Educ Pract Ed, 2013, 98(6): 236-238.
[4] Niedringhaus T P, Milanova D, Kerby M B, Snyder M P, Barron A E. Landscape of next-generation sequencing technologies[J]. Anal Chem, 2011, 83(12): 4327-4341.
[5] Wang Y, Zhao Y, Bollas A, et al. Nanopore sequencing technology, bioinformatics and applications[J]. Nat Biotechnol, 2021, 39: 1348-1365.
[6] Loose M, Malla S, Stout M. Real-time selective sequencing using nanopore technology[J]. Nat Methods, 2016, 13: 751-754.
[7] Martin S, Heavens D, Lan Y, et al. Nanopore adaptive sampling: a tool for enrichment of low abundance species in metagenomic samples[J]. Genome Biol, 2022, 23: 11.
[8] Gnirke A, Melnikov A, Maguire J, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing[J]. Nat Biotechnol, 2009, 27(2): 182-189.
[9] Kozarewa I, Armisen J, Gardner A F, et al. Overview of Target Enrichment Strategies[J]. Curr Protoc Mol Biol, 2015, 112: 7.21.1-7.21.23.
[10] Rand A C, Jain M, Eizenga J M, Musselman-Brown A, et al. Mapping dna methylation with high-throughput nanopore sequencing[J]. Nat Methods, 2017, 14(4): 411-413.
[11] Simpson J T, Workman R E, Zuzarte P C, et al. Detecting dna cytosine methylation using nanopore sequencing[J]. Nat Methods, 2017, 14(4): 407-410.
[12] Charalampous T, Kay G L, Richardson H, et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection[J]. Nat Biotechnol, 2019, 37(7): 783-792.
[13] Gilpatrick T, Lee I, Graham J E, et al. Targeted nanopore sequencing with cas9 for studies of methylation, structural variants, and mutations[J]. bioRxiv, 2019: 604173.
[14] Gu W, Crawford E D, O'Donovan B D, et al. Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications[J]. Genome Biol, 2016, 17(1): 41.
[15] Lin B, Hui J, Mao H. Nanopore Technology and Its Applications in Gene Sequencing[J]. Biosensors, 2021, 11(7): 214.
[16] Charalampous T, Kay G L, Richardson H, et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection[J]. Nat Biotechnol, 2019, 37: 783-792.
[17] Marotz C A, Sanders J G, Zuniga C, et al. Improving saliva shotgun metagenomics by chemical host DNA depletion[J]. Microbiome, 2018, 6: 42.
[18] Liu S. DNA barcoding and emerging reference construction and data analysis technologies[J]. Biodiversity Science, 2019, 27: 526-533.
[19] Kovaka S, Fan Y, Ni B, et al. Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED[J]. Nat Biotechnol, 2021, 39: 431-441.
[20] Ferragina P, Manzini G. Opportunistic data structures with applications[C]. Proceedings 41st Annual Symposium on Foundations of Computer Science, 2000: 390-398.
[21] Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2010, 26: 589-595.
[22] Zhang H, Li H, Jain C, et al. Real-time mapping of nanopore raw signals[J]. Bioinformatics, 2021, 37: 477-483.
[23] Chaisson M J, Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory[J]. BMC Bioinf, 2012, 13: 238.
[24] Sedlazeck F J, Rescheneder P, Smolka M, et al. Accurate detection of complex structural variations using single-molecule sequencing[J]. Nat Methods, 2018, 15: 461-468.
[25] Li H. Minimap2: pairwise alignment for nucleotide sequences[J]. Bioinformatics, 2018, 34: 3094-3100.
[26] Wick R R, Judd L M, Holt K E. Deepbinner: Demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks[J]. PLoS Comput Biol, 2018, 14: e1006583.
[27] Doroschak K, Zhang K, Queen M, et al. Rapid and robust assembly and decoding of molecular tags with DNA-based nanopore signatures[J]. Nat Commun, 2020, 11: 5454.
[28] Irinyi L, Lackner M, de Hoog G S, Meyer W. DNA barcoding of fungi causing infections in humans and animals[J]. Fungal Biol, 2015, 120(2): 125-136.
[29] Bao Y, Wadden J, Erb-Downward J R, et al. SquiggleNet: real-time, direct classification of nanopore signals[J]. Genome Biol, 2021, 22: 298.
[30] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 770-778.
[31] Rang F J, Kloosterman W P, de Ridder J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy[J]. Genome Biol, 2018, 19: 90.
[32] Payne A, Holmes N, Clarke T, et al. Readfish enables targeted nanopore sequencing of gigabase-sized genomes[J]. Nat Biotechnol, 2021, 39(4): 442-450.
[33] Payne A, Munro R, Holmes N, et al. Barcode aware adaptive sampling for Oxford Nanopore sequencers[J]. BioRxiv [Preprint], 2022. [cited 2023 March 03]. Available from: doi.org/10.1101/2021.12.01.470722
[34] Ulrich J-U, Lutfi A, Rutzen K, Renard B Y. ReadBouncer: precise and scalable adaptive sampling for nanopore sequencing[J]. Bioinformatics, 2022, 38(Supplement_1): i153–i160.
[35] Dadi T H, et al. Dream-yara: an exact read mapper for very large databases with short update time[J]. Bioinformatics, 2018, 34: i766–i772.
[36] Piro V C, et al. ganon: precise metagenomics classification against large and up-to-date sets of reference sequences[J]. Bioinformatics, 2020, 36: i12–i20.
[37] Bloom B H. Space/time trade-offs in hash coding with allowable errors[J]. Communications of the ACM, 1970, 13(7): 422-426.
[38] Bhattacharyya A. On a Measure of Divergence between Two Multinomial Populations[J]. Sankhyā: The Indian Journal of Statistics, 1946, 7(4): 401-406.
[39] Wick R R, Judd L M, Holt K E. Performance of neural network basecalling tools for Oxford Nanopore sequencing[J]. Genome Biol, 2019, 20: 129.
[40] Gong L, et al. Picky comprehensively detects high-resolution structural variants in nanopore long reads[J]. Nat Methods, 2018, 15: 455-460.
[41] Brickwedde A, Brouwers N, Broek M, et al. Structural, physiological and regulatory analysis of maltose transporter genes in Saccharomyces eubayanus CBS 12357T[J]. Front Microbiol, 2018, 9: 1786.
[42] Zeng J, Cai H, Peng H, et al. Causalcall: nanopore basecalling using a temporal convolutional network[J]. Front Genet, 2020, 10: 1332.
[43] Helmersen K, Aamot H V. DNA extraction of microbial DNA directly from infected tissue: an optimized protocol for use in nanopore sequencing[J]. Sci Rep, 2020, 10: 2985.
[44] Radford A, Kim J W, Xu T, et al. Robust Speech Recognition via Large-Scale Weak Supervision[J]. arXiv [Preprint], 2022. [cited 2023 March 03]. Available from: doi.org/10.48550/arXiv.2212.04356.
[45] Schuster M, Paliwal K K. Bidirectional recurrent neural networks[J]. IEEE Trans Signal Process, 1997, 45(11): 2673-2681.
[46] Vaswani A, Shazeer N, Parmar N, et al. Attention is All you Need[C]. Proceedings of Advances in Neural Information Processing Systems 30 (NIPS 2017), vol. 30, 2017.
[47] Cooley J W, Tukey J W. An Algorithm for the Machine Calculation of Complex Fourier Series[J]. Math Comput, 1965, 19(90): 297-301.
[48] 赵新佳. 纳米孔中纳米结构动力学及DNA测序信息分析[D]. 中国科学院大学(中国科学院物理研究所), 2020.
[49] Robert M, Hayes W, Hunt B R, et al. Reducing storage requirements for biological sequence comparison[J]. Bioinformatics, 2004, 20(18): 3363-3369.
[50] Shelhamer E, Long J, Darrell T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Trans Pattern Anal Mach Intell., 2014, 39: 640-651.
[51] Kim Y. Convolutional Neural Networks for Sentence Classification[C]. Proceedings of Conference on Empirical Methods in Natural Language Processing, 2014.
[52] Aghdam H, Heravi E. Guide to convolutional neural networks: a practical application to traffic-sign detection and classification[M]. Springer International Publishing, 2017, pp. 85-90.
[53] Lee C, Gallagher P, Tu Z. Generalizing Pooling Functions in CNNs: Mixed, Gated, and Tree[J]. IEEE Trans Pattern Anal Mach Intell., 2018, 40(4): 863-875.
[54] Ciresan D, Meier U, Masci J, et al. Flexible, High Performance Convolutional Neural Networks for Image Classification[C]. Proceedings of the 22nd International Joint Conference on Artificial Intelligence, 2011, pp. 1237–1242.
[55] Elman J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211.
[56] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Comput, 1997, 9(8): 1735-1780.
[57] Ba J L, Kiros J R, Hinton G E. Layer normalization[J]. arXiv [Preprint], 2016. [cited 2023 March 03]. Available from: doi.org/10.48550/arXiv.1607.06450
[58] Ewing B, Hillier L, Wendl M C, et al. Base-calling of automated sequencer traces using phred. I. Accuracy assessment[J]. Genome Res, 1998, 8(3): 175-185.
[59] Leger et al. pycoQC, interactive quality control for Oxford Nanopore Sequencing[J]. Int. J. Open Source Softw Process., 2019, 4(34): 1236.
[60] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[J]. arXiv [Preprint], 2020. [cited 2023 March 03]. Available from: doi.org/10.48550/arXiv.2010.11929
[61] Diederik K, Jimmy B. Adam: A Method for Stochastic Optimization[C]. Proceedings of International Conference for Learning Representations (ICLR), 2015.
修改评论