[1] YANG M H, KRIEGMAN D, AHUJA N. Detecting faces in images: a survey[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58. DOI: 10.1109/34.982883.
[2] YANG G, HUANG T S. Human face detection in a complex background[J/OL]. Pattern Recognition, 1994, 27(1): 53-63. DOI: 10.1016/0031-3203(94)90017-5.
[3] LEUNG T, BURL M, PERONA P. Finding faces in cluttered scenes using random labeled graph matching[C/OL]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 1995: 637-644. DOI: 10.1109/iccv.1995.466878.
[4] YOW K C, CIPOLLA R. Feature-based human face detection[J/OL]. Image and Vision Computing, 1997, 15(9): 713-735. DOI: 10.1016/S0262-8856(97)00003-6.
[5] MCKENNA S J, GONG S, RAJA Y. Modelling facial colour and identity with gaussian mixtures[J/OL]. Pattern Recognition, 1998, 31(12): 1883-1892. DOI: 10.1016/S0031-3203(98)00066-1.
[6] KJELDSEN R, KENDER J. Finding skin in color images[C/OL]//Proceedings of the Second International Conference on Automatic Face and Gesture Recognition. 1996: 312-317. DOI:10.1109/AFGR.1996.557283.
[7] CRAW I, TOCK D, BENNETT A. Finding face features[C/OL]//Computer Vision —ECCV’92. Springer Berlin Heidelberg, 1992: 92-96. DOI: 10.1007/3-540-55426-2_12.
[8] LANITIS A, TAYLOR C, COOTES T. Automatic face identification system using flexibleappearance models[J/OL]. Image and Vision Computing, 1995, 13(5): 393-401. DOI: 10.1016/0262-8856(95)99726-H.
[9] TURK M, PENTLAND A. Eigenfaces for recognition[J/OL]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86. DOI: 10.1162/jocn.1991.3.1.71.
[10] SUNG K K, POGGIO T. Example-based learning for view-based human face detection[J/OL]. IEEE Transactions on pattern analysis and machine intelligence, 1998, 20(1): 39-51. DOI:10.1109/34.655648.
[11] ROWLEY H, BALUJA S, KANADE T. Neural network-based face detection[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(1): 23-38. DOI: 10.1109/34.655647.
[12] OSUNA E, FREUND R, GIROSIT F. Training support vector machines: an application to face detection[C/OL]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1997: 130-136. DOI: 10.1109/cvpr.1997.609310.
[13] VIOLA P A, JONES M J. Rapid object detection using a boosted cascade of simple features[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2001: 511-518. DOI: 10.1109/cvpr.2001.990517.
[14] CROW F C. Summed-area tables for texture mapping[J/OL]. SIGGRAPH Comput. Graph.,1984, 18(3): 207–212. DOI: 10.1145/964965.808600.
[15] FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J/OL]. Journal of Computer and System Sciences, 1997, 55(1): 119-139. DOI: 10.1006/jcss.1997.1504.
[16] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. DOI: 10.1109/TPAMI.2009.167.
[17] FELZENSZWALB P F, HUTTENLOCHER D P. Pictorial structures for object recognition[J/OL]. International journal of computer vision, 2005, 61: 55-79. DOI: 10.1023/B:VISI.0000042934.15159.49.
[18] FENG Y, YU S, PENG H, et al. Detect faces efficiently: a survey and evaluations[J/OL]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2022, 4(1): 1-18. DOI: 10.1109/TBIOM.2021.3120412.
[19] REN S, HE K, GIRSHICK R B, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
[20] LI H, LIN Z, SHEN X, et al. A convolutional neural network cascade for face detection[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2015: 5325-5334. DOI: 10.1109/cvpr.2015.7299170.
[21] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J/OL]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503. DOI:10.1109/LSP.2016.2603342.
[22] WANG H, LI Z, JI X, et al. Face r-cnn[M/OL]. arXiv, 2017. DOI: 10.48550/arXiv.1706.01061.
[23] HU P, RAMANAN D. Finding tiny faces[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2017: 951-959. DOI: 10.1109/cvpr.2017.166.
[24] NAJIBI M, SAMANGOUEI P, CHELLAPPA R, et al. Ssh: single stage headless face detector[C/OL]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2017:4875-4884. DOI: 10.1109/iccv.2017.522.
[25] ZHANG S, ZHU X, LEI Z, et al. S3fd: single shot scale-invariant face detector[C/OL]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 192-201. DOI:10.1109/iccv.2017.30.
[26] TANG X, DU D K, HE Z, et al. Pyramidbox: a context-assisted single shot face detector[C/OL]//Proceedings of the European Conference on Computer Vision. 2018: 797-813. DOI:10.1007/978-3-030-01240-3_49.
[27] LI J, WANG Y, WANG C, et al. Dsfd: dual shot face detector[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 5060-5069. DOI:10.1109/cvpr.2019.00520.
[28] DENG J, GUO J, VERVERAS E, et al. Retinaface: single-shot multi-level face localisation in the wild[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020. DOI: 10.1109/cvpr42600.2020.00525.
[29] LIU Y, TANG X, HAN J, et al. Hambox: delving into mining high-quality anchors on face detection[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020: 13043-13051. DOI: 10.1109/cvpr42600.2020.01306.
[30] LIU Y, TANG X. Bfbox: searching face-appropriate backbone and feature pyramid network for face detector[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 13568-13577. DOI: 10.1109/cvpr42600.2020.01358.
[31] LI J, ZHANG B, WANG Y, et al. Asfd: automatic and scalable face detector[C/OL]//Proceedings of the ACM International Conference on Multimedia. Association for Computing Machinery, 2021: 2139–2147. DOI: 10.1145/3474085.3475372.
[32] ZHANG S, ZHU X, LEI Z, et al. Faceboxes: a cpu real-time face detector with high accuracy[C/OL]//2017 IEEE International Joint Conference on Biometrics (IJCB). 2017: 1-9. DOI:10.1109/BTAS.2017.8272675.
[33] HE Y, XU D, WU L, et al. LFFD: a light and fast face detector for edge devices[M/OL]. arXiv,2019. DOI: 10.48550/arXiv.1904.10633.
[34] QI D, TAN W, YAO Q, et al. Yolo5face: why reinventing a face detector[C]//Proceedings of the European Conference on Computer Vision, Workshops. Springer Nature Switzerland, 2023:228-244.
[35] JOCHER G. Yolov5[J/OL]. GitHub repository, 2020. https://github.com/ultralytics/yolov5.
[36] GUO J, DENG J, LATTAS A, et al. Sample and computation redistribution for efficient face detection[C]//International Conference on Learning Representations. OpenReview.net, 2022.
[37] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J/OL]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. DOI: 10.1109/5.726791.
[38] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. 2012: 1106-1114.
[39] DENG J, DONG W, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2009: 248-255. DOI: 10.1109/cvpr.2009.5206848.
[40] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[M/OL]. arXiv, 2014. DOI: 10.48550/arXiv.1409.1556.
[41] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2016.DOI: 10.1109/cvpr.2016.90.
[42] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[M/OL]. arXiv, 2017. DOI: 10.48550/arXiv.1704.04861.
[43] SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 4510-4520. DOI: 10.1109/cvpr.2018.00474.
[44] HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3[C/OL]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 1314-1324. DOI:10.1109/iccv.2019.00140.
[45] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2017:1251-1258. DOI: 10.1109/cvpr.2017.195.
[46] XU B, WANG N, CHEN T, et al. Empirical evaluation of rectified activations in convolutional network[M/OL]. arXiv, 2015. DOI: 10.48550/arXiv.1505.00853.
[47] JARRETT K, KAVUKCUOGLU K, RANZATO M, et al. What is the best multi-stage architecture for object recognition?[C/OL]//2009 IEEE 12th International Conference on Computer Vision. 2009: 2146-2153. DOI: 10.1109/iccv.2009.5459469.
[48] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the International Conference on International Conference on Machine Learning. Omnipress, 2010: 807–814.
[49] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the International Conference on Machine Learning: volume 37. JMLR.org, 2015: 448-456.
[50] GIRSHICK R B. Fast R-CNN[C/OL]//Proceedings of the IEEE International Conference on Computer Vision. IEEE Computer Society, 2015: 1440-1448. DOI: 10.1109/iccv.2015.169.
[51] YU J, JIANG Y, WANG Z, et al. Unitbox: an advanced object detection network[C/OL]//Proceedings of the ACM International Conference on Multimedia. Association for Computing Machinery, 2016: 516–520. DOI: 10.1145/2964284.2967274.
[52] PENG H, YU S. A systematic iou-related method: beyond simplified regression for better localization[J/OL]. IEEE Transactions on Image Processing, 2021, 30: 5032-5044. DOI: 10.1109/TIP.2021.3077144.
[53] JAIN V, LEARNED-MILLER E. Fddb: a benchmark for face detection in unconstrained settings: UM-CS-2010-009[R]. University of Massachusetts, Amherst, 2010.
[54] YANG S, LUO P, LOY C C, et al. WIDER FACE: A face detection benchmark[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2016: 5525-5533. DOI: 10.1109/cvpr.2016.596.
[55] LIU Y, WANG F, DENG J, et al. Mogface: towards a deeper appreciation on face detection[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 4093-4102. DOI: 10.1109/cvpr52688.2022.00406.
[56] ZHU Y, CAI H, ZHANG S, et al. Tinaface: Strong but simple baseline for face detection[M/OL]. arXiv, 2020. DOI: 10.48550/arXiv.2011.13183.
[57] ZHU C, ZHENG Y, LUU K, et al. Cms-rcnn: contextual multi-scale region-based cnn for unconstrained face detection[J/OL]. Deep learning for biometrics, 2017: 57-79. DOI: 10.1007/978-3-319-61657-5_3.
[58] WANG Y, JI X, ZHOU Z, et al. Detecting faces using region-based fully convolutional networks[M/OL]. arXiv, 2017. DOI: 10.48550/arXiv.1709.05256.
[59] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2017. DOI: 10.1109/cvpr.2017.106.
[60] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:8759-8768. DOI: 10.1109/cvpr.2018.00913.
[61] GHIASI G, LIN T Y, LE Q V. Nas-fpn: learning scalable feature pyramid architecture for object detection[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 7036-7045. DOI: 10.1109/cvpr.2019.00720.
[62] GE Z, LIU S, WANG F, et al. Yolox: exceeding yolo series in 2021[M/OL]. arXiv, 2021. DOI:10.48550/arXiv.2107.08430.
[63] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C/OL]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019:9627-9636. DOI: 10.1109/iccv.2019.00972.
[64] ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-Free detection via adaptive training sample selection[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Computer Vision Foundation / IEEE, 2020:9756-9765. DOI: 10.1109/cvpr42600.2020.00978.
[65] MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: practical guidelines for efficient cnn architecture design[C/OL]//Proceedings of the European Conference on Computer Vision. Springer, 2018. DOI: 10.1007/978-3-030-01264-9_8.
[66] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. Squeezenet: alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size[M/OL]. arXiv, 2016. DOI: 10.48550/arXiv.1602.07360.
[67] REDMON J, FARHADI A. Yolov3: an incremental improvement[M/OL]. arXiv, 2018. DOI:10.48550/arXiv.1804.02767.
[68] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C/OL]//Proceedings of the European Conference on Computer Vision. Springer, 2016: 21-37. DOI:10.1007/978-3-319-46448-0_2.
[69] ZHOU X, WANG D, KRäHENBüHL P. Objects as points[M/OL]. arXiv, 2019. DOI: 10.48550/arXiv.1904.07850.
[70] LAW H, DENG J. Cornernet: detecting objects as paired keypoints[C/OL]//Proceedings of the European Conference on Computer Vision. 2018. DOI: 10.1007/978-3-030-01264-9_45.
[71] SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2016. DOI: 10.1109/cvpr.2016.89.
[72] GE Z, LIU S, LI Z, et al. Ota: optimal transport assignment for object detection[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Computer Vision Foundation / IEEE, 2021: 303-312. DOI: 10.1109/cvpr46437.2021.00037.
[73] ZHANG X, WAN F, LIU C, et al. Freeanchor: learning to match anchors for visual object detection[C]//Advances in Neural Information Processing Systems. 2019: 147-155.
[74] CUBUK E D, ZOPH B, MANE D, et al. Autoaugment: learning augmentation strategies from data[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. DOI: 10.1109/CVPR.2019.00020.
[75] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[M/OL]. arXiv, 2020. DOI: 10.48550/arXiv.2004.10934.
[76] CHEN K, WANG J, PANG J, et al. MMDetection: open mmlab detection toolbox and benchmark[M/OL]. arXiv, 2019. DOI: 10.48550/arXiv.1906.07155.
[77] BAZAREVSKY V, KARTYNNIK Y, VAKUNOV A, et al. Blazeface: sub-millisecond neural face detection on mobile gpus[M/OL]. arXiv, 2019. DOI: 10.48550/arXiv.1907.05047.
[78] YU S, WU W, FENG Y. Libfacedetection[J/OL]. GitHub repository, 2020. https://github.com/ShiqiYu/libfacedetection,https://github.com/ShiqiYu/libfacedetection.train.
[79] ZHANG X. Openblas[J/OL]. GitHub repository, 2012. https://github.com/xianyi/OpenBLAS.
[80] CHETLUR S, WOOLLEY C, VANDERMERSCH P, et al. Cudnn: efficient primitives for deep learning[M/OL]. arXiv, 2014. DOI: 10.48550/arXiv.1410.0759.
[81] GOTO K, GEIJN R A V D. Anatomy of high-performance matrix multiplication[J/OL]. ACM Transactions on Mathematical Software, 2008, 34(3). DOI: 10.1145/1356052.1356053.
修改评论