[1] ZHANG X Q, HU Y, XIAO Z J, et al. Machine learning for cataract classification/grading on ophthalmic imaging modalities: a survey[J]. Machine Intelligence Research, 2022, 19(3): 184-208.
[2] ZHANG X, XIAO Z, HIGASHITA R, et al. Adaptive feature squeeze network for nuclear cataract classification in AS-OCT image[J]. Journal of Biomedical Informatics, 2022, 128: 104037.
[3] BERNARDES R, SERRANHO P, LOBO C. Digital ocular fundus imaging: a review[J]. Ophthalmologica, 2011, 226(4): 161-181.
[4] SENGUPTA S, SINGH A, LEOPOLD H A, et al. Ophthalmic diagnosis using deep learning with fundus images–a critical review[J]. Artificial Intelligence in Medicine, 2020, 102: 101758.
[5] WANG S, JIN K, LU H, et al. Human visual system-based fundus image quality assessment of portable fundus camera photographs[J]. IEEE Transactions on Medical Imaging, 2015, 35(4): 1046-1055.
[6] LI T, BO W, HU C, et al. Applications of deep learning in fundus images: a review[J]. Medical Image Analysis, 2021: 101971.
[7] ZAGO G T, ANDREAO R V, DORIZZI B, et al. Retinal image quality assessment using deep learning[J]. Computers in Biology and Medicine, 2018, 103: 64-70.
[8] 赵连凯. 中老年白内障合并眼底病临床分析[J]. 当代医学, 2015, 21(19): 72-73.
[9] 赵家良. 我国眼健康事业的回顾与展望[J]. 中华眼科杂志, 2018, 54(8): 561-564.
[10] SHEN Z, FU H, SHEN J, et al. Modeling and enhancing low-quality retinal fundus images[J]. IEEE Transactions on Medical Imaging, 2020, 40(3): 996-1006.
[11] RAJ A, SHAH N A, TIWARI A K, et al. Multivariate regression-based convolutional neural network model for fundus image quality assessment[J]. IEEE Access, 2020, 8: 57810-57821.
[12] MUDDAMSETTY S M, MOESLUND T B. Multi-level quality assessment of retinal fundus images using deep convolution neural networks[C]//16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Application 2021. SCITEPRESS Digital Library, 2021: 661-668.
[13] XU Z, ZOU B, LIU Q. A deep retinal image quality assessment network with salient structure priors[J]. Multimedia Tools and Applications, 2023: 1-24.
[14] FU H, WANG B, SHEN J, et al. Evaluation of retinal image quality assessment networks in different color-spaces[C]//International Conference on Medical Image Computing and Computer Assisted Intervention. Springer, 2019: 48-56.
[15] PRATAP T, KOKIL P. Computer-aided diagnosis of cataract using deep transfer learning[J]. Biomedical Signal Processing and Control, 2019, 53: 101533.
[16] ZHANG S, WEBERS C A, BERENDSCHOT T T. Luminosity rectified blind Richardson Lucy deconvolution for single retinal image restoration[J]. Computer Methods and Programs in Biomedicine, 2023, 229: 107297.
[17] SAHU S, SINGH A K, GHRERA S, et al. An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE[J]. Optics & Laser Technology, 2019, 110: 87-98.
[18] XIONG L, LI H, XU L. An enhancement method for color retinal images based on image formation model[J]. Computer Methods and Programs in Biomedicine, 2017, 143: 137-150.
[19] CAO L, LI H, ZHANG Y. Retinal image enhancement using low-pass filtering and 𝛼-rooting[J]. Signal Processing, 2020, 170: 107445.
[20] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 1125-1134.
[21] LI C, FU H, CONG R, et al. Nui-go: Recursive non-local encoder-decoder network for retinal image non-uniform illumination removal[C]//Proceedings of the 28th ACM International Conference on Multimedia. 2020: 1478-1487.
[22] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2223-2232.
[23] YOU Q, WAN C, SUN J, et al. Fundus image enhancement method based on CycleGAN[C]//2019 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2019: 4500-4503.
[24] ZHAO H, YANG B, CAO L, et al. Data-driven enhancement of blurry retinal images via generative adversarial networks[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2019: 75-83.
[25] YOO T K, CHOI J Y, KIM H K. CycleGAN-based deep learning technique for artifact reduction in fundus photography[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 2020, 258(8): 1631-1637.
[26] MA Y, LIU J, LIU Y, et al. Structure and illumination constrained GAN for medical image enhancement[J]. IEEE Transactions on Medical Imaging, 2021, 40(12): 3955-3967.
[27] PARK T, EFROS A A, ZHANG R, et al. Contrastive learning for unpaired image-to-image translation[C]//European Conference on Computer Vision. Springer, 2020: 319-345.
[28] CHENG P, LIN L, HUANG Y, et al. Prior guided fundus image quality enhancement via contrastive learning[C]//2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021: 521-525.
[29] CHENG P, LIN L, HUANG Y, et al. I-secret: importance-guided fundus image enhancement via semi-supervised contrastive constraining[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2021: 87-96.
[30] PELI E, PELI T. Restoration of retinal images obtained through cataracts[J]. IEEE Transactions on Medical Imaging, 1989, 8(4): 401-406.
[31] MITRA A, ROY S, ROY S, et al. Enhancement and restoration of non-uniform illuminated fundus image of retina obtained through thin layer of cataract[J]. Computer Methods and Programs in Biomedicine, 2018, 156: 169-178.
[32] CHENG J, LI Z, GU Z, et al. Structure-preserving guided retinal image filtering and its application for optic disk analysis[J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2536-2546.
[33] LUO Y, CHEN K, LIU L, et al. Dehaze of cataractous retinal images using an unpaired generative adversarial network[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(12): 3374-3383.
[34] FORACCHIA M, GRISAN E, RUGGERI A. Luminosity and contrast normalization in retinal images[J]. Medical Image Analysis, 2005, 9(3): 179-190.
[35] PIZER S M, AMBURN E P, AUSTIN J D, et al. Adaptive histogram equalization and its variations[J]. Computer Vision, Graphics, and Image Processing, 1987, 39(3): 355-368.
[36] SETIAWAN A W, MENGKO T R, SANTOSO O S, et al. Color retinal image enhancement using CLAHE[C]//International Conference on ICT for Smart Society. IEEE, 2013: 1-3.
[37] HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341-2353.
[38] PÉREZ A D, PERDOMO O, RIOS H, et al. A Conditional Generative Adversarial Network Based Method for Eye Fundus Image Quality Enhancement[C]//International Workshop on Ophthalmic Medical Image Analysis. Springer, 2020: 185-194.
[39] ZHOU K, LIU Z, QIAO Y, et al. Domain generalization: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4396-4415.
[40] BAKER M L, HAND P J, WANG J J, et al. Retinal signs and stroke: revisiting the link between the eye and brain[J]. Stroke, 2008, 39(4): 1371-1379.
[41] ABRÀMOFF M D, GARVIN M K, SONKA M. Retinal imaging and image analysis[J]. IEEE Reviews in Biomedical Engineering, 2010, 3: 169-208.
[42] QI Y, YANG Z, SUN W, et al. A comprehensive overview of image enhancement techniques [J]. Archives of Computational Methods in Engineering, 2021: 1-25.
[43] MAHESH B. Machine learning algorithms-a review[J]. International Journal of Science and Research (IJSR), 2020, 9: 381-386.
[44] PANG Y, LIN J, QIN T, et al. Image-to-image translation: Methods and applications[J]. IEEE Transactions on Multimedia, 2021, 24: 3859-3881.
[45] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
[46] ZHUANG F, QI Z, DUAN K, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2020, 109(1): 43-76.
[47] KORA P, OOI C P, FAUST O, et al. Transfer learning techniques for medical image analysis: A review[J]. Biocybernetics and Biomedical Engineering, 2022, 42(1): 79-107.
[48] ZHOU K, HE W, XU Y, et al. Feature selection and transfer learning for Alzheimer’ s disease clinical diagnosis[J]. Applied Sciences, 2018, 8(8): 1372.
[49] KARIMI D, WARFIELD S K, GHOLIPOUR A. Transfer learning in medical image segmentation: New insights from analysis of the dynamics of model parameters and learned representations[J]. Artificial Intelligence in Medicine, 2021, 116: 102078.
[50] KOUW W M, LOOG M. A review of domain adaptation without target labels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(3): 766-785.
[51] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis [J]. IEEE Transactions on Neural Networks, 2010, 22(2): 199-210.
[52] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: an overview [J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65.
[53] GHIFARY M, KLEIJN W B, ZHANG M, et al. Deep reconstruction-classification networks for unsupervised domain adaptation[C]//Proceedings of the 14th European Conference on Computer Vision. Springer, 2016: 597-613.
[54] YANG Y, SOATTO S. Fda: Fourier domain adaptation for semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 4085-4095.
[55] GHIFARY M, KLEIJN W B, ZHANG M, et al. Domain generalization for object recognition with multi-task autoencoders[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 2551-2559.
[56] LIU Q, DOU Q, HENG P A. Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2020: 475-485.
[57] HUANG J, GUAN D, XIAO A, et al. Fsdr: Frequency space domain randomization for domain generalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 6891-6902.
[58] FLAXMAN S R, BOURNE R R, RESNIKOFF S, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis[J]. The Lancet Global Health, 2017, 5(12): e1221-e1234.
[59] LEE C M, AFSHARI N A. The global state of cataract blindness[J]. Current Opinion in Ophthalmology, 2017, 28(1): 98-103.
[60] SIDDIQUI A A, LADAS J G, LEE J K. Artificial intelligence in cornea, refractive, and cataract surgery[J]. Current Opinion in Ophthalmology, 2020, 31(4): 253-260.
[61] KUMAR B V, PHILLIPS R P, PRASAD S. Multifocal intraocular lenses in the setting of glaucoma[J]. Current Opinion in Ophthalmology, 2007, 18(1): 62-66.
[62] FLESNER P, SANDER B, HENNING V, et al. Cataract surgery on diabetic patients. A prospective evaluation of risk factors and complications[J]. Acta Ophthalmologica Scandinavica, 2002, 80(1): 19-24.
[63] KIM S J, EQUI R, BRESSLER N M. Analysis of macular edema after cataract surgery in patients with diabetes using optical coherence tomography[J]. Ophthalmology, 2007, 114(5): 881-889.
[64] ALIO J L, PLAZA-PUCHE A B, FÉRNANDEZ-BUENAGA R, et al. Multifocal intraocular lenses: an overview[J]. Survey of Ophthalmology, 2017, 62(5): 611-634.
[65] PELI E, SCHWARTZ B. Enhancement of fundus photographs taken through cataracts[J]. Ophthalmology, 1987, 94: 10-13.
[66] HE K, SUN J, TANG X. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(6): 1397-1409.
[67] DELORI F C, GRAGOUDAS E S, FRANCISCO R, et al. Monochromatic ophthalmoscopy and fundus photography: the normal fundus[J]. Archives of ophthalmology, 1977, 95(5): 861-868.
[68] LAND E H. The retinex theory of color vision[J]. Scientific American, 1977, 237(6): 108-129.
[69] GETREUER P. A survey of Gaussian convolution algorithms[J]. Image Processing On Line, 2013, 2013: 286-310.
[70] GUO J, PANG Z, YANG F, et al. Study on the method of fundus image generation based on improved GAN[J]. Mathematical Problems in Engineering, 2020, 2020: 1-13.
[71] LIU Y, WANG X, WANG L, et al. A modified leaky ReLU scheme (MLRS) for topology optimization with multiple materials[J]. Applied Mathematics and Computation, 2019, 352: 188-204.
[72] SANTURKAR S, TSIPRAS D, ILYAS A, et al. How does batch normalization help optimization?[J]. Advances in Neural Information Processing Systems, 2018, 31: 2488–2498.
[73] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[74] JENI L A, COHN J F, DE LA TORRE F. Facing imbalanced data–recommendations for the use of performance metrics[C]//Humaine Association Conference on Affective Computing and Intelligent Interaction. 2013: 245-251.
[75] WANG W, YAN W, FOTIS K, et al. Cataract surgical rate and socioeconomics: a global study[J]. Investigative Ophthalmology & Visual Science, 2016, 57(14): 5872-5881.
[76] PHAM T Q, WANG J J, ROCHTCHINA E, et al. Systemic and ocular comorbidity of cataract surgical patients in a western Sydney public hospital[J]. Clinical & Experimental Ophthalmology, 2004, 32(4): 383-387.
[77] ZHOU K, YANG Y, QIAO Y, et al. Domain adaptive ensemble learning[J]. IEEE Transactions on Image Processing, 2021, 30: 8008-8018.
[78] KIM M, BYUN H. Learning texture invariant representation for domain adaptation of semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 12975-12984.
[79] TREMBLAY J, PRAKASH A, ACUNA D, et al. Training deep networks with synthetic data: Bridging the reality gap by domain randomization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018: 969-977.
[80] HORE A, ZIOU D. Image quality metrics: PSNR vs. SSIM[C]//2010 20th International Conference on Pattern Recognition. IEEE, 2010: 2366-2369.
[81] JADON S. A survey of loss functions for semantic segmentation[C]//2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2020: 1-7.
[82] LI H, LIU H, HU Y, et al. Restoration of cataract fundus images via unsupervised domain adaptation[C]//2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021: 516-520.
[83] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer Assisted Intervention. Springer, 2015: 234-241.
[84] DENTON E, CHINTALA S, SZLAM A, et al. Deep generative image models using a Laplacian pyramid of adversarial networks[J]. Advances in Neural Information Processing Systems, 2015: 1486-1494.
[85] LIANG J, ZENG H, ZHANG L. High-resolution photorealistic image translation in real-time: a laplacian pyramid translation network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 9392-9400.
[86] GHIASI G, FOWLKES C C. Laplacian pyramid reconstruction and refinement for semantic segmentation[C]//European Conference on Computer Vision. Springer, 2016: 519-534.
[87] LI X, HU X, QI X, et al. Rotation-oriented collaborative self-supervised learning for retinal disease diagnosis[J]. IEEE Transactions on Medical Imaging, 2021, 40(9): 2284-2294.
[88] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
修改评论