[1] DOBRE O, ABDI A, BAR-NESS Y, et al. Survey of automatic modulation classification techniques: Classical approaches and new trends[J/OL]. IET Communications, 2007, 1(2): 137-156. DOI: 10.1049/iet-com:20050176.
[2] BHATTI F A, KHAN M J, SELIM A, et al. Shared Spectrum Monitoring Using Deep Learning[J/OL]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(4): 1171-1185. DOI: 10.1109/TCCN.2021.3071149.
[3] ZHANG W, FENG M, KRUNZ M, et al. Signal Detection and Classification in Shared Spectrum: A Deep Learning Approach[C/OL]//IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. 2021: 1-10. DOI: 10.1109/INFOCOM42981.2021.9488834.
[4] WEI W, MENDEL J. Maximum-likelihood classification for digital amplitude-phase modulations[J/OL]. IEEE Transactions on Communications, 2000, 48(2): 189-193. DOI: 10.1109/26.823550.
[5] DOBRE O A, HAMEED F. Likelihood-Based Algorithms for Linear Digital Modulation Classification in Fading Channels[C/OL]//2006 Canadian Conference on Electrical and Computer Engineering. 2006: 1347-1350. DOI: 10.1109/CCECE.2006.277525.
[6] YANG Y, LIU C H. An asymptotic optimal algorithm for modulation classification[J/OL]. IEEE Communications Letters, 1998, 2(5): 117-119. DOI: 10.1109/4234.673652.
[7] O’SHEA T, CORGAN J, CLANCY T C. Convolutional Radio Modulation Recognition Networks: abs/1602.04105[A]. 2016.
[8] ZENG Y, ZHANG M, HAN F, et al. Spectrum Analysis and Convolutional Neural Network for Automatic Modulation Recognition[J/OL]. IEEE Wireless Communications Letters, 2019, 8(3): 929-932. DOI: 10.1109/LWC.2019.2900247.
[9] XU J, LUO C, PARR G P, et al. A Spatiotemporal Multi-Channel Learning Framework forAutomatic Modulation Recognition[J]. IEEE Wireless Communications Letters, 2020, 9: 1629-1632.
[10] LI L, HUANG J, CHENG Q, et al. Automatic Modulation Recognition: A Few-Shot Learning Method Based on the Capsule Network[J/OL]. IEEE Wireless Communications Letters, 2021, 10(3): 474-477. DOI: 10.1109/LWC.2020.3034913.
[11] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching Networks for One Shot Learning [M/OL]. arXiv, 2016. DOI: 10.48550/ARXIV.1606.04080.
[12] SNELL J, SWERSKY K, ZEMEL R S. Prototypical Networks for Few-shot Learning[M/OL]. arXiv, 2017. DOI: 10.48550/ARXIV.1703.05175.
[13] SUNG F, YANG Y, ZHANG L, et al. Learning to Compare: Relation Network for Few-Shot Learning[M/OL]. arXiv, 2017. DOI: 10.48550/ARXIV.1711.06025.
[14] FINN C, ABBEEL P, LEVINE S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks[M/OL]. arXiv, 2017. DOI: 10.48550/ARXIV.1703.03400.
[15] NICHOL A, ACHIAM J, SCHULMAN J. On First-Order Meta-Learning Algorithms[M/OL]. arXiv, 2018. DOI: 10.48550/ARXIV.1803.02999.
[16] Q, ZHANG R, MU J, et al. AMCRN: Few-Shot Learning for Automatic Modulation Classification[J/OL]. IEEE Communications Letters, 2022, 26(3): 542-546. DOI: 10.1109/LCOMM. 2021.3135688.
[17] SILLS J. Maximum-likelihood modulation classification for PSK/QAM[C/OL]//MILCOM 1999. IEEE Military Communications. Conference Proceedings (Cat. No.99CH36341): volume 1. 1999: 217-220 vol.1. DOI: 10.1109/MILCOM.1999.822675.
[18] ABDI A, DOBRE O, CHOUDHRY R, et al. Modulation classification in fading channels using antenna arrays[C/OL]//IEEE MILCOM 2004. Military Communications Conference, 2004.: volume 1. 2004: 211-217 Vol. 1. DOI: 10.1109/MILCOM.2004.1493271.
[19] LAY N, POLYDOROS A. Modulation classification of signals in unknown ISI environments [C/OL]//Proceedings of MILCOM ’95: volume 1. 1995: 170-174 vol.1. DOI: 10.1109/MILCOM.1995.483293.
[20] PANAGIOTOU P, ANASTASOPOULOS A, POLYDOROS A. Likelihood ratio tests for modulation classification[C/OL]//MILCOM 2000 Proceedings. 21st Century Military Communications. Architectures and Technologies for Information Superiority (Cat. No.00CH37155): volume 2. 2000: 670-674 vol.2. DOI: 10.1109/MILCOM.2000.904013.
[21] HONG L, HO K. BPSK and QPSK modulation classification with unknown signal level[C/OL] MILCOM 2000 Proceedings. 21st Century Military Communications. Architectures and Technologies for Information Superiority (Cat. No.00CH37155): volume 2. 2000: 976-980 vol.2. DOI: 10.1109/MILCOM.2000.904076.
[22] HONG L, HO K. Modulation classification of BPSK and QPSK signals using a two element antenna array receiver[C/OL]//2001 MILCOM Proceedings Communications for Network-Centric Operations: Creating the Information Force (Cat. No.01CH37277): volume 1. 2001: 118-122 vol.1. DOI: 10.1109/MILCOM.2001.985774.
[23] HONG L, HO K. Antenna array likelihood modulation classifier for BPSK and QPSK signals [C/OL]//MILCOM 2002. Proceedings: volume 1. 2002: 647-651 vol.1. DOI: 10.1109/MILCOM.2002.1180521.
[24] HSUE S Z, SOLIMAN S. Automatic modulation recognition of digitally modulated signals [C/OL]//IEEE Military Communications Conference, ’Bridging the Gap. Interoperability, Survivability, Security’. 1989: 645-649 vol.3. DOI: 10.1109/MILCOM.1989.104004.
[25] SWAMI A, SADLER B. Hierarchical digital modulation classification using cumulants[J/OL]. IEEE Transactions on Communications, 2000, 48(3): 416-429. DOI: 10.1109/26.837045.
[26] SAFAVIAN S R, LANDGREBE D A. A survey of decision tree classifier methodology[J].IEEE Trans. Syst. Man Cybern., 1991, 21: 660-674.
[27] SCHöLKOPF B, TSUDA K, VERT J. Advanced Application of Support Vector Machines[M]. Kernel Methods in Computational Biology, 2004.
[28] SOLTANIEH N, NOROUZI Y, YANG Y, et al. A Review of Radio Frequency Fingerprinting Techniques[J/OL]. IEEE Journal of Radio Frequency Identification, 2020, 4(3): 222-233. DOI: 10.1109/JRFID.2020.29683690.
[29] YE H, LI G Y, JUANG B H. Power of Deep Learning for Channel Estimation and SignalDetection in OFDM Systems[J/OL]. IEEE Wireless Communications Letters, 2018, 7(1): 114-117. DOI: 10.1109/LWC.2017.2757490.
[30] WANG C, WANG J, ZHANG X. Automatic radar waveform recognition based on timefrequency analysis and convolutional neural network[C/OL]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017: 2437-2441. DOI:10.1109/ICASSP.2017.7952594.
[31] O’SHEA T, WEST N. Radio Machine Learning Dataset Generation with GNU Radio[J]. Proceedings of the GNU Radio Conference, 2016, 1(1).
[32] WEST N E, O’SHEA T. Deep architectures for modulation recognition[M/OL]//2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). 2017: 1-6. DOI: 10.1109/DySPAN.2017.7920754.
[33] ZHANG M, ZENG Y, HAN Z, et al. Automatic Modulation Recognition Using Deep Learning Architectures[C/OL]//2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). 2018: 1-5. DOI: 10.1109/SPAWC.2018.8446021.
[34] CHEN T, GAO S, ZHENG S, et al. EMD and VMD Empowered Deep Learning for Radio Modulation Recognition[J/OL]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(1): 43-57. DOI: 10.1109/TCCN.2022.3218694.
[35] LIN S, ZENG Y, GONG Y. Modulation Recognition Using Signal Enhancement and Multistage Attention Mechanism[J/OL]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9921-9935. DOI: 10.1109/TWC.2022.3181026.
[36] CHEN Z, CUI H, XIANG J, et al. SigNet: An Advanced Deep Learning Framework for Radio Signal Classification: abs/2011.03525[A]. 2020.
[37] WANG Y, BAI J, XIAO Z, et al. MsmcNet: A Modular Few-Shot Learning Framework for Signal Modulation Classification[J/OL]. IEEE Transactions on Signal Processing, 2022, 70:3789-3801. DOI: 10.1109/TSP.2022.3191783.
[38] CHE J, WANG L, BAI X, et al. Spatial-Temporal Hybrid Feature Extraction Network for FewShot Automatic Modulation Classification[J/OL]. IEEE Transactions on Vehicular Technology, 2022, 71(12): 13387-13392. DOI: 10.1109/TVT.2022.3196103.
[39] CHEN Z, FU Y, ZHANG Y, et al. Semantic Feature Augmentation in Few-shot Learning:abs/1804.05298[A]. 2018.
[40] ZHOU F, WU B, LI Z. Deep Meta-Learning: Learning to Learn in the Concept Space:abs/1802.03596[A]. 2018.
[41] SANTORO A, BARTUNOV S, BOTVINICK M, et al. Meta-Learning with MemoryAugmented Neural Networks[C]//ICML’16: Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48. New York, NY, USA:JMLR.org, 2016: 1842–1850.
[42] JIA Y, DARRELL T. Latent Task Adaptation with Large-Scale Hierarchies[C/OL]//2013 IEEE International Conference on Computer Vision. 2013: 2080-2087. DOI: 10.1109/ICCV.2013. 260.
[43] MEHROTRA A, DUKKIPATI A. Generative Adversarial Residual Pairwise Networks for One Shot Learning[M]//Computer Vision and Pattern Recognition (CVPR). 2017.
[44] KIMURA A, GHAHRAMANI Z, TAKEUCHI K, et al. Few-shot learning of neural networks from scratch by pseudo example optimization[A]. 2018. arXiv: 1802.03039.
[45] CHEN Z, FU Y, WANG Y X, et al. Image Deformation Meta-Networks for One-Shot Learning [C/OL]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).2019: 8672-8681. DOI: 10.1109/CVPR.2019.00888.
[46] LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C/OL]//2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009: 951-958. DOI: 10.1109/CVPR.2009.5206594.
[47] KOCH G R. Siamese Neural Networks for One-Shot Image Recognition[C]//2015.
[48] ANTONIOU A, EDWARDS H, STORKEY A. How to train your MAML[M/OL]. arXiv, 2018. https://arxiv.org/abs/1810.09502. DOI: 10.48550/ARXIV.1810.09502.
[49] RAGHU A, RAGHU M, BENGIO S, et al. Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML[M/OL]. arXiv, 2019. https://arxiv.org/abs/1909.09157. DOI: 10.48550/ARXIV.1909.09157.
[50] YE H J, CHAO W L. How to Train Your MAML to Excel in Few-Shot Classification[M/OL]. arXiv, 2021. https://arxiv.org/abs/2106.16245. DOI: 10.48550/ARXIV.2106.16245.
[51] KAO C H, CHIU W C, CHEN P Y. MAML is a Noisy Contrastive Learner in Classification[M/OL]. arXiv, 2021. https://arxiv.org/abs/2106.15367. DOI: 10.48550/ARXIV.2106.15367.
[52] YAO H, ZHANG L, FINN C. Meta-Learning with Fewer Tasks through Task Interpolation [M/OL]. arXiv, 2021. https://arxiv.org/abs/2106.02695. DOI: 10.48550/ARXIV.2106.02695.
[53] BAIK S, CHOI J, KIM H, et al. Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning[M/OL]. arXiv, 2021. https://arxiv.org/abs/2110.03909. DOI: 10.48550/ARXIV.2110.03909.
[54] KINGMA D P, BA J. Adam: A Method for Stochastic Optimization[J]. CoRR, 2014, abs/1412.6980.
[55] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual Explanations fromDeep Networks via Gradient-Based Localization[C/OL]//2017 IEEE International Conference on Computer Vision (ICCV). 2017: 618-626. DOI: 10.1109/ICCV.2017.74.
[56] LUO X, XU J, XU Z. Channel Importance Matters in Few-Shot Image Classification[M/OL]. arXiv, 2022. https://arxiv.org/abs/2206.08126. DOI: 10.48550/ARXIV.2206.08126.
[57] LOSHCHILOV I, HUTTER F. SGDR: Stochastic Gradient Descent with Warm Restarts[A].2016.
修改评论