中文版 | English
题名

逐层沉积的高性能全聚合物太阳能电池

其他题名
HIGH-PERFORMANCE ALL-POLYMER SOLAR CELLS BY LAYER-BY-LAYER DEPOSITION
姓名
姓名拼音
LI Bangbang
学号
12032773
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
郭旭岗
导师单位
材料科学与工程系
论文答辩日期
2023-05-17
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

全聚合物太阳能电池是一种活性层由聚合物给体和聚合物受体组成的光伏器件。相比于本体异质结的全聚合物太阳能电池,逐层沉积可以独立调控给体层和受体层的形貌提升器件性能,同时其制备的全聚合物太阳能电池的器件稳定性更好。但是,与本体异质结的全聚合物太阳能电池相比,逐层沉积的全聚合物太阳能电池的能量转换效率仍有较大差距。

基于此,采用聚合物给体PM6和聚合物受体L15作为活性层材料,应用逐层沉积工艺,结合氯苯/氯仿非正交溶剂和添加剂的协同作用,深入、全面调控给体和受体的垂直梯度分布和薄膜形貌,获得了效率高达16.15%的全聚合物太阳能电池,打破了同期全聚合物太阳能电池的最高效率记录。多种经典全聚合物材料体系证实了该逐层沉积工艺对于提升全聚合物太阳能电池效率具有普适性。

为进一步提升能量转换效率,采用硒原子策略优化受体L15,构筑了高迁移率、更窄带隙的受体材料Y5-BSeI。经过系统的器件优化,采用氯苯/氯仿非正交溶剂制备的基于PM6:Y5-BSeI材料体系的逐层沉积的全聚合物太阳能电池实现了17%的效率,高于相应的本体异质结的全聚合物太阳能电池(16.25%)。上个逐层沉积工艺的普适性也得到了很好的验证。

由于非正交溶剂的相似溶解性,上述逐层沉积工艺中的薄膜损失严重。相比于PM6,受体Y5-BSeI溶于更多有机溶剂,因此筛选了六组正交溶剂制备逐层沉积的全聚合物太阳能电池。最终,氯苯/甲苯正交溶剂所制备的逐层沉积的全聚合物太阳能电池获得了16.36%的效率。而且,该器件的光、热稳定性均优于氯苯/氯仿非正交溶剂所制备的逐层沉积的全聚合物太阳能电池,兼顾了效率和器件稳定性。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] LI Y, HUANG X, DING K, et al. Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years[J]. Nature Communications, 2021, 12(1): 5419.

[2] LIU Q, JIANG Y, JIN K, et al. 18% efficiency organic solar cells[J]. Science Bulletin, 2020, 65(4): 272-275.

[3] CHONG K, XU X, MENG H, et al. Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination[J]. Advanced Materials, 2022, 34(13): 2109516.

[4] SUN R, WU Y, YANG X, et al. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor[J]. Advanced Materials, 2022, 34(26): 2110147.

[5] ZHU L, ZHANG M, XU J, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology[J]. Nature Materials, 2022, 21(6): 656-663.

[6] CHEN H, ZHAO T, LI L, et al. 17.6%-efficient quasiplanar heterojunction organic solar cells from a chlorinated 3D network acceptor[J]. Advanced Materials, 2021, 33(37): 2102778.

[7] JIANG K, ZHANG J, PENG Z, et al. Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length[J]. Nature Communications, 2021, 12(1): 468.

[8] WU Y, GUO J, WANG W, et al. A conjugated donor-acceptor block copolymer enables over 11% efficiency for single-component polymer solar cells[J]. Joule, 2021, 5(7): 1800-1815.

[9] HE C, PAN Y, OUYANG Y, et al. Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics[J]. Energy & Environmental Science, 2022, 15(6): 2537-2544.

[10] XU Y, YUAN J, LIANG S, et al. Simultaneously improved efficiency and stability in all-polymer solar cells by a P-i-N architecture[J]. ACS Energy Letters, 2019, 4(9): 2277-2286.

[11] ZHENG Y, SUN R, ZHANG M, et al. Baseplate temperature-dependent vertical composition gradient in pseudo-bilayer films for printing non-fullerene organic solar cells[J]. Advanced Energy Materials, 2021, 11(45): 2102135.

[12] WAN J, ZHANG L, HE Q, et al. High-performance pseudoplanar heterojunction ternary organic solar cells with nonfullerene alloyed acceptor[J]. Advanced Functional Materials, 2020, 30(14): 1909760.

[13] ZHOU M, LIAO C, DUAN Y, et al. 19.10% efficiency and 80.5% fill factor layer-by-layer organic solar cells realized by 4-bis(2-thienyl)pyrrole-2,5-dione based polymer additives for inducing vertical segregation morphology[J]. Advanced Materials, 2023, 35(6): 2208279.

[14] KEARNS D, CALVIN M. Photovoltaic effect and photoconductivity in laminated organic systems[J]. The Journal of Chemical Physics, 1958, 29(4): 950-951.

[15] TANG C W. Two-layer organic photovoltaic cell[J]. Applied Physics Letters, 1986, 48(2): 183-185.

[16] YU G, GAO J, HUMMELEN J C, et al. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243): 1789-1791.

[17] LI G, SHROTRIYA V, HUANG J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nature Materials, 2005, 4(11): 864-868.

[18] LIANG Y, XU Z, XIA J, et al. For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%[J]. Advanced Materials, 2010, 22(20): E135-E138.

[19] LIN Y, WANG J, ZHANG Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells[J]. Advanced Materials, 2015, 27(7): 1170-1174.

[20] BIN H, GAO L, ZHANG Z G, et al. 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor[J]. Nature Communications, 2016, 7(1): 13651.

[21] ZHAO W, QIAN D, ZHANG S, et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability[J]. Advanced Materials, 2016, 28(23): 4734-4739.

[22] YUAN J, ZHANG Y, ZHOU L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core[J]. Joule, 2019, 3(4): 1140-1151.

[23] CUI Y, YAO H, ZHANG J, et al. Single-junction organic photovoltaic cells with approaching 18% efficiency[J]. Advanced Materials, 2020, 32(19): 1908205.

[24] LI C, ZHOU J, SONG J, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells[J]. Nature Energy, 2021, 6(6): 605-613.

[25] ZHOU N, DUDNIK A S, LI T I N G, et al. All-polymer solar cell performance optimized via systematic molecular weight tuning of both donor and acceptor polymers[J]. Journal of the American Chemical Society, 2016, 138(4): 1240-1251.

[26] EARMME T, HWANG Y J, SUBRAMANIYAN S, et al. All-polymer bulk heterojuction solar cells with 4.8% efficiency achieved by solution processing from a co-solvent[J]. Advanced Materials, 2014, 26(35): 6080-6085.

[27] YE L, JIAO X, ZHOU M, et al. Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells[J]. Advanced Materials, 2015, 27(39): 6046-6054.

[28] LEE C, GIRIDHAR T, CHOI J, et al. Importance of 2D conjugated side chains of benzodithiophene-based polymers in controlling polymer packing, interfacial ordering, and composition variations of all-polymer solar cells[J]. Chemistry of Materials, 2017, 29(21): 9407-9415.

[29] KANG H, KIM K H, CHOI J, et al. High-performance all-polymer solar cells based on face-on stacked polymer blends with low interfacial tension[J]. ACS Macro Letters, 2014, 3(10): 1009-1014.

[30] GAO L, ZHANG Z G, XUE L, et al. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%[J]. Advanced Materials, 2016, 28(9): 1884-1890.

[31] LIN Y, DONG S, LI Z, et al. Energy-effectively printed all-polymer solar cells exceeding 8.61% efficiency[J]. Nano Energy, 2018, 46: 428-435.

[32] KOLHE N B, LEE H, KUZUHARA D, et al. All-polymer solar cells with 9.4% efficiency from naphthalene diimide-biselenophene copolymer acceptor[J]. Chemistry of Materials, 2018, 30(18): 6540-6548.

[33] YU G, HEEGER A J. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions[J]. Journal of Applied Physics, 1995, 78(7): 4510-4515.

[34] ZHAN X, TAN Z A, DOMERCQ B, et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells[J]. Journal of the American Chemical Society, 2007, 129(23): 7246-7247.

[35] GUO X, WATSON M D. Conjugated polymers from naphthalene bisimide[J]. Organic Letters, 2008, 10(23): 5333-5336.

[36] ZHU L, ZHONG W, QIU C, et al. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication[J]. Advanced Materials, 2019, 31(41): 1902899.

[37] WANG Y, GUO H, HARBUZARU A, et al. (semi)ladder-type bithiophene imide-based all-acceptor semiconductors: synthesis, structure-property correlations, and unipolar n-type transistor performance[J]. Journal of the American Chemical Society, 2018, 140(19): 6095-6108.

[38] GUO X, ORTIZ R P, ZHENG Y, et al. Bithiophene-imide-based polymeric semiconductors for field-effect transistors: synthesis, structure-property correlations, charge carrier polarity, and device stability[J]. Journal of the American Chemical Society, 2011, 133(5): 1405-1418.

[39] WANG Y, YAN Z, UDDIN M A, et al. Triimide-functionalized n-type polymer semiconductors enabling all-polymer solar cells with power conversion efficiencies approaching 9%[J]. Solar RRL, 2019, 3(7): 1900107.

[40] ZHANG Z G, LI Y. Polymerized small-molecule acceptors for high-performance all-polymer solar cells[J]. Angewandte Chemie International Edition, 2021, 60(9): 4422-4433.

[41] ZHANG Z G, YANG Y, YAO J, et al. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells[J]. Angewandte Chemie International Edition, 2017, 56(43): 13503-13507.

[42] JIA T, ZHANG J, ZHONG W, et al. 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor[J]. Nano Energy, 2020, 72: 104718.

[43] SUN R, WANG W, YU H, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors[J]. Joule, 2021, 5(6): 1548-1565.

[44] SUN H, YU H, SHI Y, et al. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells[J]. Advanced Materials, 2020, 32(43): 2004183.

[45] OSAKA M, BENTEN H, LEE L T, et al. Development of highly conductive nanodomains in poly(3-hexylthiophene) films studied by conductive atomic force microscopy[J]. Polymer, 2013, 54(14): 3443-3447.

[46] LIU B, SUN H, LEE J W, et al. Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere[J]. Energy & Environmental Science, 2021, 14(8): 4499-4507.

[47] ZHOU E, CONG J, ZHAO M, et al. Synthesis and application of poly(fluorene-alt-naphthalene diimide) as an n-type polymer for all-polymer solar cells[J]. Chemical Communications, 2012, 48(43): 5283-5285.

[48] YU R, YAO H, HONG L, et al. Design and application of volatilizable solid additives in non-fullerene organic solar cells[J]. Nature Communications, 2018, 9(1): 4645.

[49] SONG J, LI Y, CAI Y, et al. Solid additive engineering enables high-efficiency and eco-friendly all-polymer solar cells[J]. Matter, 2022, 5(11): 4047-4059.

[50] FAN P, SUN W, ZHANG X, et al. Bifunctional bis-benzophenone as a solid additive for non-fullerene solar cells[J]. Advanced Functional Materials, 2021, 31(8): 2008699.

[51] SU W, MENG Y, GUO X, et al. Efficient and thermally stable all-polymer solar cells based on a fluorinated wide-bandgap polymer donor with high crystallinity[J]. Journal of Materials Chemistry A, 2018, 6(34): 16403-16411.

[52] ANGADI M A, GOSZTOLA D, WASIELEWSKI M R. Characterization of photovoltaic cells using poly(phenylenevinylene) doped with perylenediimide electron acceptors[J]. Journal of Applied Physics, 1998, 83(11): 6187-6189.

[53] YAO K, INTEMANN J J, YIP H L, et al. Efficient all polymer solar cells from layer-evolved processing of a bilayer inverted structure[J]. Journal of Materials Chemistry C, 2014, 2(3): 416-420.

[54] WU Q, WANG W, WU Y, et al. High-performance all-polymer solar cells with a pseudo-bilayer configuration enabled by a stepwise optimization strategy[J]. Advanced Functional Materials, 2021, 31(15): 2010411.

[55] ZHOU D, LIAO C, PENG S, et al. Binary blend all-polymer solar cells with a record efficiency of 17.41% enabled by programmed fluorination both on donor and acceptor blocks[J]. Advanced Science, 2022, 9(23): 2202022.

[56] GUO J, XIA X, QIU B, et al. Manipulating polymer backbone configuration via halogenated asymmetric end-group enables over 18% efficiency all-polymer solar cells[J]. Advanced Materials, 2023, 2211296.

[57] LI X, DU X, ZHAO J, et al. Layer-by-layer solution processing method for organic solar cells[J]. Solar RRL, 2021, 5(1): 2000592.

[58] SUN H, LIU B, MA Y, et al. Regioregular narrow-bandgap n-type polymers with high electron mobility enabling highly efficient all-polymer solar cells[J]. Advanced Materials, 2021, 33(37): 2102635.

[59] FENG K, WU Z, SU M, et al. Highly efficient ternary all-polymer solar cells with enhanced stability[J]. Advanced Functional Materials, 2021, 31(5): 2008494.

[60] SUN H, TANG Y, KOH C W, et al. High-performance all-polymer solar cells enabled by an n-type polymer based on a fluorinated imide-functionalized arene[J]. Advanced Materials, 2019, 31(15): 1807220.

[61] MASON M G, HUNG L S, TANG C W, et al. Characterization of treated indium-tin-oxide surfaces used in electroluminescent devices[J]. Journal of Applied Physics, 1999, 86(3): 1688-1692.

[62] MURGATROYD P N. Theory of space-charge-limited current enhanced by frenkel effect[J]. Journal of Physics D: Applied Physics, 1970, 3(2): 151.

[63] CUI Y, XU Y, YAO H, et al. Single-junction organic photovoltaic cell with 19% efficiency[J]. Advanced Materials, 2021, 33(41): 2102420.

[64] CAI Y, LI Y, WANG R, et al. A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%[J]. Advanced Materials, 2021, 33(33): 2101733.

[65] ZOU Y, YE L. Stabilizing the microstructure for Y6-series nonfullerene solar cells[J]. Chem, 2021, 7(11): 2853-2854.

[66] ZHOU K, LIU Y, ALOTAIBI A, et al. Molecular and energetic order dominate the photocurrent generation process in organic solar cells with small energetic offsets[J]. ACS Energy Letters, 2020, 5(2): 589-596.

[67] LIU T, YANG T, MA R, et al. 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend[J]. Joule, 2021, 5(4): 914-930.

[68] FU H, LI Y, YU J, et al. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor[J]. Journal of the American Chemical Society, 2021, 143(7): 2665-2670.

[69] FAN Q, FU H, LUO Z, et al. Near-infrared absorbing polymer acceptors enabled by selenophene-fused core and halogenated end-group for binary all-polymer solar cells with efficiency over 16%[J]. Nano Energy, 2022, 92: 106718.

[70] SHAN T, HONG Y, ZHU L, et al. Achieving optimal bulk heterojunction in all-polymer solar cells by sequential processing with nonorthogonal solvents[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42438-42446.

[71] FAN B, LIN F, WU X, et al. Selenium-containing organic photovoltaic materials[J]. Accounts of Chemical Research, 2021, 54(20): 3906-3916.

[72] WU Q, WANG W, WU Y, et al. Tailoring polymer acceptors by electron linkers for achieving efficient and stable all-polymer solar cells[J]. National Science Review, 2022, 9(2): nwab151.

[73] LIN F, JIANG K, KAMINSKY W, et al. A non-fullerene acceptor with enhanced intermolecular π-core interaction for high-performance organic solar cells[J]. Journal of the American Chemical Society, 2020, 142(36): 15246-15251.

[74] FU H, FAN Q, GAO W, et al. 16.3% efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone[J]. Science China Chemistry, 2022, 65(2): 309-317.

[75] SEO S, SUN C, LEE J W, et al. Importance of high-electron mobility in polymer acceptors for efficient all-polymer solar cells: combined engineering of backbone building unit and regioregularity[J]. Advanced Functional Materials, 2022, 32(5): 2108508.

[76] LI M, WANG Q, LIU J, et al. Sequential deposition enables high-performance nonfullerene organic solar cells[J]. Materials Chemistry Frontiers, 2021, 5(13): 4851-4873.

[77] CONINGS B, BERTHO S, VANDEWAL K, et al. Modeling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells[J]. Applied Physics Letters, 2010, 96(16): 163301.

[78] CADDEO C, ACKERMANN J, MATTONI A. A theoretical perspective on the thermodynamic stability of polymer blends for solar cells: from experiments to predictive modeling[J]. Solar RRL, 2022, 6(9): 2200172.

[79] AYZNER A L, TASSONE C J, TOLBERT S H, et al. Reappraising the need for bulk heterojunctions in polymer-fullerene photovoltaics: the role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells[J]. The Journal of Physical Chemistry C, 2009, 113(46): 20050-20060.

[80] ROCHESTER C W, MAUGER S A, MOULé A J. Investigating the morphology of polymer/fullerene layers coated using orthogonal solvents[J]. The Journal of Physical Chemistry C, 2012, 116(13): 7287-7292.

[81] LAI X, LAI H, DU M, et al. Bilayer quasiplanar heterojunction organic solar cells with a co-acceptor: a synergistic approach for stability and efficiency[J]. Chemistry of Materials, 2022, 34(17): 7886-7896.

[82] CAO C, WANG H, QIU D, et al. Quasiplanar heterojunction all-polymer solar cells: a dual approach to stability[J]. Advanced Functional Materials, 2022, 32(29): 2201828.

 

所在学位评定分委会
材料科学与工程
国内图书分类号
TM914.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544532
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
李棒棒. 逐层沉积的高性能全聚合物太阳能电池[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032773-李棒棒-材料科学与工程(9904KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李棒棒]的文章
百度学术
百度学术中相似的文章
[李棒棒]的文章
必应学术
必应学术中相似的文章
[李棒棒]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。