[1] LI Y, HUANG X, DING K, et al. Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years[J]. Nature Communications, 2021, 12(1): 5419.
[2] LIU Q, JIANG Y, JIN K, et al. 18% efficiency organic solar cells[J]. Science Bulletin, 2020, 65(4): 272-275.
[3] CHONG K, XU X, MENG H, et al. Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination[J]. Advanced Materials, 2022, 34(13): 2109516.
[4] SUN R, WU Y, YANG X, et al. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor[J]. Advanced Materials, 2022, 34(26): 2110147.
[5] ZHU L, ZHANG M, XU J, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology[J]. Nature Materials, 2022, 21(6): 656-663.
[6] CHEN H, ZHAO T, LI L, et al. 17.6%-efficient quasiplanar heterojunction organic solar cells from a chlorinated 3D network acceptor[J]. Advanced Materials, 2021, 33(37): 2102778.
[7] JIANG K, ZHANG J, PENG Z, et al. Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length[J]. Nature Communications, 2021, 12(1): 468.
[8] WU Y, GUO J, WANG W, et al. A conjugated donor-acceptor block copolymer enables over 11% efficiency for single-component polymer solar cells[J]. Joule, 2021, 5(7): 1800-1815.
[9] HE C, PAN Y, OUYANG Y, et al. Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics[J]. Energy & Environmental Science, 2022, 15(6): 2537-2544.
[10] XU Y, YUAN J, LIANG S, et al. Simultaneously improved efficiency and stability in all-polymer solar cells by a P-i-N architecture[J]. ACS Energy Letters, 2019, 4(9): 2277-2286.
[11] ZHENG Y, SUN R, ZHANG M, et al. Baseplate temperature-dependent vertical composition gradient in pseudo-bilayer films for printing non-fullerene organic solar cells[J]. Advanced Energy Materials, 2021, 11(45): 2102135.
[12] WAN J, ZHANG L, HE Q, et al. High-performance pseudoplanar heterojunction ternary organic solar cells with nonfullerene alloyed acceptor[J]. Advanced Functional Materials, 2020, 30(14): 1909760.
[13] ZHOU M, LIAO C, DUAN Y, et al. 19.10% efficiency and 80.5% fill factor layer-by-layer organic solar cells realized by 4-bis(2-thienyl)pyrrole-2,5-dione based polymer additives for inducing vertical segregation morphology[J]. Advanced Materials, 2023, 35(6): 2208279.
[14] KEARNS D, CALVIN M. Photovoltaic effect and photoconductivity in laminated organic systems[J]. The Journal of Chemical Physics, 1958, 29(4): 950-951.
[15] TANG C W. Two-layer organic photovoltaic cell[J]. Applied Physics Letters, 1986, 48(2): 183-185.
[16] YU G, GAO J, HUMMELEN J C, et al. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243): 1789-1791.
[17] LI G, SHROTRIYA V, HUANG J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nature Materials, 2005, 4(11): 864-868.
[18] LIANG Y, XU Z, XIA J, et al. For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%[J]. Advanced Materials, 2010, 22(20): E135-E138.
[19] LIN Y, WANG J, ZHANG Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells[J]. Advanced Materials, 2015, 27(7): 1170-1174.
[20] BIN H, GAO L, ZHANG Z G, et al. 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor[J]. Nature Communications, 2016, 7(1): 13651.
[21] ZHAO W, QIAN D, ZHANG S, et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability[J]. Advanced Materials, 2016, 28(23): 4734-4739.
[22] YUAN J, ZHANG Y, ZHOU L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core[J]. Joule, 2019, 3(4): 1140-1151.
[23] CUI Y, YAO H, ZHANG J, et al. Single-junction organic photovoltaic cells with approaching 18% efficiency[J]. Advanced Materials, 2020, 32(19): 1908205.
[24] LI C, ZHOU J, SONG J, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells[J]. Nature Energy, 2021, 6(6): 605-613.
[25] ZHOU N, DUDNIK A S, LI T I N G, et al. All-polymer solar cell performance optimized via systematic molecular weight tuning of both donor and acceptor polymers[J]. Journal of the American Chemical Society, 2016, 138(4): 1240-1251.
[26] EARMME T, HWANG Y J, SUBRAMANIYAN S, et al. All-polymer bulk heterojuction solar cells with 4.8% efficiency achieved by solution processing from a co-solvent[J]. Advanced Materials, 2014, 26(35): 6080-6085.
[27] YE L, JIAO X, ZHOU M, et al. Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells[J]. Advanced Materials, 2015, 27(39): 6046-6054.
[28] LEE C, GIRIDHAR T, CHOI J, et al. Importance of 2D conjugated side chains of benzodithiophene-based polymers in controlling polymer packing, interfacial ordering, and composition variations of all-polymer solar cells[J]. Chemistry of Materials, 2017, 29(21): 9407-9415.
[29] KANG H, KIM K H, CHOI J, et al. High-performance all-polymer solar cells based on face-on stacked polymer blends with low interfacial tension[J]. ACS Macro Letters, 2014, 3(10): 1009-1014.
[30] GAO L, ZHANG Z G, XUE L, et al. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%[J]. Advanced Materials, 2016, 28(9): 1884-1890.
[31] LIN Y, DONG S, LI Z, et al. Energy-effectively printed all-polymer solar cells exceeding 8.61% efficiency[J]. Nano Energy, 2018, 46: 428-435.
[32] KOLHE N B, LEE H, KUZUHARA D, et al. All-polymer solar cells with 9.4% efficiency from naphthalene diimide-biselenophene copolymer acceptor[J]. Chemistry of Materials, 2018, 30(18): 6540-6548.
[33] YU G, HEEGER A J. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions[J]. Journal of Applied Physics, 1995, 78(7): 4510-4515.
[34] ZHAN X, TAN Z A, DOMERCQ B, et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells[J]. Journal of the American Chemical Society, 2007, 129(23): 7246-7247.
[35] GUO X, WATSON M D. Conjugated polymers from naphthalene bisimide[J]. Organic Letters, 2008, 10(23): 5333-5336.
[36] ZHU L, ZHONG W, QIU C, et al. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication[J]. Advanced Materials, 2019, 31(41): 1902899.
[37] WANG Y, GUO H, HARBUZARU A, et al. (semi)ladder-type bithiophene imide-based all-acceptor semiconductors: synthesis, structure-property correlations, and unipolar n-type transistor performance[J]. Journal of the American Chemical Society, 2018, 140(19): 6095-6108.
[38] GUO X, ORTIZ R P, ZHENG Y, et al. Bithiophene-imide-based polymeric semiconductors for field-effect transistors: synthesis, structure-property correlations, charge carrier polarity, and device stability[J]. Journal of the American Chemical Society, 2011, 133(5): 1405-1418.
[39] WANG Y, YAN Z, UDDIN M A, et al. Triimide-functionalized n-type polymer semiconductors enabling all-polymer solar cells with power conversion efficiencies approaching 9%[J]. Solar RRL, 2019, 3(7): 1900107.
[40] ZHANG Z G, LI Y. Polymerized small-molecule acceptors for high-performance all-polymer solar cells[J]. Angewandte Chemie International Edition, 2021, 60(9): 4422-4433.
[41] ZHANG Z G, YANG Y, YAO J, et al. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells[J]. Angewandte Chemie International Edition, 2017, 56(43): 13503-13507.
[42] JIA T, ZHANG J, ZHONG W, et al. 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor[J]. Nano Energy, 2020, 72: 104718.
[43] SUN R, WANG W, YU H, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors[J]. Joule, 2021, 5(6): 1548-1565.
[44] SUN H, YU H, SHI Y, et al. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells[J]. Advanced Materials, 2020, 32(43): 2004183.
[45] OSAKA M, BENTEN H, LEE L T, et al. Development of highly conductive nanodomains in poly(3-hexylthiophene) films studied by conductive atomic force microscopy[J]. Polymer, 2013, 54(14): 3443-3447.
[46] LIU B, SUN H, LEE J W, et al. Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere[J]. Energy & Environmental Science, 2021, 14(8): 4499-4507.
[47] ZHOU E, CONG J, ZHAO M, et al. Synthesis and application of poly(fluorene-alt-naphthalene diimide) as an n-type polymer for all-polymer solar cells[J]. Chemical Communications, 2012, 48(43): 5283-5285.
[48] YU R, YAO H, HONG L, et al. Design and application of volatilizable solid additives in non-fullerene organic solar cells[J]. Nature Communications, 2018, 9(1): 4645.
[49] SONG J, LI Y, CAI Y, et al. Solid additive engineering enables high-efficiency and eco-friendly all-polymer solar cells[J]. Matter, 2022, 5(11): 4047-4059.
[50] FAN P, SUN W, ZHANG X, et al. Bifunctional bis-benzophenone as a solid additive for non-fullerene solar cells[J]. Advanced Functional Materials, 2021, 31(8): 2008699.
[51] SU W, MENG Y, GUO X, et al. Efficient and thermally stable all-polymer solar cells based on a fluorinated wide-bandgap polymer donor with high crystallinity[J]. Journal of Materials Chemistry A, 2018, 6(34): 16403-16411.
[52] ANGADI M A, GOSZTOLA D, WASIELEWSKI M R. Characterization of photovoltaic cells using poly(phenylenevinylene) doped with perylenediimide electron acceptors[J]. Journal of Applied Physics, 1998, 83(11): 6187-6189.
[53] YAO K, INTEMANN J J, YIP H L, et al. Efficient all polymer solar cells from layer-evolved processing of a bilayer inverted structure[J]. Journal of Materials Chemistry C, 2014, 2(3): 416-420.
[54] WU Q, WANG W, WU Y, et al. High-performance all-polymer solar cells with a pseudo-bilayer configuration enabled by a stepwise optimization strategy[J]. Advanced Functional Materials, 2021, 31(15): 2010411.
[55] ZHOU D, LIAO C, PENG S, et al. Binary blend all-polymer solar cells with a record efficiency of 17.41% enabled by programmed fluorination both on donor and acceptor blocks[J]. Advanced Science, 2022, 9(23): 2202022.
[56] GUO J, XIA X, QIU B, et al. Manipulating polymer backbone configuration via halogenated asymmetric end-group enables over 18% efficiency all-polymer solar cells[J]. Advanced Materials, 2023, 2211296.
[57] LI X, DU X, ZHAO J, et al. Layer-by-layer solution processing method for organic solar cells[J]. Solar RRL, 2021, 5(1): 2000592.
[58] SUN H, LIU B, MA Y, et al. Regioregular narrow-bandgap n-type polymers with high electron mobility enabling highly efficient all-polymer solar cells[J]. Advanced Materials, 2021, 33(37): 2102635.
[59] FENG K, WU Z, SU M, et al. Highly efficient ternary all-polymer solar cells with enhanced stability[J]. Advanced Functional Materials, 2021, 31(5): 2008494.
[60] SUN H, TANG Y, KOH C W, et al. High-performance all-polymer solar cells enabled by an n-type polymer based on a fluorinated imide-functionalized arene[J]. Advanced Materials, 2019, 31(15): 1807220.
[61] MASON M G, HUNG L S, TANG C W, et al. Characterization of treated indium-tin-oxide surfaces used in electroluminescent devices[J]. Journal of Applied Physics, 1999, 86(3): 1688-1692.
[62] MURGATROYD P N. Theory of space-charge-limited current enhanced by frenkel effect[J]. Journal of Physics D: Applied Physics, 1970, 3(2): 151.
[63] CUI Y, XU Y, YAO H, et al. Single-junction organic photovoltaic cell with 19% efficiency[J]. Advanced Materials, 2021, 33(41): 2102420.
[64] CAI Y, LI Y, WANG R, et al. A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%[J]. Advanced Materials, 2021, 33(33): 2101733.
[65] ZOU Y, YE L. Stabilizing the microstructure for Y6-series nonfullerene solar cells[J]. Chem, 2021, 7(11): 2853-2854.
[66] ZHOU K, LIU Y, ALOTAIBI A, et al. Molecular and energetic order dominate the photocurrent generation process in organic solar cells with small energetic offsets[J]. ACS Energy Letters, 2020, 5(2): 589-596.
[67] LIU T, YANG T, MA R, et al. 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend[J]. Joule, 2021, 5(4): 914-930.
[68] FU H, LI Y, YU J, et al. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor[J]. Journal of the American Chemical Society, 2021, 143(7): 2665-2670.
[69] FAN Q, FU H, LUO Z, et al. Near-infrared absorbing polymer acceptors enabled by selenophene-fused core and halogenated end-group for binary all-polymer solar cells with efficiency over 16%[J]. Nano Energy, 2022, 92: 106718.
[70] SHAN T, HONG Y, ZHU L, et al. Achieving optimal bulk heterojunction in all-polymer solar cells by sequential processing with nonorthogonal solvents[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42438-42446.
[71] FAN B, LIN F, WU X, et al. Selenium-containing organic photovoltaic materials[J]. Accounts of Chemical Research, 2021, 54(20): 3906-3916.
[72] WU Q, WANG W, WU Y, et al. Tailoring polymer acceptors by electron linkers for achieving efficient and stable all-polymer solar cells[J]. National Science Review, 2022, 9(2): nwab151.
[73] LIN F, JIANG K, KAMINSKY W, et al. A non-fullerene acceptor with enhanced intermolecular π-core interaction for high-performance organic solar cells[J]. Journal of the American Chemical Society, 2020, 142(36): 15246-15251.
[74] FU H, FAN Q, GAO W, et al. 16.3% efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone[J]. Science China Chemistry, 2022, 65(2): 309-317.
[75] SEO S, SUN C, LEE J W, et al. Importance of high-electron mobility in polymer acceptors for efficient all-polymer solar cells: combined engineering of backbone building unit and regioregularity[J]. Advanced Functional Materials, 2022, 32(5): 2108508.
[76] LI M, WANG Q, LIU J, et al. Sequential deposition enables high-performance nonfullerene organic solar cells[J]. Materials Chemistry Frontiers, 2021, 5(13): 4851-4873.
[77] CONINGS B, BERTHO S, VANDEWAL K, et al. Modeling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells[J]. Applied Physics Letters, 2010, 96(16): 163301.
[78] CADDEO C, ACKERMANN J, MATTONI A. A theoretical perspective on the thermodynamic stability of polymer blends for solar cells: from experiments to predictive modeling[J]. Solar RRL, 2022, 6(9): 2200172.
[79] AYZNER A L, TASSONE C J, TOLBERT S H, et al. Reappraising the need for bulk heterojunctions in polymer-fullerene photovoltaics: the role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells[J]. The Journal of Physical Chemistry C, 2009, 113(46): 20050-20060.
[80] ROCHESTER C W, MAUGER S A, MOULé A J. Investigating the morphology of polymer/fullerene layers coated using orthogonal solvents[J]. The Journal of Physical Chemistry C, 2012, 116(13): 7287-7292.
[81] LAI X, LAI H, DU M, et al. Bilayer quasiplanar heterojunction organic solar cells with a co-acceptor: a synergistic approach for stability and efficiency[J]. Chemistry of Materials, 2022, 34(17): 7886-7896.
[82] CAO C, WANG H, QIU D, et al. Quasiplanar heterojunction all-polymer solar cells: a dual approach to stability[J]. Advanced Functional Materials, 2022, 32(29): 2201828.
修改评论