[1]朱智娟. 标准时延测试仪的设计和时间同步技术的研究[D]. 浙江大学, 2002.
[2]孙雪淋. 基于北斗授时系统的恒温晶振驯服守时技术研究[D]. 西南科技大学, 2021.
[3]黄维辰. 面向下一代移动通信系统的多通道射频收发信机以及频率源的研究[D]. 东南大学, 2017.
[4]CADY W G. The Piezo-Electric Resonator[J]. Proceedings of the IRE, 1922, 10(2): 83-114.
[5]HORTON J W, MARRISON W A. Precision Determination of Frequency[J/OL]. Proceedings of the IRE, 1928, 16(2): 137-154.
[6]喻彩斌. 高稳恒温石英晶体振荡器设计[D]. 湖南大学, 2010.
[7]HORTON J W, MARRISON W A. Precision Determination of Frequency[J]. Proceedings of the IRE, 1928, 16(2): 137-154.
[8]STAUDTE J H. Micro Resonators in Integrated Electronics[C]//22nd Annual Symposium on Frequency Control. Atlantic City, NJ, USA: IEEE, 1968: 226-231.
[9]VALDOIS M, BESSON J, GAGNEPAIN J J. Influence of Environment Conditions on a Quartz Resonator[C]//28th Annual Symposium on Frequency Control. Atlantic City, NJ, USA: IEEE, 1974: 19-32.
[10]BERTE M, HARTEMANN P. Quartz Resonators at Fundamental Frequencies Greater than 100 MHz[C]//1978 Ultrasonics Symposium. IEEE, 1978: 148-151.
[11]NOMURA T , OKUHARA M . Frequency shifts of piezoelectric quartz crystals immersed in organic liquids[J]. Analytica Chimica Acta, 1982, 142(OCT):281-284.
[12]韩锡振. 压电石英晶体发展概况及趋势[J]. 电子元件与材料, 1993(Z1): 62-67.
[13]SAKAI G, SAIKI T, UDA T, et al. Selective and repeatable detection of human serum albumin by using piezoelectric immunosensor[J]. Sensors and Actuators B: Chemical, 1995, 24(1-3): 134-137.
[14]NOMURA N, WATANABE H, AOYAGI Y. 212.5[MHz] fundamental oscillator for fiber channel application[C]//Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005. Vancouver, BC, Canada: IEEE, 2005: 530-533.
[15]RABE J, BUTTGENBACH S, ZIMMERMANN B, et al. Design, manufacturing, and characterization of high-frequency thickness-shear mode resonators[C]//Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052). Kansas City, MO, USA: IEEE, 2000: 106-112.
[16]HUNG V N, ABE T, MINH P N, et al. High-frequency one-chip multichannel quartz crystal microbalance fabricated by deep RIE[J]. Sensors and Actuators A: Physical, 2003, 108(1-3): 91-96.
[17]WU X, ZHOU C, XI P, et al. Etching quartz with inductively coupled plasma etching equipment[C]//KLEY E B, HERZIG H P. Optical Science and Technology, SPIE’s 48th Annual Meeting. San Diego, California, USA, 2003: 192
[2023-03-08].
[18]FUKASAWA T, HORIIKE Y. Deep Dry Etching of Quartz Plate Over 100 µm in Depth Employing Ultra-Thick Photoresist (SU-8)[J/OL]. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 6A): 3702-3706.
[19]ABE T, ITASAKA Y. Dry etching method using double-layered etching mask for modulating shape of deep-etched quartz surface[C]//2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. Beijing, China: IEEE, 2011: 1508-1511.
[20]HYOUNG-KYOON JUNG, YOUNG-SUK HWANG, IK-JAE HYEON, et al. Silicon/quartz bonding and quartz deep RIE for the fabrication of quartz resonator structures[C]//2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Sanya, China: IEEE, 2008: 1172-1176.
[21]HAN C, LI C, ZHAO Y, et al. Research on a Micro-Processing Technology for Fabricating Complex Structures in Single-Crystal Quartz[J]. Micromachines, 2020, 11(3): 337.
[22]LI B, LI C, ZHAO Y, et al. Deep Reactive Ion Etching of Z-Cut Alpha Quartz for MEMS Resonant Devices Fabrication[J]. Micromachines, 2020, 11(8): 724.
[23]房子敬. 超薄压电晶体谐振器的研究与制备[D]. 浙江大学, 2021.
[24]KOURANI A, YANG Y, GONG S. A Ku-Band Oscillator Utilizing Overtone Lithium Niobate RF-MEMS Resonator for 5G[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(7): 681-684.
[25]李宇. 多边形电极石英晶体谐振器的振动分析[D]. 南京航空航天大学, 2019.
[26]TIAN W, CUI Y, RAN E, et al. Research on Common-Mode Rejection Quartz Crystal Resonators[C]//2007 International Conference on Information Acquisition. Seogwipo-si: IEEE, 2007: 63-68.
[27]ZHANG J L, LIAO S, CHEN C, et al. Research on Trimming Frequency-Increasing Technology for Quartz Crystal Resonator Using Laser Etching[J]. Micromachines, 2021, 12(8): 894.
[28]IWATA I, ISHII O, YASUIKE R, et al. Suppression of inharmonic modes using peripheral electrodes in VHF fundamental AT-cut resonators[C]//Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052). Kansas City, MO, USA: IEEE, 2000: 353-358.
[29]JI J, OIGAWA H, ZHAO M, et al. Electrode Optimization of 100 MHz High-Frequency Quartz Resonator Based on Equivalent Mass Method[J]. Japanese Journal of Applied Physics, 2013, 52(2R): 025201.
[30]DUAN Q R, JIN J, YANG F, et al. Research On Inverted-Mesa-Type Quartz Resonator[C]//2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). Zhengzhou, Henan Province, China: IEEE, 2021: 71-75.
[31]WANG P, LI M, LING M, et al. Design and Simulation of a Piezoelectric Micro-QCM with High Resonance Frequency and Quality Factor[C]//2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). Zhengzhou, Henan Province, China: IEEE, 2021: 522-525.
[32]ABE T, HUNG V, ESASHI M. Inverted mesa-type quartz crystal resonators fabricated by deep-reactive ion etching[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2006, 53(7): 1234-1236.
[33]RAHIMI S, ABDI Y, ARZI E. Impact of TiO2/Graphene-Oxide coated on quartz crystal resonator on the sensing performance of NH3, N2 and ethanol at room temperature[J]. Physica B: Condensed Matter, 2021, 623: 413348.
[34]ARMANIOUS A, AGNARSSON B, LUNDGREN A, et al. Determination of Nanosized Adsorbate Mass in Solution Using Mechanical Resonators: Elimination of the So Far Inseparable Liquid Contribution[J]. The Journal of Physical Chemistry C, 2021, 125(41): 22733-22746.
[35]雷震寰, 迟洪广. 应用离子束刻蚀技术提高石英晶体谐振器基频的研究[J]. 山东大学学报(自然科学版), 1983.
[36]雷震寰, 迟洪广, 王宜华. 应用离子束刻蚀技术提高石英谐振器基频的实验研究[J]. 电子学报, 1984, 000(004):106-107.
[37]王荣彬. 离子束刻蚀高基频石英谐振器的研究与应用[J]. 电讯技术, 1991, 31(2):29-36.
[38]崔巍. 化学腐蚀高基频石英谐振器的研制[C]// 中国电子学会第十四届电子元件学术年会论文集. 2006.
[39]张建国. 利用电脑设备实现石英谐振器的表面贴装[J]. 世界产品与技术, 2002(5): 4.
[40]张辉. 石英各向异性湿法刻蚀机理及工艺模型研究[D]. 东南大学, 2018.
[41]张良莹. 电介质物理[M]. 西安交通大学出版社, 1991: 355-356.
[42]胡子泳. 一种高频低噪声温度补偿晶体振荡器的设计[D]. 电子科技大学, 2020.
[43]韩伟. 小尺寸石英晶体谐振器的质量改善研究-以P公司FW16M产品为例[D]. 山东大学, 2016.
[44]HELLE J. VCXO Theory and Practice[C/OL]//29th Annual Symposium on Frequency Control. Atlantic City, NJ, USA: IEEE, 1975: 300-307.
[45]TIERSTEN H F. Linear Piezoelectric Plate Vibrations[M]. Boston, MA: Springer US, 1969.
[46]坎贝尔 S, 曾莹. 微电子制造科学原理与工程技术[M]. 电子工业出版社, 2003: 3.
[47]FRANSSILA S. 微加工导论[M]. 电子工业出版社, 2006: 1-20.
[48]姜岩峰, 谢孟贤. 微纳电子器件[M]. 化学工业出版社, 2005: 1-20.
[49]王喆垚. 微系统设计与制造[M]. 清华大学出版社, 2015: 1-20.
[50]范华良, 曹向群. 光刻技术综述[J]. 光学仪器, 1992(3): 29-32.
[51]XU M, LIU L. 光刻技术与光刻机[J]. 2004(8): 3.
[52]陈传梁, 徐庆仁, 刘淑敏. 微孔加工技术[J]. 机械工艺师, 1984: 7.
[53]郭婷. 印刷业与电子业的结合——印刷电路板[J]. 网印工业, 2008(1): 37-39.
[54]KILBY J S, ROUP R R. Electrical circuit elements: US, US2841508 A[P]. 1958.
[55]翁寿松. 摩尔定律与半导体设备[J]. 电子工业专用设备, 2002, 31(4): 4.
[56]孔祥林. 印刷电路板的发展动向[J]. 丝网印刷, 1991(2): 19-22.
[57]傅莉. 印制电路板的发展及前景[J]. 电脑与电信, 2010(5): 2.
[58]同小锦. 功率VDMOS器件中多晶硅刻蚀工艺研究[D]. 西安电子科技大学, 2019.
[59]SHUBHAVA, JAYARAMA A, KANNARPADY G K, et al. Chemical etching of glasses in hydrofluoric Acid: A brief review[J]. Materials Today: Proceedings, 2022, 55: 46-51.
[60]爱普生拓优科梦株式会社. 压电振子及其制造方法. CN200710104758.X[P]. 2007.
[61]EMSBERGER F M. Structural effects in the chemical reactivity of silica and silicates[J]. Journal of Physics & Chemistry of Solids, 1960, 13(3-4):347-351.
[62]陆旺. 新型小型化石英振子设计与实现[D]. 电子科技大学. 2017.
[63]GUTTWEIN, ARTHUR D B, THEODORE J.VHF-UHF PIEZOELECTRIC RESONATORS. US3694677A[P]. 1971.
[64]姚晓文, 吴敬军, 杜敏. 一种高基频石英晶体谐振器的加工方法. CN202111540339.7[P]. 2022.
[65]VAREL H, ASHKENASI D, ROSENFELD A. Micromachining of quartz with ultrashort laser pulses[J]. Applied Physics A: Materials Science & Processing, 1997, 65(4-5): 367-373.
[66]TELLIER C R. Some results on chemical etching of AT-cut quartz wafers in ammonium bifluoride solutions[J]. Journal of Materials Science, 1982, 17(5): 1348-1354.
[67]WAN Y, LUAN X, ZHOU L. Wet Etching of Quartz Using a Solution Based on Organic Solvents and Anhydrous Hydrofluoric Acid[J]. Materials, 2022, 15(18): 6475.
[68]LI W T, BULLA D A P, BOSWELL R. Surface oxidation of Al masks for deep dry-etch of silica optical waveguides[J]. Coatings Technology, 2007, 201(9-11): 4979-4983.
[69]KOLARI K. High etch selectivity for plasma etching SiO2 with AlN and Al2O3 masks[J]. Microelectronic Engineering, 2008, 85(5-6): 985-987.
[70]OSIPOV A A, IANKEVICH G A, ALEXANDROV S E. Monocrystalline Quartz ICP Etching: Road to High-Temperature Dry Etching[J]. Plasma Chemistry and Plasma Processing, 2020, 40(1): 423-431.
[71]KAMIJO A, MONOE S, MURAYAMA N. Wafer-level quartz dry etching technology[C]//2014 IEEE International Frequency Control Symposium (FCS). Taipei, Taiwan: IEEE, 2014: 1-4.BLIZNETSOV V, LIN H M, ZHANG Y J. Deep SiO2 etching with Al and AlN masks for MEMS devices[J]. Journal of Micromechanics and Microengineering, 2015, 25(8): 1.
修改评论