[1] ARIDOR M, HANNAN L A. Traffic jam: a compendium of human diseases that affect intracellulartransport processes[J]. Traffic, 2000, 1(11): 836-851.
[2] COLEMAN D A. Replacement migration, or why everyone is going to have to live in Korea: afable for our times from the United Nations[J]. Philosophical Transactions of the Royal Societyof London. Series B: Biological Sciences, 2002, 357(1420): 583-598.
[3] ANTONIOU C, BALAKRISHNA R, KOUTSOPOULOS H N. A synthesis of emerging datacollection technologies and their impact on traffic management applications[J]. EuropeanTransport Research Review, 2011, 3: 139-148.
[4] LI Y, GUNOPULOS D, LU C, et al. Urban travel time prediction using a small number ofGPS floating cars[C]//Proceedings of the 25th ACM SIGSPATIAL International Conference onAdvances in Geographic Information Systems. 2017: 1-10.
[5] LEE W H, TSENG S S, TSAI S H. A knowledge based real-time travel time prediction systemfor urban network[J]. Expert systems with Applications, 2009, 36(3): 4239-4247.
[6] CHU L, OH S, RECKER W. Adaptive Kalman filter based freeway travel time estimation[C]//84th TRB Annual Meeting, Washington DC. 2005.
[7] MASIERO L P, CASANOVA M A, DE CARVALHO M T M. Travel time prediction usingmachine learning[C]//Proceedings of the 4th ACM SIGSPATIAL International Workshop onComputational Transportation Science. 2011: 34-38.
[8] SIRIPANPORNCHANA C, PANICHPAPIBOON S, CHAOVALIT P. Travel-time predictionwith deep learning[C]//2016 ieee region 10 conference (tencon). IEEE, 2016: 1859-1862.
[9] 陈立玮, 冯岩松, 赵东岩. 基于弱监督学习的海量网络数据关系抽取[J]. 计算机研究与发展, 2013, 50(9): 1825-1835.
[10] 伍星, 何中市, 黄永文. 基于弱监督学习的产品特征抽取[J]. 计算机工程, 2009, 35(13):199-201.
[11] 杨辉, 权冀川, 梁新宇, 等. 基于弱监督学习的目标检测研究进展[J]. 计算机工程与应用,2021, 57(16): 40-49.
[12] 孙美君, 吕超章, 韩亚洪, 等. 弱监督学习下的融合注意力机制的表面缺陷检测[J]. 计算机辅助设计与图形学学报, 2021, 33(6): 920-928.
[13] CHEN Y, BI J, WANG J Z. MILES: Multiple-instance learning via embedded instance selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 1931-1947.
[14] ZHOU Z H, SUN Y Y, LI Y F. Multi-instance learning by treating instances as non-iid samples[C]//Proceedings of the 26th annual international conference on machine learning. 2009: 1249-1256.
[15] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic image segmentationwith deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE transactionson pattern analysis and machine intelligence, 2017, 40(4): 834-848.
[16] FAN H, SU H, GUIBAS L J. A point set generation network for 3d object reconstructionfrom a single image[C]//Proceedings of the IEEE conference on computer vision and patternrecognition. 2017: 605-613.
[17] 李瑞敏, 陈熙怡. 多源数据融合的道路旅行时间估计方法研究[J]. 公路交通科技, 2014, 31(2): 99-103.
[18] 沈旅欧, 庄岩浩, 刘伟铭, 等. 基于修正算法的高速公路路段旅行时间估计[J]. 华南理工大学学报: 自然科学版, 2015(4): 20-27.
[19] 沙云飞, 曹瑾鑫, 史其信. 基于GPS 的路段旅行时间和速度估计算法研究[J]. ITS 通讯,2006, 8(1): 46-48.
[20] TIESYTE D, JENSEN C S. Similarity-based prediction of travel times for vehicles travelingon known routes[C]//Proceedings of the 16th ACM SIGSPATIAL international conference onAdvances in geographic information systems. 2008: 1-10.
[21] IDÉ T, SUGIYAMA M. Trajectory regression on road networks[C]//Proceedings of the AAAIConference on Artificial Intelligence: volume 25. 2011.
[22] HUNTER T, HOFLEITNER A, REILLY J, et al. Arriving on time: estimating travel timedistributions on large-scale road networks[A]. 2013.
[23] WU H, MAO J, SUN W, et al. Probabilistic robust route recovery with spatio-temporal dynamics[C]//Proceedings of the 22nd ACM SIGKDD International Conference on KnowledgeDiscovery and Data Mining. 2016: 1915-1924.
[24] GANTI R, SRIVATSA M, ABDELZAHER T. On limits of travel time predictions: Insightsfrom a new york city case study[C]//2014 IEEE 34th International Conference on DistributedComputing Systems. IEEE, 2014: 166-175.
[25] WANG Y, ZHENG Y, XUE Y. Travel time estimation of a path using sparse trajectories[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery anddata mining. 2014: 25-34.
[26] WANG D, ZHANG J, CAO W, et al. When will you arrive? estimating travel time based ondeep neural networks[C]//Thirty-Second AAAI Conference on Artificial Intelligence. 2018.
[27] WANG Z, FU K, YE J. Learning to estimate the travel time[C]//Proceedings of the 24th ACMSIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 858-866.
[28] YANG T, TANG X, LIU R. Dual temporal gated multi-graph convolution network for taxidemand prediction[J]. Neural Computing and Applications, 2021: 1-16.
[29] PENG W, HONG X, CHEN H, et al. Learning graph convolutional network for skeleton-basedhuman action recognition by neural searching[C]//Proceedings of the AAAI Conference on ArtificialIntelligence: volume 34. 2020: 2669-2676.
[30] WU Z, PAN S, LONG G, et al. Connecting the dots: Multivariate time series forecasting withgraph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference onKnowledge Discovery & Data Mining. 2020: 753-763.
[31] JAIN A, ZAMIR A R, SAVARESE S, et al. Structural-rnn: Deep learning on spatio-temporalgraphs[C]//Proceedings of the ieee conference on computer vision and pattern recognition.2016: 5308-5317.
[32] YAN S, XIONG Y, LIN D. Spatial temporal graph convolutional networks for skeleton-basedaction recognition[C]//Thirty-second AAAI conference on artificial intelligence. 2018.
[33] LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: Data-driventraffic forecasting[A]. 2017.
[34] SEO Y, DEFFERRARD M, VANDERGHEYNST P, et al. Structured sequence modeling withgraph convolutional recurrent networks[C]//International Conference on Neural InformationProcessing. Springer, 2018: 362-373.
[35] YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: A deep learning frameworkfor traffic forecasting[A]. 2017.
[36] ZHANG J, SHI X, XIE J, et al. Gaan: Gated attention networks for learning on large andspatiotemporal graphs[A]. 2018.
[37] GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networksfor traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence:volume 33. 2019: 922-929.
[38] BAI L, YAO L, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting[J]. Advances in neural information processing systems, 2020, 33: 17804-17815.
[39] LIN H, GAO Z, XU Y, et al. Conditional local convolution for spatio-temporal meteorologicalforecasting[A]. 2021: arXiv-2101.
[40] 王楠, 王勇峰, 刘积仁. 一个基于位置点匹配的地图匹配算法[J]. 东北大学学报(自然科学版), 1999, 20(4): 344.
[41] 李清泉, 黄练. 基于GPS 轨迹数据的地图匹配算法[J]. 测绘学报, 2010, 39(2): 0.
[42] 苏洁, 周东方, 岳春生. GPS 车辆导航中的实时地图匹配算法[J]. 测绘学报, 2001, 30(3):252-256.
[43] 王美玲, 程林. 浮动车地图匹配算法研究[J]. 测绘学报, 2012, 41(1): 133.
[44] RAHMANI M, KOUTSOPOULOS H N. Path inference of low-frequency GPS probes for urbannetworks[C]//2012 15th International IEEE Conference on Intelligent Transportation Systems.IEEE, 2012: 1698-1701.
[45] RAHMANI M, KOUTSOPOULOS H N. Path inference from sparse floating car data for urbannetworks[J]. Transportation Research Part C: Emerging Technologies, 2013, 30: 41-54.
[46] ZHENG Y, QUDDUS M A. Weight-based shortest-path aided map-matching algorithm forlow-frequency positioning data[R]. 2011.
[47] LOU Y, ZHANG C, ZHENG Y, et al. Map-matching for low-sampling-rate GPS trajectories[C]//Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographicinformation systems. 2009: 352-361.
[48] JAGADEESH G R, SRIKANTHAN T. Robust real-time route inference from sparse vehicleposition data[C]//17th International IEEE Conference on Intelligent Transportation Systems(ITSC). IEEE, 2014: 296-301.
[49] LIAO C, LU J, CHEN H. Synthesizing routes for low sampling trajectories with absorbingMarkov chains[C]//International Conference on Web-Age Information Management. Springer,2011: 614-626.
[50] SU H, ZHENG K, HUANG J, et al. Calibrating trajectory data for spatio-temporal similarityanalysis[J]. The VLDB Journal, 2015, 24(1): 93-116.
[51] ZHENG K, ZHENG Y, XIE X, et al. Reducing uncertainty of low-sampling-rate trajectories[C]//2012 IEEE 28th international conference on data engineering. IEEE, 2012: 1144-1155.
[52] REN H, RUAN S, LI Y, et al. MTrajRec: Map-Constrained Trajectory Recovery via Seq2SeqMulti-task Learning[C]//Proceedings of the 27th ACM SIGKDD Conference on KnowledgeDiscovery & Data Mining. 2021: 1410-1419.
[53] SHAO K, WANG K, CHEN L, et al. Estimation of Urban Travel Time with Sparse TrafficSurveillance Data[C]//Proceedings of the 2020 4th High Performance Computing and ClusterTechnologies Conference & 2020 3rd International Conference on Big Data and Artificial Intelligence.2020: 218-223.
[54] MIL S, PIANTANAKULCHAI M. Modified Bayesian data fusion model for travel time estimationconsidering spurious data and traffic conditions[J]. Applied Soft Computing, 2018, 72:65-78.
[55] ZHANG Y, CHAROENPHAKDEE N, WU Z, et al. Learning from aggregate observations[A].2020.
[56] DUFRESNE D. Sums of lognormals[C]//Actuarial Research Conference. 2008: 1-6.
[57] CORDONNIER J B, LOUKAS A. Extrapolating paths with graph neural networks[A]. 2019.
[58] ZHOU Z H. A brief introduction to weakly supervised learning[J]. National science review,2018, 5(1): 44-53.
[59] DIETTERICH T G, LATHROP R H, LOZANO-PÉREZ T. Solving the multiple instance problemwith axis-parallel rectangles[J]. Artificial intelligence, 1997, 89(1-2): 31-71.
[60] RICHARDSON A, TAYLOR M. Travel time variability on commuter journeys[J]. High SpeedGround Transportation Journal, 1978, 12(1).
[61] RAKHA H A, EL-SHAWARBY I, ARAFEH M, et al. Estimating path travel-time reliability[C]//2006 IEEE Intelligent Transportation Systems Conference. IEEE, 2006: 236-241.
[62] AREZOUMANDI M. Estimation of travel time reliability for freeways using mean and standarddeviation of travel time[J]. Journal of Transportation Systems Engineering and InformationTechnology, 2011, 11(6): 74-84.
[63] CARBONNEAU M A, CHEPLYGINA V, GRANGER E, et al. Multiple instance learning: Asurvey of problem characteristics and applications[J]. Pattern Recognition, 2018, 77: 329-353.
[64] YEN J Y. An algorithm for finding shortest routes from all source nodes to a given destinationin general networks[J]. Quarterly of applied mathematics, 1970, 27(4): 526-530.
[65] LI X, CONG G, SUN A, et al. Learning travel time distributions with deep generative model[M]//The World Wide Web Conference. 2019: 1017-1027.
[66] LIU Z, WU Z, WANG M, et al. Multi-View Spatial-Temporal Model for Travel Time Estimation[C]//Proceedings of the 29th International Conference on Advances in Geographic InformationSystems. 2021: 646-649.
[67] LI Y, FU K, WANG Z, et al. Multi-task representation learning for travel time estimation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &Data Mining. 2018: 1695-1704.
[68] FANG X, HUANG J, WANG F, et al. Constgat: Contextual spatial-temporal graph attentionnetwork for travel time estimation at baidu maps[C]//Proceedings of the 26th ACM SIGKDDInternational Conference on Knowledge Discovery & Data Mining. 2020: 2697-2705.
[69] ZHAO L, SONG Y, ZHANG C, et al. T-gcn: A temporal graph convolutional network fortraffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9):3848-3858.
[70] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[A]. 2016.
[71] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[A]. 2017.
[72] YUN S, JEONG M, KIM R, et al. Graph transformer networks[J]. Advances in Neural InformationProcessing Systems, 2019, 32: 11983-11993.
[73] JIN G, YAN H, LI F, et al. Spatial-Temporal Dual Graph Neural Networks for Travel TimeEstimation[A]. 2021.
[74] JAMES J. Citywide Estimation of Travel Time Distributions with Bayesian Deep Graph Learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2021.
[75] GAL Y, GHAHRAMANI Z. A theoretically grounded application of dropout in recurrent neuralnetworks[J]. Advances in neural information processing systems, 2016, 29.
[76] HAKLAY M, WEBER P. Openstreetmap: User-generated street maps[J]. IEEE Pervasivecomputing, 2008, 7(4): 12-18.
[77] YANG C, GIDOFALVI G. Fast map matching, an algorithm integrating hidden Markov modelwith precomputation[J]. International Journal of Geographical Information Science, 2018, 32(3): 547-570.
[78] WANG H, TANG X, KUO Y H, et al. A simple baseline for travel time estimation using largescaletrip data[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10(2): 1-22.
[79] FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. Annals ofstatistics, 2001: 1189-1232.
[80] JINDAL I, CHEN X, NOKLEBY M, et al. A unified neural network approach for estimatingtravel time and distance for a taxi trip[A]. 2017.
[81] LI M, AHMED A, SMOLA A J. Inferring movement trajectories from GPS snippets[C]//Proceedings of the Eighth ACM International Conference on Web Search and Data Mining.2015: 325-334.
修改评论