[1] TING D S W, CHEUNG G C M, WONG T Y. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review[J]. Clinical & experimental ophthalmology, 2016, 44(4): 260-277.
[2] LI T, BO W, HU C, et al. Applications of deep learning in fundus images: A review[J]. Medical Image Analysis, 2021, 69: 101971.
[3] EDUPUGANTI V G, CHAWLA A, KALE A. Automatic optic disk and cup segmentation of fundus images using deep learning[C]//2018 25th IEEE international conference on image processing (ICIP). IEEE, 2018: 2227-2231.
[4] ABRÀMOFF M D, GARVIN M K, SONKA M. Retinal imaging and image analysis[J]. IEEE reviews in biomedical engineering, 2010, 3: 169-208.
[5] HUANG Y, LIN L, CHENG P, et al. Lesion-based contrastive learning for diabetic retinopathy grading from fundus images[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part II 24. Springer, 2021: 113-123.
[6] YAMASHITA R, NISHIO M, DO R K G, et al. Convolutional neural networks: an overview and application in radiology[J]. Insights into imaging, 2018, 9: 611-629.
[7] TING D S W, CHEUNG C Y L, LIM G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. Jama, 2017, 318(22): 2211-2223.
[8] PANG G, SHEN C, CAO L, et al. Deep learning for anomaly detection: A review[J]. ACM computing surveys (CSUR), 2021, 54(2): 1-38.
[9] CHALAPATHY R, CHAWLA S. Deep learning for anomaly detection: A survey[A]. 2019.
[10] CHEN B, WANG L, WANG X, et al. Abnormality detection in retinal image by individualized background learning[J]. Pattern Recognition, 2020, 102: 107209.
[11] DU Y, WANG L, MENG D, et al. Individualized Statistical Modeling of Lesions in Fundus Images for Anomaly Detection[J]. IEEE Transactions on Medical Imaging, 2022.
[12] BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD–A comprehensive real-world dataset for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 9592-9600.
[13] GEORGESCU M I, BARBALAU A, IONESCU R T, et al. Anomaly detection in video via self-supervised and multi-task learning[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 12742-12752.
[14] RUDOLPH M, WANDT B, ROSENHAHN B. Same same but differnet: Semi-supervised defect detection with normalizing flows[C]//Proceedings of the IEEE/CVF winter conference on applications of computer vision. 2021: 1907-1916.
[15] TSCHUCHNIG M E, GADERMAYR M. Anomaly detection in medical imaging-a mini review[C]//Data Science–Analytics and Applications: Proceedings of the 4th International Data Science Conference–iDSC2021. Springer, 2022: 33-38.
[16] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. science, 2006, 313(5786): 504-507.
[17] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [J]. Communications of the ACM, 2020, 63(11): 139-144.
[18] GONG D, LIU L, LE V, et al. Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 1705-1714.
[19] ZHOU K, LI J, LUO W, et al. Proxy-bridged image reconstruction network for anomaly detection in medical images[J]. IEEE Transactions on Medical Imaging, 2021, 41(3): 582-594.
[20] ZHOU K, XIAO Y, YANG J, et al. Encoding structure-texture relation with p-net for anomaly detection in retinal images[C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XX 16. Springer, 2020: 360-377.
[21] SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]//Information Processing in Medical Imaging: 25th International Conference, IPMI 2017, Boone, NC, USA, June 25-30, 2017, Proceedings. Springer, 2017: 146-157.
[22] SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks[J]. Medical image analysis, 2019, 54: 30-44.
[23] AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. Ganomaly: Semi-supervised anomaly detection via adversarial training[C]//Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part III 14. Springer, 2019: 622-637.
[24] REN J, LIU P J, FERTIG E, et al. Likelihood ratios for out-of-distribution detection[J]. Advances in neural information processing systems, 2019, 32.
[25] LI C L, SOHN K, YOON J, et al. Cutpaste: Self-supervised learning for anomaly detection and localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 9664-9674.
[26] ZAVRTANIK V, KRISTAN M, SKOČAJ D. Draem-a discriminatively trained reconstruction embedding for surface anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 8330-8339.
[27] SATO J, SUZUKI Y, WATAYA T, et al. Anatomy-aware Self-supervised Learning for Anomaly Detection in Chest Radiographs[A]. 2022.
[28] LI H, IWAMOTO Y, HAN X, et al. An Accurate Unsupervised Liver Lesion Detection Method Using Pseudo-lesions[C]//Medical Image Computing and Computer Assisted Intervention– MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part VIII. Springer, 2022: 214-223.
[29] WANG Y, YAO Q, KWOK J T, et al. Generalizing from a few examples: A survey on few-shot learning[J]. ACM computing surveys (csur), 2020, 53(3): 1-34.
[30] RUFF L, VANDERMEULEN R A, GÖRNITZ N, et al. Deep semi-supervised anomaly detection[A]. 2019.
[31] TABERNIK D, ŠELA S, SKVARČ J, et al. Segmentation-based deep-learning approach for surface-defect detection[J]. Journal of Intelligent Manufacturing, 2020, 31(3): 759-776.
[32] QUELLEC G, LAMARD M, CONZE P H, et al. Automatic detection of rare pathologies in fundus photographs using few-shot learning[J]. Medical image analysis, 2020, 61: 101660.
[33] PANG G, DING C, SHEN C, et al. Explainable deep few-shot anomaly detection with deviation networks[A]. 2021.
[34] TIAN Y, MAICAS G, PU L Z C T, et al. Few-shot anomaly detection for polyp frames from colonoscopy[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VI 23. Springer, 2020: 274-284.
[35] HANSEN S, GAUTAM S, JENSSEN R, et al. Anomaly detection-inspired few-shot medical image segmentation through self-supervision with supervoxels[J]. Medical Image Analysis, 2022, 78: 102385.
[36] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention– MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, 2015: 234-241.
[37] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[38] BOTTOU L. Stochastic gradient descent tricks[J]. Neural Networks: Tricks of the Trade: Second Edition, 2012: 421-436.
[39] SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning[C]//International conference on machine learning. PMLR, 2013: 1139-1147.
[40] RUDER S. An overview of gradient descent optimization algorithms[A]. 2016.
[41] MHASKAR H N, MICCHELLI C A. How to choose an activation function[J]. Advances in Neural Information Processing Systems, 1993, 6.
[42] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th international conference on machine learning (ICML-10). 2010: 807- 814.
[43] MAAS A L, HANNUN A Y, NG A Y, et al. Rectifier nonlinearities improve neural network acoustic models[C]//Proc. icml: volume 30. Atlanta, Georgia, USA, 2013: 3.
[44] BOUREAU Y L, PONCE J, LECUN Y. A theoretical analysis of feature pooling in visual recognition[C]//Proceedings of the 27th international conference on machine learning (ICML- 10). 2010: 111-118.
[45] WANG T, WU D J, COATES A, et al. End-to-end text recognition with convolutional neural networks[C]//Proceedings of the 21st international conference on pattern recognition (ICPR2012). IEEE, 2012: 3304-3308.
[46] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: A survey[J]. ACM computing surveys (CSUR), 2009, 41(3): 1-58.
[47] LIU F T, TING K M, ZHOU Z H. Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2012, 6(1): 1-39.
[48] CAMPOS G O, ZIMEK A, SANDER J, et al. On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study[J]. Data mining and knowledge discovery, 2016, 30: 891-927.
[49] PANG G, SHEN C, VAN DEN HENGEL A. Deep anomaly detection with deviation networks[C]//Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 2019: 353-362.
[50] ZIMEK A, SCHUBERT E, KRIEGEL H P. A survey on unsupervised outlier detection in high-dimensional numerical data[J]. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2012, 5(5): 363-387.
[51] PEVNỲ T. Loda: Lightweight on-line detector of anomalies[J]. Machine Learning, 2016, 102: 275-304.
[52] PANG G, CAO L, CHEN L, et al. Learning homophily couplings from non-iid data for joint feature selection and noise-resilient outlier detection[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. IJCAI, 2017: 2585-2591.
[53] PANG G, CAO L, CHEN L, et al. Sparse modeling-based sequential ensemble learning for effective outlier detection in high-dimensional numeric data[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 32. 2018.
[54] CAO L. Coupling learning of complex interactions[J]. Information Processing & Management, 2015, 51(2): 167-186.
[55] AGGARWAL C C, AGGARWAL C C. An introduction to outlier analysis[M]. Springer, 2017.
[56] YONEKAWA Y, MODI Y S, KIM L A, et al. American Society of Retina Specialists clinical practice guidelines: management of nonproliferative and proliferative diabetic retinopathy without diabetic macular edema[J]. Journal of vitreoretinal diseases, 2020, 4(2): 125-135.
[57] LECHNER J, O’LEARY O E, STITT A W. The pathology associated with diabetic retinopathy [J]. Vision research, 2017, 139: 7-14.
[58] GRAHAM B. Kaggle diabetic retinopathy detection competition report[J]. University of Warwick, 2015: 24-26.
[59] LIN L, LI M, HUANG Y, et al. The SUSTech-SYSU dataset for automated exudate detection and diabetic retinopathy grading[J]. Scientific Data, 2020, 7(1): 409.
[60] CHENG P, LIN L, HUANG Y, et al. I-secret: Importance-guided fundus image enhancement via semi-supervised contrastive constraining[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VIII 24. Springer, 2021: 87-96.
[61] FU H, WANG B, SHEN J, et al. Evaluation of retinal image quality assessment networks in different color-spaces[C]//Medical Image Computing and Computer Assisted Intervention– MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part I 22. Springer, 2019: 48-56.
[62] PORWAL P, PACHADE S, KAMBLE R, et al. Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research[J]. Data, 2018, 3(3): 25.
[63] LI T, GAO Y, WANG K, et al. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening[J]. Information Sciences, 2019, 501: 511-522.
[64] ABRÀMOFF M D, FOLK J C, HAN D P, et al. Automated analysis of retinal images for detection of referable diabetic retinopathy[J]. JAMA ophthalmology, 2013, 131(3): 351-357.
[65] DECENCIÈRE E, ZHANG X, CAZUGUEL G, et al. Feedback on a publicly distributed image database: the Messidor database[J]. Image Analysis & Stereology, 2014, 33(3): 231-234.
[66] SALEHI M, SADJADI N, BASELIZADEH S, et al. Multiresolution knowledge distillation for anomaly detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 14902-14912.
[67] ZAVRTANIK V, KRISTAN M, SKOČAJ D. Reconstruction by inpainting for visual anomaly detection[J]. Pattern Recognition, 2021, 112: 107706.
[68] BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 4183-4192.
[69] PERERA P, NALLAPATI R, XIANG B. Ocgan: One-class novelty detection using gans with constrained latent representations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 2898-2906.
[70] LYU J, CHENG P, TANG X. Fundus image based retinal vessel segmentation utilizing a fast and accurate fully convolutional network[C]//Ophthalmic Medical Image Analysis: 6th International Workshop, OMIA 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, Proceedings 6. Springer, 2019: 112-120.
[71] KRULL A, BUCHHOLZ T O, JUG F. Noise2void-learning denoising from single noisy images[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 2129-2137.
[72] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1125-1134.
[73] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE transactions on systems, man, and cybernetics, 1979, 9(1): 62-66.
[74] WAGNER T, LIPINSKI H G. IJBlob: an ImageJ library for connected component analysis and shape analysis[J]. Journal of Open Research Software, 2013, 1(1).
[75] HE L, REN X, GAO Q, et al. The connected-component labeling problem: A review of state-of-the-art algorithms[J]. Pattern Recognition, 2017, 70: 25-43.
[76] DEVRIES T, TAYLOR G W. Improved regularization of convolutional neural networks with cutout[A]. 2017.
[77] ZHANG H, CISSE M, DAUPHIN Y N, et al. mixup: Beyond empirical risk minimization[A]. 2017.
[78] LYU J, ZHANG Y, HUANG Y, et al. AADG: Automatic Augmentation for Domain Generalization on Retinal Image Segmentation[J]. IEEE Transactions on Medical Imaging, 2022, 41(12): 3699-3711.
[79] HUANG Y, LYU J, CHENG P, et al. SSiT: Saliency-guided Self-supervised Image Transformer for Diabetic Retinopathy Grading[A]. 2022.
[80] MONTABONE S, SOTO A. Human detection using a mobile platform and novel features derived from a visual saliency mechanism[J]. Image and Vision Computing, 2010, 28(3): 391-402.
[81] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE international conference on computer vision. 2017: 618-626.
[82] NESTEROV Y E. A method of solving a convex programming problem with convergence rate 𝑂(1/k^2)[C]//Doklady Akademii Nauk: volume 269. Russian Academy of Sciences, 1983:
[83] HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1026-1034.
[84] ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 14318-14328.
[85] RUDOLPH M, WEHRBEIN T, ROSENHAHN B, et al. Fully convolutional cross-scale-flows for image-based defect detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2022: 1088-1097.
[86] YU J, ZHENG Y, WANG X, et al. Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows[A]. 2021.
[87] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2980-2988.
[88] AGARWAL P K, HAR-PELED S, VARADARAJAN K R, et al. Geometric approximation via coresets[J]. Combinatorial and computational geometry, 2005, 52(1): 1-30.
[89] KOBYZEV I, PRINCE S J, BRUBAKER M A. Normalizing flows: An introduction and review of current methods[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 43(11): 3964-3979.
[90] HAN K, WANG Y, CHEN H, et al. A survey on vision transformer[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 45(1): 87-110.
[91] DELONG E R, DELONG D M, CLARKE-PEARSON D L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach[J]. Biometrics, 1988: 837-845.
修改评论