中文版 | English
题名

金属负载多孔硅基材料的制备及其对四环素的去除研究

其他题名
PREPARATION OF METAL-LOADED POROUS SILICA-BASED MATERIALS AND THEIR REMOVAL PERFOMANCE FOR TETRACYCLINE
姓名
姓名拼音
QIAO Han
学号
11649001
学位类型
博士
学位专业
0830 环境科学与工程
学科门类/专业学位类别
08 工学
导师
刘崇炫
导师单位
环境科学与工程学院
论文答辩日期
2022-05-19
论文提交日期
2023-06-29
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

四环素(TC)被广泛应用于人类医药和兽药中,由于其在生物体内的不完全代谢,导致大量的TC释放到水环境,对水生生态系统和人类健康构成潜在威胁,已成为水环境中一种广泛存在的环境污染物。与其它去除TC的技术相比,基于功能材料的吸附和光催化降解法是两种经济且有效的处理技术。本研究首先以探究TC吸附机制为目的,通过不同后嫁接的改性手段,制备具有合适孔道尺寸及有序的孔径分布的金属负载介孔二氧化硅,将其作为一种吸附模型材料用于深入探讨TC去除过程中的吸附作用力;其次,基于对吸附机制的深入理解,针对性设计并制备成本低廉且合成简单、快速的不同类型的金属负载硅基材料,考察其对TC的吸附性能及其对真实水环境中TC去除的潜力。最后,针对彻底消除TC的目标,制备金属单原子负载的硅基复合材料应用于水环境中TC的吸附/光催化降解去除。基于上述研究目的,本研究构建三类不同的金属负载多孔硅基复合材料,以期获得具有工业化应用潜能的高性能去除四环素的吸附/光催化剂。具体研究内容和创新性结果总结如下:
(1)通过后嫁接的方法制备了孔径均匀有序、锰离子稳定负载的介孔二氧化硅,系统地阐明了其吸附去除水环境中TC的潜在机制。首先将带有乙二胺封端结构的N-氨乙基-γ-氨丙基三甲氧基硅烷接枝在介孔二氧化硅上,随后利用乙二胺与金属离子可生成金属中心八面体稳定结构的特点,制备得到一种新型的二价锰(Mn(II))稳定负载的介孔二氧化硅纳米颗粒(Mn-MSNs)。吸附结果表明, Mn-MSNs对TC的吸附量为235 mg g-1,远大于MSNs对TC的吸附量(49.5 mg g-1)。可有效去除不同浓度范围的TC(5 μg L-1-450mg L-1)。通过批实验、谱学分析和DFT理论计算,证实Mn-MSNs对TC的吸附过程是Mn-TC络合、静电吸引和阳离子-π多种吸附力共同作用的结果,其中金属和TC的表面络合作用在提高材料吸附容量和增强吸附亲和力方面发挥了重要作用。
(2)开发了一种一锅法快速共凝胶方法,制备成本低廉且金属负载量高的铜/壳聚糖/硅三元复合气凝胶材料,并探明其对TC的吸附性能。首先利用壳聚糖、水玻璃和氯化铜为原料,通过一锅法快速合成铜/壳聚糖/硅复合水凝胶,经冷冻干燥快速制备铜负载量高且分散均匀的铜/壳聚糖/硅三元复合气凝胶材料。该复合气凝胶对水环境中TC的去除性能结果表明,增加铜/壳聚糖/硅复合气凝胶中铜的负载量可以提高其对TC的吸附容量,其中具有较高铜负载量(185 mg g-1)的Cu3-CS2-Si复合气凝胶对TC的吸附过程具有吸附速度快(30 min内>95%的去除效率)和pH适用范围广(pH≈5-10)等特性。通过批实验、谱学和微观表征技术,阐明Cu3-CS2-Si复合气凝胶对TC的吸附主要是通过Cu-O配位的Cu-TC表面络合作用进行的。此外,合成的Cu3-CS2-Si复合气凝胶具有良好的循环使用能力,并可用于实际水样中TC的去除。
(3)开发了一种低温超临界碳化技术,制备一系列具有不同形貌、金属分散特征且金属负载量可控的镍/碳/硅复合材料,并探究其对TC的吸附/光催化降解性能。首先利用一锅法快速共凝胶策略制备具有不同Ni负载量的镍/壳聚糖/硅复合水凝胶,随后利用超临界乙醇低温碳化技术制备得到镍/碳/硅复合材料。镍/碳/硅复合材料中Ni含量可灵活调控,得到具有高效TC吸附性能的40%Ni-C-Si吸附剂和TC光催化性能的5%Ni-C-Si单原子催化剂。吸附结果表明,Ni负载量高的40%Ni-C-Si具有较大的比表面积和丰富的Ni的活性吸附位点,可通过Ni-TC络合作用对TC产生优异的吸附性能。光催化降解结果表明,在可见光照射下,合成的5%Ni-C-Si单原子催化剂在20 min内对TC的降解效率大于99%,且可以多次循环使用。5%Ni-C-Si对TC的光催化活性主要归因于Ni的单原子分散和C/SiC异质结的形成。光催化降解过程中起作用的主要活性物种为h+和•O2−。通过高分辨质谱技术及ECOSAR模型对TC的降解产物及其生态毒性进行了评估。结果显示,5%Ni-C-Si对TC的光催化降解可在一定程度上减弱水环境中TC的毒性。该类镍/碳/硅复合材料具有吸附和光催化降解的耦合性能,可灵活应用于不同水环境中TC的去除。

关键词
语种
中文
培养类别
联合培养
入学年份
2016
学位授予年份
2023-06
参考文献列表

[1] Deng W, Li N, Ying G. Antibiotic distribution, risk assessment, and microbial diversity in river water and sediment in Hong Kong [J]. Environmental Geochemistry and Health, 2018, 40(5): 2191-2203.
[2] Lu J, Wu J, Zhang C, et al. Occurrence, distribution, and ecological-health risks of selected antibiotics in coastal waters along the coastline of China [J]. Science of the Total Environment, 2018, 644: 1469-1476.
[3] Johnson A P, Woodford N. Global spread of antibiotic resistance: the example of New Delhi metallo-beta-lactamase (NDM)-mediated carbapenem resistance [J]. Journal of Medical Microbiology, 2013, 62: 499-513.
[4] Sanganyado E, Gwenzi W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks [J]. Science of the Total Environment, 2019, 669: 785-797.
[5] Danner M-C, Robertson A, Behrends V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects [J]. Science of the Total Environment, 2019, 664: 793-804.
[6] Kumar M, Jaiswal S, Sodhi K K, et al. Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance [J]. Environment International, 2019, 124: 448-461.
[7] Karkman A, Parnanen K, Larsson D G J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments [J]. Nature Communications, 2019, 10: 1-8.
[8] Wilks D , Farrington M , Rubenstein D .Antibiotics: Classification and Dosing Guidelines [M]. Blackwell Science Ltd, 2008.
[9] Hideaki Yoshitake T Y, And Takashi Tatsumi. Adsorption Behavior of Arsenate at Transition Metal Cations Captured by Amino-Functionalized Mesoporous Silicas [J]. Chemistry of Materials, 2003, 15: 1713-1721.
[10] Stokes J M, Yang K, Swanson K, et al. A Deep Learning Approach to Antibiotic Discovery [J]. Cell, 2020, 181: 475-483.
[11] Gupta A, Mumtaz S, Li C H, et al. Combatting antibiotic-resistant bacteria using nanomaterials [J]. Chemical Society Reviews, 2019, 48: 415-427.
[12] Bai Y, Ruan X, Xie X, et al. Antibiotic resistome profile based on metagenomics in raw surface drinking water source and the influence of environmental factor: A case study in Huaihe River Basin, China [J]. Environmental Pollution, 2019, 248: 438-447.
[13] Li N, Ho K W K, Ying G, et al. Veterinary antibiotics in food, drinking water, and the urine of preschool children in Hong Kong [J]. Environment International, 2017, 108: 246-252.
[14] Wang Z, Chen Q, Zhang J, et al. Characterization and source identification of tetracycline antibiotics in the drinking water sources of the lower Yangtze River [J]. Journal of Environmental Management, 2019, 244: 13-22.
[15] Wan Y, Bao Y, Zhou Q. Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil [J]. Chemosphere, 2010, 80(7): 807-812.
[16] Borghi A A, Alves Palma M S. Tetracycline: production, waste treatment and environmental impact assessment [J]. Brazilian Journal of Pharmaceutical Sciences, 2014, 50: 25-40.
[17] Kim J E, Bhatia S K, Song H J, et al. Adsorptive removal of tetracycline from aqueous solution by maple leaf-derived biochar [J]. Bioresource Technology, 2020, 306: 123092-123101.
[18] Zhao Y, Gu X, Gao S, et al. Adsorption of tetracycline (TC) onto montmorillonite: Cations and humic acid effects [J]. Geoderma, 2012, 183: 12-18.
[19] Aliyan H, Fazaeli R, Jalilian R. Fe3O4@mesoporous SBA-15: A magnetically recoverable catalyst for photodegradation of malachite green [J]. Applied Surface Science, 2013, 276: 147-153.
[20] Li N, Zhou L, Jin X, et al. Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework [J]. Journal of Hazardous Materials, 2019, 366: 563-572.
[21] Du C, Zhang Z, Yu G, et al. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis [J]. Chemosphere, 2021, 272:129501-129514.
[22] Wang X, Yin R, Zeng L, et al. A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments [J]. Environmental Pollution, 2019, 253: 100-110.
[23] Yang Z, Cao J, Chen Y, et al. Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr (VI) from aqueous solution [J]. Microporous and Mesoporous Materials, 2019, 277: 277-285.
[24] Zhang Z, Chen Y, Wang P, et al. Facile fabrication of N-doped hierarchical porous carbons derived from soft-templated ZIF-8 for enhanced adsorptive removal of tetracycline hydrochloride from water [J]. Journal of Hazardous Materials, 2022, 423: 127103-127115.
[25] Gao Y, Li Y, Zhang L, et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide[J]. Journal of colloid and interface science, 2012, 368: 540-546.
[26] Yu F, Ma J, Han S. Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents[J]. Scientific reports, 2014, 4: 1-8.
[27] 林吟萱, 于娇, 吴玲玲. 抗生素和重金属复合污染现状及其生态效应研究进展 [J]. 应用化工, 2023, 52:7.
[28] Chen B, Li Y, Li M, et al. Rapid adsorption of tetracycline in aqueous solution by using MOF-525/graphene oxide composite[J]. Microporous and Mesoporous Materials, 2021, 328: 111457-111466.
[29] Xiong W, Zeng Z, Zeng G, et al. Metal-organic frameworks derived magnetic carbon-alpha Fe/Fe3C composites as a highly effective adsorbent for tetracycline removal from aqueous solution [J]. Chemical Engineering Journal, 2019, 374: 91-99.
[30] Guo Z, Yang F, Yang R, et al. Preparation of novel ZnO-NP@Zn-MOF-74 composites for simultaneous removal of copper and tetracycline from aqueous solution [J]. Separation and Purification Technology, 2021, 274: 118949-118957.
[31] Deng J, Li X, Wei X, et al. Hybrid silicate-hydrochar composite for highly efficient removal of heavy metal and antibiotics: Coadsorption and mechanism [J]. Chemical Engineering Journal, 2020, 387: 124097-124106.
[32] Liu Q, Shen J, Yang X, et al. 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics [J]. Applied Catalysis B-Environmental, 2018, 232: 562-573.
[33] Hai Nguyen T, You S-J, Hosseini-Bandegharaei A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review [J]. Water Research, 2017, 120: 88-116.
[34] Wang X, Tao S, Xing B. Sorption and Competition of Aromatic Compounds and Humic Acid on Multiwalled Carbon Nanotubes [J]. Environmental Science & Technology, 2009, 43: 6214-6219.
[35] Guo Y, Yan C, Wang P, et al. Doping of carbon into boron nitride to get the increased adsorption ability for tetracycline from water by changing the pH of solution [J]. Chemical Engineering Journal, 2020, 387: 124136.
[36] Zhao S, Long Y, Su Y, et al. Cobalt-Enhanced Mass Transfer and Catalytic Production of Sulfate Radicals in MOF-Derived CeO2 center dot Co3O4 Nanoflowers for Efficient Degradation of Antibiotics [J]. Small, 2021, 17: 2101393.
[37] Ahmadi M, Motlagh H R, Jaafarzadeh N, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite [J]. Journal of Environmental Management, 2017, 186: 55-63.
[38] Wu J, Li W, Guan S, et al. Study on the performance of vanadium doped NaNbO3 photocatalyst degradation antibiotics [J]. Inorganic Chemistry Communications, 2021, 131: 108669.
[39] Wang J, Xu J, Shao W, et al. Photodeposition of Fe2O3 on CdS with high dispersion for efficient decomposing tetracycline [J]. Chemical Physics Letters, 2022, 786: 139170.
[40] Luo B, Chen M, Zhang Z, et al. Highly efficient visible-light-driven photocatalytic degradation of tetracycline by a Z-scheme g-C3N4/Bi3TaO7 nanocomposite photocatalyst [J]. Dalton Transactions, 2017, 46: 8431-8438.
[41] Calvete M J F, Piccirillo G, Vinagreiro C S, et al. Hybrid materials for heterogeneous photocatalytic degradation of antibiotics [J]. Coordination Chemistry Reviews, 2019, 395: 63-85.
[42] 宋德民, 林清霞, 冉万昌, 等. MOFs材料的制备及其光催化降解抗生素研究综述 [J]. 环境保护与循环经济, 2022, 42: 3.
[43] Minallah S, Pervaiz E, Yousaf M U, et al. Ternary adsorbent photocatalyst hybrid (APH) nanomaterials for improved abstraction of tetracycline from water [J]. Separation Science and Technology, 2020, 55: 2623-2641.
[44] Shi Z, Zhang Y, Duoerkun G, et al. Fabrication of MoS2/BiOBr heterojunctions on carbon fibers as a weaveable photocatalyst for tetracycline hydrochloride degradation and Cr(vi) reduction under visible light [J]. Environmental Science-Nano, 2020, 7: 2708-2722.
[45] Xiao P, Jiang D, Ju L, et al. Construction of RGO/CdIn2S4/g-C3N4 ternary hybrid with enhanced photocatalytic activity for the degradation of tetracycline hydrochloride [J]. Applied Surface Science, 2018, 433: 388-397.
[46] Yang H, Li G, An T, et al. Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: A case of sulfa drugs [J]. Catalysis Today, 2010, 153: 200-207.
[47] Senasu T, Chankhanittha T, Hemavibool K, et al. Visible-light-responsive photocatalyst based on ZnO/CdS nanocomposite for photodegradation of reactive red azo dye and ofloxacin antibiotic [J]. Materials Science in Semiconductor Processing, 2021, 123: 105558.
[48] Zhang S, Yi J, Chen J, et al. Spatially confined Fe2O3 in hierarchical SiO2@TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics [J]. Chemical Engineering Journal, 2020, 380: 122583.
[49] Yang Y, Zeng Z, Zhang C, et al. Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: Transformation pathways and mechanism insight [J]. Chemical Engineering Journal, 2018, 349: 808-821.
[50] Li C, Chen G, Sun J, et al. Doping effect of phosphate in Bi2WO6 and universal improved photocatalytic activity for removing various pollutants in water [J]. Applied Catalysis B-Environmental, 2016, 188: 39-47.
[51] Shi Z, Zhang Y, Shen X, et al. Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light [J]. Chemical Engineering Journal, 2020, 386: 124010.
[52] Hou C, Liu H, Li Y. The preparation of three-dimensional flower-like TiO2/TiOF2 photocatalyst and its efficient degradation of tetracycline hydrochloride [J]. Rsc Advances, 2021, 11: 14957-14969.
[53] Ding J, Dai Z, Qin F, et al. Z-scheme BiO1-xBr/Bi2O2CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics [J]. Applied Catalysis B-Environmental, 2017, 205: 281-291.
[54] Gao X, Niu J, Wang Y, et al. Solar photocatalytic abatement of tetracycline over phosphate oxoanion decorated Bi2WO6/polyimide composites [J]. Journal of Hazardous Materials, 2021, 403: 123860.
[55] Yan S, Yang J, Li Y, et al. One-step synthesis of ZnS/BiOBr photocatalyst to enhance photodegradation of tetracycline under full spectral irradiation [J]. Materials Letters, 2020, 276: 128232.
[56] Gao C, Low J, Long R, et al. Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications [J]. Chemical Reviews, 2020, 120: 12175-12216.
[57] Li Y, Li B, Zhang D, et al. Crystalline Carbon Nitride Supported Copper Single Atoms for Photocatalytic CO2 Reduction with Nearly 100% CO Selectivity [J]. ACS Nano, 2020, 14: 10552-10561.
[58] Fang X, Shang Q, Wang Y, et al. Single Pt Atoms Confined into a Metal-Organic Framework for Efficient Photocatalysis [J]. Advanced Materials, 2018, 30: 1705112.
[59] Zuo Q, Liu T, Chen C, et al. Ultrathin Metal-Organic Framework Nanosheets with Ultrahigh Loading of Single Pt Atoms for Efficient Visible-Light-Driven Photocatalytic H2 Evolution [J]. Angewandte Chemie-International Edition, 2019, 58: 10198-10203.
[60] Tong T, Zhu B, Jiang C, et al. Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4 [J]. Applied Surface Science, 2018, 433: 1175-1183.
[61] Wang F, Wang Y, Li Y, et al. The facile synthesis of a single atom-dispersed silver-modified ultrathin g-C3N4 hybrid for the enhanced visible-light photocatalytic degradation of sulfamethazine with peroxymonosulfate [J]. Dalton Transactions, 2018, 47: 6924-33.
[62] Yang Y, Zeng G, Huang D, et al. In Situ Grown Single-Atom Cobalt on Polymeric Carbon Nitride with Bidentate Ligand for Efficient Photocatalytic Degradation of Refractory Antibiotics [J]. Small, 2020, 16: 2001634.
[63] Deng Y, Tang L, Zeng G, et al. Plasmonic resonance excited dual Z-scheme BiVO4/Ag/Cu2O nanocomposite: synthesis and mechanism for enhanced photocatalytic performance in recalcitrant antibiotic degradation [J]. Environmental Science-Nano, 2017, 4: 1494-1511.
[64] Liu Y, Kong J, Yuan J, et al. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation [J]. Chemical Engineering Journal, 2018, 331: 242-254.
[65] Chen J, Zhong J, Li J, et al. Boosted photocatalytic removal of tetracycline on S-scheme Bi12O17Cl2/alpha-Bi2O3 heterojunctions with rich oxygen vacancies [J]. Applied Surface Science, 2021, 563: 150246.
[66] Li R, Li W, Jin C, et al. Fabrication of ZIF-8@TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation [J]. Journal of Alloys and Compounds, 2020, 825: 154008.
[67] Zhang Q, Jiang L, Wang J, et al. Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation [J]. Applied Catalysis B-Environmental, 2020, 277: 119122.
[68] Chen Z, Li X, Xu Q, et al. Three-dimensional network space Ag3PO4/NP-CQDs/rGH for enhanced organic pollutant photodegradation: Synergetic photocatalysis activity/stability and effect of real water quality parameters [J]. Chemical Engineering Journal, 2020, 390: 124454.
[69] Chen X, Burda C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials [J]. Journal of the American Chemical Society, 2008, 130: 5018-5019.
[70] Tang T, Yin Z, Chen J, et al. Novel p-n heterojunction Bi2O3/Ti3+-TiO2 photocatalyst enables the complete removal of tetracyclines under visible light [J]. Chemical Engineering Journal, 2021, 417: 128058.
[71] Zhu Z, Lu Z, Wang D, et al. Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity [J]. Applied Catalysis B-Environmental, 2016, 182: 115-122.
[72] Jiang D, Xiao P, Shao L, et al. RGO-Promoted All-Solid-State g-C3N4/BiVO4 Z-Scheme Heterostructure with Enhanced Photocatalytic Activity toward the Degradation of Antibiotics [J]. Industrial & Engineering Chemistry Research, 2017, 56: 8823-8832.
[73] Hong Y, Li C, Yin B, et al. Promoting visible-light-induced photocatalytic degradation of tetracycline by an efficient and stable beta-Bi2O3@g-C3N4 core/shell nanocomposite [J]. Chemical Engineering Journal, 2018, 338: 137-46.
[74] Wu Y, Li X, Yang Q, et al. Mxene-modulated dual-heterojunction generation on a metal-organic framework (MOF) via surface constitution reconstruction for enhanced photocatalytic activity [J]. Chemical Engineering Journal, 2020, 390: 124519.
[75] Chen Y, Yang J, Zeng L, et al. Recent progress on the removal of antibiotic pollutants using photocatalytic oxidation process [J]. Critical Reviews in Environmental Science and Technology, 2022, 52: 1401-1448.
[76] Natarajan S, Bajaj H C, Tayade R J. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process [J]. Journal of Environmental Sciences, 2018, 65: 201-222.
[77] Eivazzadeh-Keihan R, Chenab K K, Taheri-Ledari R, et al. Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering[J]. Materials Science and Engineering: C, 2020, 107: 110267.
[77] Ye S, Yan M, Tan X, et al. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light [J]. Applied Catalysis B-Environmental, 2019, 250: 78-88.
[78] Wu S, Mou C, Lin H. Synthesis of mesoporous silica nanoparticles [J]. Chemical Society Reviews, 2013, 42: 3862-3875.
[79] Verma P, Kuwahara Y, Mori K, et al. Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications [J]. Nanoscale, 2020, 12: 11333-11363.
[80] Jafari S, Derakhshankhah H, Alaei L, et al. Mesoporous silica nanoparticles for therapeutic/diagnostic applications [J]. Biomedicine & Pharmacotherapy, 2019, 109: 1100-1111.
[81] Wang Y, Zhao Q, Han N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications [J]. Nanomedicine-Nanotechnology Biology and Medicine, 2015, 11: 313-327.
[82] Tang F, Li L, Chen D. Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery [J]. Advanced Materials, 2012, 24: 1504-1034.
[83] Zhao S, Malfait W J, Guerrero-Alburquerque N, et al. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications [J]. Angewandte Chemie. International Ed. in English, 2018, 57: 7580-7608.
[84] Hong J-Y, Sohn E-H, Park S, et al. Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel [J]. Chemical Engineering Journal, 2015, 269: 229-235.
[85] Li D, Tian X, Wang Z, et al. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant [J]. Chemical Engineering Journal, 2020, 383: 123127.
[86] Hu P, Lyu J, Fu C, et al. Multifunctional Aramid Nanofiber/Carbon Nanotube Hybrid Aerogel Films [J]. ACS Nano, 2020, 14: 688-697.
[87] Liu P, Gao S, Chen C, et al. Organic Polymer Aerogel Derived N-doped Carbon Aerogel with Vacancies for Ultrahigh Microwave Absorption [J]. Carbon, 2020, 169: 276-287.
[88] Zhou X, Fu Q, Liu H, et al. Solvent-free nanoalumina loaded nanocellulose aerogel for efficient oil and organic solvent adsorption [J]. Journal of Colloid and Interface Science, 2021, 581: 299-306.
[89] Zhao S, Siqueira G, Drdova S, et al. Additive manufacturing of silica aerogels [J]. Nature, 2020, 584: 387-392.
[90] Maleki H, Duraes L, Portugal A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies [J]. Journal of Non-Crystalline Solids, 2014, 385: 55-74.
[91] Zuo L, Zhang Y, Zhang L, et al. Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications [J]. Materials, 2015, 8: 6806-6848.
[92] Zhao S, Malfait W J, Guerrero-Alburquerque N, et al. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications [J]. Angewandte Chemie-International Edition, 2018, 57: 7580-608.
[93] Guo X, Feng Y, Ma L, et al. Phosphoryl functionalized mesoporous silica for uranium adsorption [J]. Applied Surface Science, 2017, 402: 53-60.
[94] Yilmaz M S. Graphene oxide/hollow mesoporous silica composite for selective adsorption of methylene blue [J]. Microporous and Mesoporous Materials, 2022, 330: 111570.
[95] Inumaru K, Kasahara T, Yasui M, et al. Direct nanocomposite of crystalline TiO2 particles and mesoporous silica as a molecular selective and highly active photocatalyst [J]. Chemical Communications, 2005, 16: 2131-2133.
[96] Cheng C, Lu D, Shen B, et al. Mesoporous silica-based carbon dot/TiO2 photocatalyst for efficient organic pollutant degradation [J]. Microporous and Mesoporous Materials, 2016, 226: 79-87.
[97] Liu H, Sha W, Cooper A T, et al. Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2009, 347: 38-44.
[98] Gao X-D, Huang Y-D, Zhang T-T, et al. Amphiphilic SiO2 hybrid aerogel: an effective absorbent for emulsified wastewater [J]. Journal of Materials Chemistry A, 2017, 5: 12856-112862.
[99] Mohseni-Bandpei A, Eslami A, Kazemian H, et al. A high density 3-aminopropyltriethoxysilane grafted pumice-derived silica aerogel as an efficient adsorbent for ibuprofen: Characterization and optimization of the adsorption data using response surface methodology [J]. Environmental Technology & Innovation, 2020, 18: 100642.
[100] Prasanna V L, Mamane H, Vadivel V K, et al. Ethanol-activated granular aerogel as efficient adsorbent for persistent organic pollutants from real leachate and hospital wastewater [J]. Journal of Hazardous Materials, 2020, 384: 121396.
[101] Najafidoust A, Haghighi M, Asl E A, et al. Sono-solvothermal design of nanostructured flowerlike BiOI photocatalyst over silica-aerogel with enhanced solar-light-driven property for degradation of organic dyes [J]. Separation and Purification Technology, 2019, 221: 101-113.
[102] Najafidoust A, Asl E A, Hakki H K, et al. Sequential impregnation and sol-gel synthesis of Fe-ZnO over hydrophobic silica aerogel as a floating photocatalyst with highly enhanced photodecomposition of BTX compounds from water [J]. Solar Energy, 2021, 225: 344-356.
[103] Sarani M, Joshaghani A B, Najafidoust A, et al. Sun-light driven photo degradation of organic dyes from wastewater on precipitation Ag2CrO4 over SiO2-aerogel and nano silica [J]. Inorganic Chemistry Communications, 2021, 133: 108877.
[104] Khanh Vu B K, Snisarenko O, Lee H S, et al. Adsorption of tetracycline on La-impregnated MCM-41 materials [J]. Environmental Technology, 2010, 31: 233-241.
[105] Zhang Z, Liu H, Wu L, et al. Preparation of amino-Fe(III) functionalized mesoporous silica for synergistic adsorption of tetracycline and copper [J]. Chemosphere, 2015, 138: 625-632.
[106] Yue Y, Peng Z, Wang W, et al. Facile preparation of MgO-loaded SiO2 nanocomposites for tetracycline removal from aqueous solution [J]. Powder Technology, 2019, 347: 1-9.
[107] Xu L, Dai J, Pan J, et al. Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics [J]. Chemical Engineering Journal, 2011, 174: 221-230.
[108] Collado L, Jansson I, Platero-Prats A E, et al. Elucidating the Photoredox Nature of Isolated Iron Active Sites on MCM-41 [J]. ACS Catalysis, 2017, 7: 1646-1654.
[109] Zhang X, Zhang F, Chan K Y. Synthesis of titania-silica mixed oxide mesoporous materials, characterization and photocatalytic properties [J]. Applied Catalysis a-General, 2005, 284: 193-198.
[110] Yamashita H, Mori K, Kuwahara Y, et al. Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels [J]. Chemical Society Reviews, 2018, 47: 8072-8096.
[111] Xu C, Zhou Q, Huang W-Y, et al. Constructing Z-scheme beta-Bi2O3/ZrO2 heterojunctions with 3D mesoporous SiO2 nanospheres for efficient antibiotic remediation via synergistic adsorption and photocatalysis [J]. Rare Metals, 2022, 41: 2094-2107.
[112] Wang H, Liang W, Jiang W. Solar photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) using TiO2/SiO2 aerogel composite photocatalysts [J]. Materials Chemistry and Physics, 2011, 130: 1372-1379.
[113] Li W, Wang J, He G, et al. Enhanced adsorption capacity of ultralong hydrogen titanate nanobelts for antibiotics [J]. Journal of Materials Chemistry A, 2017, 5: 4352-4358.
[114] Wang F, Ren F, Mu P, et al. Hierarchical porous spherical-shaped conjugated microporous polymers for the efficient removal of antibiotics from water [J]. J Mater Chem A, 2017, 5: 11348-11356.
[115] 王少婷, 强涛涛, 王志宏, 等. ZIF-8负载海藻酸钠/氧化石墨烯基底用于吸附盐酸四环素 [J]. 精细化工, 2022, 39:10.
[116] Huang B, Liu Y, Li B, et al. Effect of Cu(II) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2-Chitosan/graphene oxide nanocomposite [J]. Carbohydr Polym, 2017, 157: 576-585.
[117] Ji L, Shao Y, Xu Z, et al. Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching [J]. Environ Sci Technol, 2010, 44: 6429-6436.
[118] Hernandez F, Calisto-Ulloa N, Gomez-Fuentes C, et al. Occurrence of antibiotics and bacterial resistance in wastewater and sea water from the Antarctic [J]. Journal of Hazardous Materials, 2019, 363: 447-456.
[119] Liao P, Li B, Xie L, et al. Immobilization of Cr(VI) on engineered silicate nanoparticles: Microscopic mechanisms and site energy distribution [J]. Journal of Hazardous Materials, 2020, 383: 121145.
[120] 杨娜, 朱申敏, 张荻. 氨基改性介孔二氧化硅的制备及其吸附性能研究[J]. 无机化学学报, 2007, 23:1627.
[121] Kankala R K, Zhang H, Liu C G, et al. Metal Species–Encapsulated Mesoporous Silica Nanoparticles: Current Advancements and Latest Breakthroughs [J]. Advanced Functional Materials, 2019, 29:1902652.
[122] Liu Q, Zhong L B, Zhao Q B, et al. Synthesis of Fe3O4/Polyacrylonitrile Composite Electrospun Nanofiber Mat for Effective Adsorption of Tetracycline [J]. ACS Appl Mater Interfaces, 2015, 7: 14573-14583.
[123] Glen E. Fryxell J L, Teresa A. Hauser, Zimin Nie, Kim F. Ferris, Shas Mattigod, Meiling Gong, and Richard T. Hallen. Design and Synthesis of Selective Mesoporous Anion Traps [J]. Chemistry of Materials, 1999, 11: 2148-2154.
[124] Yoshitake H, Otsuka R. Grafting of precoordinated Cu2+-N-(2-aminoethyl)aminopropylsilane complexes onto mesoporous silicas and the adsorption of aqueous selenate on them [J]. Langmuir, 2013, 29: 10513-10520.
[125] Gunathilake C, Górka J, Dai S, et al. Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions [J]. Journal of Materials Chemistry A, 2015, 3: 11650-11659.
[126] Xiong W, Zeng Z, Zeng G, et al. Metal-organic frameworks derived magnetic carbon-αFe/Fe3C composites as a highly effective adsorbent for tetracycline removal from aqueous solution [J]. Chemical Engineering Journal, 2019, 374: 91-99.
[127] Ranjbari S, Tanhaei B, Ayati A, et al. Efficient tetracycline adsorptive removal using tricaprylmethylammonium chloride conjugated chitosan hydrogel beads: Mechanism, kinetic, isotherms and thermodynamic study [J]. Int J Biol Macromol, 2020, 155: 421-429.
[128] Zhang Z, Liu H, Wu L, et al. Preparation of amino-Fe(III) functionalized mesoporous silica for synergistic adsorption of tetracycline and copper [J]. Chemosphere, 2015, 138: 625-632.
[129] Dai J, Meng X, Zhang Y, et al. Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water [J]. Bioresour Technol, 2020, 311: 123455.
[130] Ji L, Chen W, Dan L, et al. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents [J]. Environ Sci Technol 2009, 43: 2322.
[131] 张浩, 沈宇, 田丹碧, 等. 多壳层空心MOFs材料对水体中抗生素的高效吸附 [J]. 科学通报, 2019, 64: 8.
[132] Mu Y, He W, Ma H. Enhanced adsorption of tetracycline by the modified tea-based biochar with the developed mesoporous and surface alkalinity [J]. Bioresour Technol, 2021, 342: 126001-12610.
[133] Long H, Harley-Trochimczyk A, Thang P, et al. High Surface Area MoS2/Graphene Hybrid Aerogel for Ultrasensitive NO2 Detection [J]. Advanced Functional Materials, 2016, 26: 5158-5165.
[134] Takeshita S, Yoda S. Translucent, hydrophobic, and mechanically tough aerogels constructed from trimethylsilylated chitosan nanofibers [J]. Nanoscale, 2017, 9: 12311-12315.
[135] Sun Z, Lv F, Cao L, et al. Multistimuli-Responsive, Moldable Supramolecular Hydrogels Cross-Linked by Ultrafast Complexation of Metal Ions and Biopolymers [J]. Angewandte Chemie. International Ed. in English, 2015, 54: 8055-8059.
[136] Xue G, Yurun F, Li M, et al. Phosphoryl functionalized mesoporous silica for uranium adsorption [J]. Applied Surface Science, 2017, 402: 53-60.
[137] Bahri F, Shadi M, Mohammadian R, et al. Cu-decorated cellulose through a three-component Betti reaction: An efficient catalytic system for the synthesis of 1,3,4-oxadiazoles via imine CH functionalization of N-acylhydrazones [J]. Carbohydr Polym, 2021, 265: 118067-118075.
[138] Deng J, Li X, Wei X, et al. Hybrid silicate-hydrochar composite for highly efficient removal of heavy metal and antibiotics: Coadsorption and mechanism [J]. Chemical Engineering Journal, 2020, 387: 124097-124105.
[139] Yang W, Han Y, Li C, et al. Shapeable three-dimensional CMC aerogels decorated with Ni/Co-MOF for rapid and highly efficient tetracycline hydrochloride removal [J]. Chemical Engineering Journal, 2019, 375: 122076.
[140] Yang Q, Hong H, Luo Y. Heterogeneous nucleation and synthesis of carbon dots hybrid Zr-based MOFs for simultaneous recognition and effective removal of tetracycline [J]. Chemical Engineering Journal, 2020, 392: 123680-123690.
[141] Tian L, Shi Z, Lu Y, et al. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model [J]. Environ Sci Technol, 2017, 51: 10605-10614.
[142] Paul T, Machesky M L, Strathmann T J. Surface complexation of the zwitterionic fluoroquinolone antibiotic ofloxacin to nano-anatase TiO2 photocatalyst surfaces [J]. Environ Sci Technol, 2012, 46: 11896-11904.
[143] Gao Y, Li Y, Zhang L, et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide [J]. J Colloid Interface Sci, 2012, 368: 540-546.
[144] Liu M, Zou D, Ma T, et al. Stable cellulose-based porous binary metal–organic gels as highly efficient adsorbents and their application in an adsorption bed for chlortetracycline hydrochloride decontamination [J]. Journal of Materials Chemistry A, 2020, 8: 6670-6681.
[145] Zhang P, He T, Chen H, et al. The tetracyclines removal by MgAl layered double oxide in the presence of phosphate or nitrate: Behaviors and mechanism exploration [J]. Journal of Colloid Interfaces Science, 2020, 578: 124-134.
[146] Wang M, Zhang T, Mao D, et al. Highly Compressive Boron Nitride Nanotube Aerogels Reinforced with Reduced Graphene Oxide [J]. ACS Nano, 2019, 13: 7402-7409.
[147] Zhao R, Shi X, Ma T, et al. Constructing Mesoporous Adsorption Channels and MOF-Polymer Interfaces in Electrospun Composite Fibers for Effective Removal of Emerging Organic Contaminants [J]. ACS Applied Materials Interfaces, 2021, 13: 755-764.
[148] Dai J, Meng X, Zhang Y, et al. Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water [J]. Bioresource Technology, 2020, 311: 123455-123463.
[149] Wang Z, Tang H, Li W, et al. Core–shell TiO2@C ultralong nanotubes with enhanced adsorption of antibiotics [J]. Journal of Materials Chemistry A, 2019, 7): 19081-19086.
[150] Mei Y, Xu J, Zhang Y, et al. Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution [J]. Bioresource Technology, 2021, 325: 124732-124744.
[151] Luo X, Hu S, Yuan J, et al. A bio-based metal–organic aerogel (MOA) adsorbent for capturing tetracycline from aqueous solution [J]. Environmental Science: Nano, 2021, 8:2478-2491.
[152] Yao Q, Fan B, Xiong Y, et al. 3D assembly based on 2D structure of Cellulose Nanofibril/Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water [J]. Scientific Report, 2017, 7: 45914-45927.
[153] Gu Y, Ye M, Wang Y, et al. Lignosulfonate functionalized g-C3N4/carbonized wood sponge for highly efficient heavy metal ion scavenging [J]. Journal of Materials Chemistry A, 2020, 8: 12687-12698.
[154] Li Z, Liu Y, Zou S, et al. Removal and adsorption mechanism of tetracycline and cefotaxime contaminants in water by NiFe2O4-COF chitosan terephthalaldehyde nanocomposites film [J]. Chemical Engineering Journal, 2020, 382: 123008-123021.
[155] Xu L, Yang Y, Hu Z W, et al. Comparison Study on the Stability of Copper Nanowires and Their Oxidation Kinetics in Gas and Liquid [J]. ACS Nano, 2016, 10: 3823-3834.
[156] 冯思涵, 祖钰, 赵臣, 等. 改性壳聚糖吸附材料吸附水中重金属离子的研究进展 [J]. 高分子材料科学与工程, 2022, 38:185-190.
[157] Wu Y, Chen S, Guo X, et al. Environmentally benign chitosan as precursor and reductant for synthesis of Ag/AgCl/N-doped carbon composite photocatalysts and their photocatalytic degradation performance [J]. Research on Chemical Intermediates, 2017, 43: 3677-3690.
[158] Xu Y, Shen W, Liu Y, et al. Chitosan/lemon residues activated carbon efficiently removal of acid red 18 from aqueous solutions: batch study, isotherm and kinetics [J]. Environmental Technology, 2021, 8: 156-168.
[159] Sun C, Zhang H, Liu H, et al. Enhanced activity of visible-light photocatalytic H 2 evolution of sulfur-doped g-C3N4 photocatalyst via nanoparticle metal Ni as cocatalyst [J]. Applied Catalysis B: Environmental, 2018, 235: 66-74.
[160] Xu Q, Zhu P, Sun Q, et al. Elimination of double position domains (DPDs) in epitaxial <111>-3C-SiC on Si(111) by laser CVD [J]. Applied Surface Science, 2017, 426: 662-666.
[161] Leverett J, Daiyan R, Gong L, et al. Designing Undercoordinated Ni-Nx and Fe-Nx on Holey Graphene for Electrochemical CO2 Conversion to Syngas [J]. ACS Nano, 2021, 15: 12006-12018.
[162] Kim H, Shin D, Yang W, et al. Identification of Single-Atom Ni Site Active toward Electrochemical CO2 Conversion to CO [J]. Journal of the American Chemical Society, 2021, 143: 925-933.
[163] Liu J, Cao C, Liu X, et al. Direct Observation of Metal Oxide Nanoparticles Being Transformed into Metal Single Atoms with Oxygen-Coordinated Structure and High-Loadings [J]. Angewandte Chemie. International Ed. in English, 2021, 60: 15248-15253.
[164] Yang H B, Hung S, Liu S, et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction [J]. Nature Energy, 2018, 3: 140-147.
[165] Zhao X, Wang Y, Wu H, et al. Insights into the effect of humic acid on Ni(II) sorption mechanism on illite: Batch, XPS and EXAFS investigations [J]. Journal of Molecular Liquids, 2017, 248: 1030-1038.
[166] Anspoks A, Kuzmin A. Interpretation of the Ni K-edge EXAFS in nanocrystalline nickel oxide using molecular dynamics simulations [J]. Journal of Non-Crystalline Solids, 2011, 357: 2604-2610.
[167] Ye S, Yan M, Tan X, et al. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light [J]. Applied Catalysis B: Environmental, 2019, 250: 78-88.
[168] Gao C, Low J, Long R, et al. Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications [J]. Chemical Society Reviews, 2020, 120: 12175-12216.
[169] Hailili R, Wang Z, Li Y, et al. Oxygen vacancies induced visible-light photocatalytic activities of CaCu3Ti4O12 with controllable morphologies for antibiotic degradation [J]. Applied Catalysis B: Environmental, 2018, 221: 422-432.
[170] Majhi D, Das K, Mishra A, et al. One pot synthesis of CdS/BiOBr/Bi2O2CO3: A novel ternary double Z-scheme heterostructure photocatalyst for efficient degradation of atrazine [J]. Applied Catalysis B: Environmental, 2020, 260: 593-603.
[171] Gao Y, An T, Fang H, et al. Computational consideration on advanced oxidation degradation of phenolic preservative, methylparaben, in water: mechanisms, kinetics, and toxicity assessments [J]. Journal of Hazard Mater, 2014, 278: 417-425.
[172] Li G, Nie X, Gao Y, et al. Can environmental pharmaceuticals be photocatalytically degraded and completely mineralized in water using g-C3N4/TiO2 under visible light irradiation?-Implications of persistent toxic intermediates [J]. Applied Catalysis B: Environmental, 2016, 180: 726-732.
[173] Cao J, Lai L, Lai B, et al. Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: Performance, intermediates, toxicity, and mechanism [J]. Chemical Engineering Journal, 2019, 364: 45-56.

所在学位评定分委会
资源与环境
国内图书分类号
X522
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544541
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
乔涵. 金属负载多孔硅基材料的制备及其对四环素的去除研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11649001-乔涵-环境科学与工程学(9892KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[乔涵]的文章
百度学术
百度学术中相似的文章
[乔涵]的文章
必应学术
必应学术中相似的文章
[乔涵]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。