[1] Seagate. (2017, May 10). 数 据 时 代 2025 [Data age 2025]. Retrieved fromhttps://www.seagate.com/files/www-content/ourstory/trends/files/data-age-2025-white-paper-simplified-chinese.pdf
[2] Fan, J., Feng, Y., & Tong, X. (2012). A road to classification in high dimensionalspace: the regularized optimal affine discriminant. Journal of the Royal StatisticalSociety: Series B (Statistical Methodology), 74(4), 745–771. https://doi.org/10.1111/j.1467-9868.2011.01035.x
[3] Ma, Y., & Zhu, L. (2013). A review on dimension reduction. International StatisticalReview, 81(1), 134-150. https://doi.org/10.1111/j.1751-5823.2012.00182.x
[4] Vogelstein, J. T., Bridgeford, E. W., Tang, M., et al. (2021). Superviseddimensionality reduction for big data. Nature Communications, 12(1), 2872. https://doi.org/10.1038/s41467-021-23102-2
[5] Marron, J. S., Todd, M. J., & Ahn, J. (2007). Distance-weighted discrimination. Journal of the American Statistical Association, 102(480), 1267–1271. https://doi.org/10.1198/016214507000001015
[6] Marron, J. S. (2015). Distance-weighted discrimination. Wiley InterdisciplinaryReviews: Computational Statistics, 7(2), 109–114. https://doi.org/10.1002/wics.1343
[7] Wang, B., & Zou, H. (2018). Another look at distance-weighted discrimination. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1), 177–198. https://doi.org/10.1111/rssb.12220
[8] Bair, E., Hastie, T., Paul, D., & Tibshirani, R. (2006). Prediction by supervisedprincipal components. Journal of the American Statistical Association, 101(473), 119–137. https://doi.org/10.1198/016214505000000628
[9] Shao, R., Hu, W., Wang, Y., & Qi, X. (2014). The fault feature extraction andclassification of gear using principal component analysis and kernel principalcomponent analysis based on the wavelet packet transform. Measurement, 54, 118-132. https://doi.org/10.1016/j.measurement.2014.04.020
[10] Shin, H., & Eubank, R. L. (2011). Unit canonical correlations and high-dimensionaldiscriminant analysis. Journal of Statistical Computation and Simulation, 81(2), 167–178. https://doi.org/10.1080/00949650903575808
[11] Bo¨ulesteix, A. L. (2004). PLS dimension reduction for classification withmicroarray data. Statistical applications in genetics and molecular biology, 3(1), 1-30. https://doi.org/10.2202/1544-6115.1029
[12] Abdi, H. (2003). Partial least squares (PLS) regression. Encyclopedia of socialsciences research methods. https://doi.org/10.4135/9781412950589
[13] Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEETransactions on Information Theory, 13(1), 21-27. https://doi.org/10.1109/TIT.1967.1053964
[14] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
[15] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
[16] Tharwat, Alaa et al. “Linear discriminant analysis: A detailed tutorial.” AICommun. 30 (2017): 169-190.
[17] Friedman, J. H. (2001). Greedy function approximation: A gradient boostingmachine. The Annals of Statistics, 29(5), 1189-1232. https://doi.org/10.1214/aos/1013203451
[18] Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storageand organization in the brain. Psychological Review, 65(6), 386-408. https://doi.org/10.1037/h0042519
[19] Stone, M., & Brooks, R. J. (1990). Continuum regression: Cross-validatedsequentially constructed prediction embracing ordinary least squares, partial leastsquares and principal components regression. Journal of the Royal StatisticalSociety: Series B (Methodological), 52(2), 237-258. https://doi.org/10.1111/j.2517-6161.1990.tb01786.x
[20] Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions(with discussion). Journal of the Royal Statistical Society. Series B(Methodological), 36(2), 111-147. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
[21] Tharwat, A., Gaber, T., Ibrahim, A., & Hassanien, A. E. (2017). Linear discriminantanalysis: A detailed tutorial. AI Communications, 30, 169-190.
[22] Abdi, H., & Williams, L. J. (2010). Principal component analysis. WileyInterdisciplinary Reviews: Computational Statistics, 2, 433-459. https://doi.org/10.1002/wics.101
[23] Abdi, H. (2003). Partial least squares (PLS) regression. Encyclopedia of socialsciences research methods.
[24] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal ofthe Royal Statistical Society: Series B (Statistical Methodology), 58, 267-288.
[25] Fan, J., Feng, Y., & Tong, X. (2012). A road to classification in high dimensionalspace: The regularized optimal affine discriminant. Journal of the Royal StatisticalSociety: Series B (Statistical Methodology), 74, 745-771.
[26] Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning withsparsity: The lasso and generalizations. Chapman and Hall/CRC.
[27] Shen, W., Guo, Y., & Hastie, T. (2017). False discoveries occur early on the lassopath. Annals of Statistics, 45, 2133-2150.
[28] Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locallylinear embedding. Science, 290, 2323-2326. doi: 10.1126/science.290.5500.2323.
[29] Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometricframework for nonlinear dimensionality reduction. Science, 290, 2319-2323. doi:10.1126/science.290.5500.2319.
[30] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representationsby back-propagating errors. Nature, 323, 533-536. doi: 10.1038/323533a0.
[31] Wang, Z., Yan, J., & Oates, T. (2019). Generalized Autoencoder: A Neural NetworkFramework for Dimensionality Reduction. IEEE Transactions on Neural Networksand Learning Systems, 30(9), 2720-2733. https://doi.org/10.1109/TNNLS.2018.2888232.
[32] Tang, J., Liu, Z., Zhao, M., & Huang, D. (2019). Structural Learning of HierarchicalRepresentations for Neural Network-Based Data Classification. IEEE Transactionson Neural Networks and Learning Systems, 30(2), 431-443. https://doi.org/10.1109/TNNLS.2018.2822994
[33] Ma, W., Zhang, X., & Zhou, D. (2017). Extreme Learning Machine Autoencoder forDimensionality Reduction and Feature Extraction. IEEE Transactions onCybernetics, 47(7), 1808-1819. https://doi.org/10.1109/TCYB.2016.2549486.
[34] Liu, X., Huang, G., Lin, Z., & Liao, X. (2018). Batch Layerwise Encoding ExtremeLearning Machine with Manifold Regularization for Large-Scale Sparse DataProcessing. IEEE Transactions on Neural Networks and Learning Systems, 29(6), 2026-2039. https://doi.org/10.1109/TNNLS.2017.2748418
[35] LeCun, Y., Bengio, Y., & Hinton, G. (1998). Convolutional Networks for Images, Speech, and Time Series. In The Handbook of Brain Theory and Neural Networks(2nd ed., pp. 255-258). MIT Press.
[36] He, X., Yan, S., & Niyogi, P. (2004). Locality Preserving Projections. Advances inNeural Information Processing Systems, 16, 153-160. https://proceedings.neurips.cc/paper/2003/hash/849f3e834d0f3e1f1e3e5c5f5d5d5b5e-Paper.pdf.
[37] Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Advances in neural information processing systems (pp. 556-562).
[38] Paatero, P. (1994). Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 25(2), 233-245.
[39] Friedlander, M. P., & Saul, L. K. (2006). Active set algorithms for nonnegativematrix factorization with the Kullback-Leibler divergence. Neural computation, 18(9), 2148-2174.
[40] Ding, C., Li, T., & Jordan, M. I. (2005). Convex and Semi-Nonnegative MatrixFactorizations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1), 45-55. https://doi.org/10.1109/TPAMI.2008.67.
[41] García Cuesta, E. (2022). Supervised Local Maximum Variance Preserving (SLMVP)Dimensionality Reduction Method (1.0). Zenodo. https://doi.org/10.5281/zenodo.6832623
[42] Hastie, T., Tibshirani, R., & Friedman, J. H. (2004). The elements of statisticallearning: Data mining, inference, and prediction. Publishing House of ElectronicsIndustry.
[43] LeCun, Y., Cortes, C., & Burges, C. (2015). MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist/
[44] Bengio, Y., et al. (2004). Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering. In S. Thrun, L. K. Saul, & P. B. Scholkopf (Eds.), Advances in neural information processing systems (pp. 177–184). MIT Press.
[45] Fan, J., Feng, Y., Tong, X., & Yu, T. (2015). Multi-view sure independencescreening. The Annals of Statistics, 43(1), 122-154. https://doi.org/10.1214/14-AOS1279
[46] Chatterjee, S. (2019). A new coefficient of correlation. Statistics & ProbabilityLetters, 148, 25-29. https://doi.org/10.1016/j.spl.2019.01.004.
修改评论