[1] OMER A M. Energy, environment and sustainable development[J]. Renewable and Sustainable Energy Reviews, 2008, 12(9): 2265-2300.
[2] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[3] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29.
[4] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2017, 16(1): 16-22.
[5] VAN NOORDEN R. Sulphur back in vogue for batteries[J]. Nature, 2013, 498(7455): 416-417.
[6] LI M, LU J, CHEN Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561.
[7] ZUBI G, DUFO-LóPEZ R, CARVALHO M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292-308.
[8] MIN X Q, XU G J, XIE B, et al. Challenges of prelithiation strategies for next generation high energy lithium-ion batteries[J]. Energy Storage Materials, 2022, 47: 297-318.
[9] SHEN X, LIU H, CHENG X B, et al. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes[J]. Energy Storage Materials, 2018, 12: 161-175.
[10] MA L, HENDRICKSON K E, WEI S Y, et al. Nanomaterials: Science and applications in the lithium-sulfur battery[J]. Nano Today, 2015, 10(3): 315-338.
[11] MANTHIRAM A, FU Y Z, CHUNG S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787.
[12] CHEN J H, ZHANG Y, YANG J, et al. Post lithium-sulfur battery era: Challenges and opportunities towards practical application[J]. Science China Chemistry, 2022, 65, https://doi.org/10.1007/s11426-022-1421-7.
[13] PENG H J, HUANG J Q, CHENG X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(24): 1700260.
[14] JIAO Y, WANG F, MA Y H, et al. Challenges and advances on low-temperature rechargeable lithium-sulfur batteries[J]. Nano Research, 2022, https://doi.org/10.1007/s12274-022-4983-1.
[15] SEH Z W, SUN Y M, ZHANG Q F, et al. Designing high-energy lithium-sulfur batteries[J]. Chemical Society Reviews, 2016, 45(20): 5605-5634.
[16] HAN Z L, LI S P, WU Y K, et al. Challenges and key parameters in exploring the cyclability limitation of practical lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2021, 9(43): 24215-24240.
[17] HERBERT D, ULAM J. Electric dry cells and storage batteries: USA, US3043896[P]. 1962-07-10.
[18] WHITTINGHAM M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192(4244): 1126-1127.
[19] JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
[20] MANTHIRAM A, FU Y Z, SU Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134.
[21] BARCHASZ C, MOLTON F, DUBOC C, et al. Lithium/sulfur cell discharge mechanism: An original approach for intermediate species identification[J]. Analytical Chemistry, 2012, 84(9): 3973-3980.
[22] LI T, BAI X, GULZAR U, et al. A comprehensive understanding of lithium-sulfur battery technology[J]. Advanced Functional Materials, 2019, 29(32): 1901730-1901785.
[23] FANG R P, ZHAO S Y, SUN Z H, et al. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Advanced Materials, 2017, 29(48): 1606823.
[24] LIU M N, YE F M, LI W F, et al. Chemical routes toward long-lasting lithium/sulfur cells[J]. Nano Research, 2016, 9(1): 94-116.
[25] ZHANG X, XIE H, KIM C S, et al. Advances in lithium-sulfur batteries[J]. Materials Science and Engineering: R: Reports, 2017, 121: 1-29.
[26] WANG Z K, LI Y, JI H Q, et al. Unity of opposites between soluble and insoluble lithium polysulfides in lithium-sulfur batteries[J]. Advanced Materials, 2022, 34(47): 2203699.
[27] POPE M A, AKSAY I A. Structural design of cathodes for Li-S batteries[J]. Advanced Energy Materials, 2015, 5(16): 1500124.
[28] WANG Z S, XU X J, JI S M, et al. Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries[J]. Journal of Materials Science & Technology, 2020, 55: 56-72.
[29] LIM W G, KIM S, JO C S, et al. A comprehensive review of materials with catalytic effects in Li-S batteries: Enhanced redox kinetics[J]. Angewandte Chemie International Edition, 2019, 58(52): 18746-18757.
[30] CAO R G, XU W, LV D P, et al. Anodes for rechargeable lithium-sulfur batteries[J]. Advanced Energy Materials, 2015, 5(16): 1402273.
[31] NG S F, LAU M Y L, ONG W J. Lithium-sulfur battery cathode design: Tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion[J]. Advanced Materials, 2021, 33(50): 2008654.
[32] WU C, LAI W H, CAI X L, et al. Carbonaceous hosts for sulfur cathode in alkali-metal/S (alkali metal = lithium, sodium, potassium) batteries[J]. Small, 2021, 17(48): 2006504.
[33] KAMISAN A I, TUNKU KUDIN T I, KAMISAN A S, et al. Recent advances on graphene-based materials as cathode materials in lithium-sulfur batteries[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8630-8657.
[34] ZHENG M B, CHI Y, HU Q, et al. Carbon nanotube-based materials for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019, 7(29): 17204-17241.
[35] FU A, WANG C Z, PEI F, et al. Recent advances in hollow porous carbon materials for lithium-sulfur Batteries[J]. Small, 2019, 15(10): 1804786.
[36] LI Q, LIU Y P, WANG Y, et al. Review of the application of biomass-derived porous carbon in lithium-sulfur batteries[J]. Ionics, 2020, 26(10): 4765-4781.
[37] LIN T Q, TANG Y F, WANG Y M, et al. Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene-sulfur composites for high-performance lithium-sulfur batteries[J]. Energy & Environmental Science, 2013, 6(4): 1283-1290.
[38] ZHOU G M, YIN L C, WANG D W, et al. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries[J]. ACS Nano, 2013, 7(6): 5367-5375.
[39] HUANG J Q, LIU X F, ZHANG Q, et al. Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from −40 to 60°C[J]. Nano Energy, 2013, 2(2): 314-321.
[40] JIN F Y, XIAO S, LU L J, et al. Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries[J]. Nano Letters, 2016, 16(1): 440-447.
[41] XIN S, GU L, ZHAO N H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(45): 18510-18513.
[42] ZENG S, ARUMUGAM G M, LIU X, et al. Encapsulation of sulfur into N-doped porous carbon cages by a facile, template-free method for stable lithium-sulfur cathode[J]. Small, 2020, 16(39): 2001027.
[43] JAYAPRAKASH N, SHEN J, MOGANTY S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2011, 50(26): 5904-5908.
[44] MA G Q, WEN Z Y, JIN J, et al. Hollow polyaniline sphere@sulfur composites for prolonged cycling stability of lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2014, 2(27): 10350-10354.
[45] ZHANG Q, HUANG Q H, HAO S M, et al. Polymers in lithium-sulfur batteries[J]. Advanced Science, 2022, 9(2): 2103798.
[46] XIANG H Y, DENG N P, ZHAO H J, et al. A review on electronically conducting polymers for lithium-sulfur battery and lithium-selenium battery: Progress and prospects[J]. Journal of Energy Chemistry, 2021, 58: 523-556.
[47] JEONG T G, LEE Y S, CHO B W, et al. Improved performance of dual-conducting polymer-coated sulfur composite with high sulfur utilization for lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2018, 742: 868-876.
[48] SAHORE R, LEVIN B D A, PAN M, et al. Design principles for optimum performance of porous carbons in lithium-sulfur batteries[J]. Advanced Energy Materials, 2016, 6(14): 1600134.
[49] CHUNG W J, GRIEBEL J J, KIM E T, et al. The use of elemental sulfur as an alternative feedstock for polymeric materials[J]. Nature Chemistry, 2013, 5(6): 518-524.
[50] PARK J, KIM E T, KIM C, et al. The importance of confined sulfur nanodomains and adjoining electron conductive pathways in subreaction regimes of Li-S batteries[J]. Advanced Energy Materials, 2017, 7(19): 1700074.
[51] WEI S Y, MA L, HENDRICKSON K E, et al. Metal-sulfur battery cathodes based on PAN-sulfur composites[J]. Journal of the American Chemical Society, 2015, 137(37): 12143-12152.
[52] LI X N, LIANG J W, LU Y, et al. Sulfur-rich phosphorus sulfide molecules for use in rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2017, 56(11): 2937-2941.
[53] WU J W, MA Q Y, LIAN C, et al. Promoting polythionate intermediates formation by oxygen-deficient manganese oxide hollow nanospheres for high performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2019, 370: 556-564.
[54] SUN Z H, ZHANG J Q, YIN L C, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Communications, 2017, 8(1): 14627.
[55] CHEN T, MA L B, CHENG B R, et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries[J]. Nano Energy, 2017, 38: 239-248.
[56] WANG H Q, ZHANG W C, XU J Z, et al. Advances in polar materials for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707520.
[57] CHEN L P, LI X F, XU Y H. Recent advances of polar transition-metal sulfides host materials for advanced lithium-sulfur batteries[J]. Functional Materials Letters, 2018, 11(6): 1840010.
[58] WONG A J Y, LIEU W Y, YANG H Y, et al. MXenes in sulfur cathodes for lithium-sulfur batteries[J]. Journal of Materials Research, 2022, 37(22): 3890-3905.
[59] YANG L T, HUANG N. Covalent organic frameworks for applications in lithium batteries[J]. Journal of Polymer Science, 2022, 60(15): 2225-2238.
[60] SUN W H, SONG Z H, FENG Z X, et al. Carbon-nitride-based materials for advanced lithium-sulfur batteries[J]. Nano-Micro Letters, 2022, 14(1): 222.
[61] HWANG J Y, KIM H M, SHIN S, et al. Designing a high-performance lithium-sulfur batteries based on layered double hydroxides-carbon nanotubes composite cathode and a dual-functional graphene-polypropylene-Al2O3 separator[J]. Advanced Functional Materials, 2018, 28(3): 1704294.
[62] SHI Z Y, GAO B, CAI R, et al. Double heteroatom reconfigured polar catalytic surface powers high-performance lithium-sulfur batteries[J]. Materials, 2022, 15(16): 5674.
[63] PENG L L, WEI Z Y, WAN C Z, et al. A fundamental look at electrocatalytic sulfur reduction reaction[J]. Nature Catalysis, 2020, 3(9): 762-770.
[64] SHEN Z H, JIN X, TIAN J M, et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium-sulfur batteries[J]. Nature Catalysis, 2022, 5(6): 555-563.
[65] SONG Y Z, CAI W L, KONG L, et al. Rationalizing electrocatalysis of Li-S chemistry by mediator design: Progress and prospects[J]. Advanced Energy Materials, 2020, 10(11): 1901075.
[66] PENG H J, ZHANG G, CHEN X, et al. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2016, 55(42): 12990-12995.
[67] ZHANG Y G, LIU J B, WANG J Y, et al. Engineering oversaturated Fe-N5 multifunctional catalytic sites for durable lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2021, 60(51): 26622-26629.
[68] WANG J, JIA L J, ZHONG J, et al. Single-atom catalyst boosts electrochemical conversion reactions in batteries[J]. Energy Storage Materials, 2019, 18: 246-252.
[69] SUN R, BAI Y, BAI Z, et al. Phosphorus vacancies as effective polysulfide promoter for high-energy-density lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(12): 2102739.
[70] SONG Y Z, ZHAO W, KONG L, et al. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries[J]. Energy & Environmental Science, 2018, 11(9): 2620-2630.
[71] YAN C, ZHANG X Q, HUANG J Q, et al. Lithium-anode protection in lithium-sulfur batteries[J]. Trends in Chemistry, 2019, 1(7): 693-704.
[72] BI C X, ZHAO M, HOU L P, et al. Anode material options toward 500 Wh kg−1 lithium-sulfur batteries[J]. Advanced Science, 2022, 9(2): 2103910.
[73] ZHAO H J, DENG N P, YAN J, et al. A review on anode for lithium-sulfur batteries: Progress and prospects[J]. Chemical Engineering Journal, 2018, 347: 343-365.
[74] ZHAO Y Y, YE Y S, WU F, et al. Anode interface engineering and architecture design for high-performance lithium-sulfur batteries[J]. Advanced Materials, 2019, 31(12): 1806532.
[75] HOU J H, YANG M Y, SUN B, et al. Improvement strategies toward stable lithium-metal anodes for high-energy batteries[J]. Batteries & Supercaps, 2022, 5(12): e202200231.
[76] LI N W, YIN Y X, YANG C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9): 1853-1858.
[77] LIU Y Y, LIN D C, YUEN P Y, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Advanced Materials, 2017, 29(10): 1605531.
[78] WANG Q, WAN J, CAO X, et al. Organophosphorus hybrid solid electrolyte interphase layer based on LixPO4 enables uniform lithium deposition for high-performance lithium metal batteries[J]. Advanced Functional Materials, 2022, 32(2): 2107923.
[79] LIN D C, LIU Y Y, LIANG Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nature Nanotechnology, 2016, 11(7): 626-632.
[80] ZHANG Y, LUO W, WANG C W, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode[J]. Proceedings of the National Academy of Sciences, 2017, 114(14): 3584-3589.
[81] WELLER C, PAMPEL J, DöRFLER S, et al. Polysulfide shuttle suppression by electrolytes with low-density for high-energy lithium-sulfur batteries[J]. Energy Technology, 2019, 7(12): 1900625.
[82] CHEN W J, LI B Q, ZHAO C X, et al. Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes[J]. Angewandte Chemie International Edition, 2020, 59(27): 10732-10745.
[83] ZHANG S G, UENO K, DOKKO K, et al. Recent advances in electrolytes for lithium-sulfur batteries[J]. Advanced Energy Materials, 2015, 5(16): 1500117.
[84] KONG L, YIN L H, XU F, et al. Electrolyte solvation chemistry for lithium-sulfur batteries with electrolyte-lean conditions[J]. Journal of Energy Chemistry, 2021, 55: 80-91.
[85] ANGULAKSHMI N, DHANALAKSHMI R B, SATHYA S, et al. Understanding the electrolytes of lithium-sulfur batteries[J]. Batteries & Supercaps, 2021, 4(7): 1064-1095.
[86] LIU Y T, ELIAS Y, MENG J S, et al. Electrolyte solutions design for lithium-sulfur batteries[J]. Joule, 2021, 5(9): 2323-2364.
[87] CHEN W, LEI T Y, WU C Y, et al. Designing safe electrolyte systems for a high-stability lithium-sulfur battery[J]. Advanced Energy Materials, 2018, 8(10): 1702348.
[88] NAKANISHI A, UENO K, WATANABE D, et al. Sulfolane-based highly concentrated electrolytes of lithium bis(trifluoromethanesulfonyl)amide: Ionic transport, Li-ion coordination, and Li-S battery performance[J]. The Journal of Physical Chemistry C, 2019, 123(23): 14229-14238.
[89] ZHAO M, CHEN X, LI X Y, et al. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium-sulfur batteries[J]. Advanced Materials, 2021, 33(13): 2007298.
[90] JUDEZ X, ZHANG H, LI C, et al. Polymer-rich composite electrolytes for all-solid-state Li-S cells[J]. The Journal of Physical Chemistry Letters, 2017, 8(15): 3473-3477.
[91] ZHANG Q, HUANG N, HUANG Z, et al. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life[J]. Journal of Energy Chemistry, 2020, 40: 151-155.
[92] LIANG X, WANG L L, WU X L, et al. Solid-state electrolytes for solid-state lithium-sulfur batteries: Comparisons, advances and prospects[J]. Journal of Energy Chemistry, 2022, 73: 370-386.
[93] YANG X F, LUO J, SUN X L. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design[J]. Chemical Society Reviews, 2020, 49(7): 2140-2195.
[94] ABDELHAMID A A, CHEONG J L, YING J Y. Li7La3Zr2O12 sheet-based framework for high-performance lithium-sulfur hybrid quasi-solid battery[J]. Nano Energy, 2020, 71: 104633.
[95] LI X, WANG D H, WANG H C, et al. Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22745-22753.
[96] WANG Y X, YANG X M, LI P Y, et al. Covalent organic frameworks for separator modification of lithium-sulfur batteries[J]. Macromolecular Rapid Communications, 2022: 2200760.
[97] LI C, LIU R, XIAO Y, et al. Recent progress of separators in lithium-sulfur batteries[J]. Energy Storage Materials, 2021, 40: 439-460.
[98] PONNADA S, KIAI M S, GORLE D B, et al. Insight into lithium-sulfur batteries with novel modified separators: Recent progress and perspectives[J]. Energy & Fuels, 2021, 35(14): 11089-11117.
[99] LI S L, ZHANG W F, ZHENG J F, et al. Inhibition of polysulfide shuttles in Li-S batteries: Modified separators and solid-state electrolytes[J]. Advanced Energy Materials, 2021, 11(2): 2000779.
[100] HE Y B, QIAO Y, CHANG Z, et al. Developing a “polysulfide-phobic” strategy to restrain shuttle effect in lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2019, 58(34): 11774-11778.
[101] YUAN N, SUN W D, YANG J L, et al. Multifunctional MOF-based separator materials for advanced lithium-sulfur batteries[J]. Advanced Materials Interfaces, 2021, 8(9): 2001941.
[102] ZHANG K, CHEN Z X, NING R Q, et al. Single-atom coated separator for robust lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25147-25154.
[103] YANG Y F, WANG W K, LI L X, et al. Stable cycling of Li-S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator[J]. Journal of Materials Chemistry A, 2020, 8(7): 3692-3700.
[104] CHEN Y Y, ZHOU G Y, ZONG W, et al. Porous polymer composite separators with three-dimensional ion-selective nanochannels for high-performance Li-S batteries[J]. Composites Communications, 2021, 25: 100679.
[105] BAI S Y, LIU X Z, ZHU K, et al. Metal-organic framework-based separator for lithium-sulfur batteries[J]. Nature Energy, 2016, 1(7): 16094.
[106] ADAMS J J. Asphaltene adsorption, a literature review[J]. Energy & Fuels, 2014, 28(5): 2831-2856.
[107] HU H, WU M B. Heavy oil-derived carbon for energy storage applications[J]. Journal of Materials Chemistry A, 2020, 8(15): 7066-7082.
[108] WANG M Y, XIA X H, ZHONG Y, et al. Porous carbon hosts for lithium-sulfur batteries[J]. Chemistry – A European Journal, 2019, 25(15): 3710-3725.
[109] LI S S, JIN B, ZHAI X J, et al. Review of carbon materials for lithium-sulfur batteries[J]. ChemistrySelect, 2018, 3(8): 2245-2260.
[110] SONG Z H, JIANG W Y, JIAN X G, et al. Advanced nanostructured materials for electrocatalysis in lithium-sulfur batteries[J]. Nanomaterials, 2022, 12(23): 4341.
[111] WANG J L, HAN W Q. A review of heteroatom doped materials for advanced lithium-sulfur batteries[J]. Advanced Functional Materials, 2022, 32(2): 2107166.
[112] MASHAAN N S, ALI A H, KARIM M R, et al. A review on using crumb rubber in reinforcement of asphalt pavement[J]. The Scientific World Journal, 2014, 2014: 214612.
[113] HASHMI S M, FIROOZABADI A. Tuning size and electrostatics in non-polar colloidal asphaltene suspensions by polymeric adsorption[J]. Soft Matter, 2011, 7(18): 8384-8391.
[114] RUDRAKE A, KARAN K, HORTON J H. A combined QCM and XPS investigation of asphaltene adsorption on metal surfaces[J]. Journal of Colloid and Interface Science, 2009, 332(1): 22-31.
[115] DILPAZIR S, LIU R J, YUAN M L, et al. Br/Co/N Co-doped porous carbon frameworks with enriched defects for high-performance electrocatalysis[J]. Journal of Materials Chemistry A, 2020, 8(21): 10865-10874.
[116] LU Y, QIN J L, SHEN T, et al. Hypercrosslinked polymerization enabled N-doped carbon confined Fe2O3 facilitating Li polysulfides interface conversion for Li-S batteries[J]. Advanced Energy Materials, 2021, 11(42): 2101780.
[117] LIANG J N, LU Y, WANG J, et al. Well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron sphere with fast electrochemical kinetics for cathodic lithium storage[J]. Journal of Energy Chemistry, 2020, 47: 188-195.
[118] LU C, CHEN Y, YANG Y, et al. Single-atom catalytic materials for lean-electrolyte ultrastable lithium-sulfur batteries[J]. Nano Letters, 2020, 20(7): 5522-5530.
[119] JIN Q, QI X Q, YANG F Y, et al. The failure mechanism of lithium-sulfur batteries under lean-ether-electrolyte conditions[J]. Energy Storage Materials, 2021, 38: 255-261.
[120] YANG Y C, YANG Y W, PEI Z X, et al. Recent progress of carbon-supported single-atom catalysts for energy conversion and storage[J]. Matter, 2020, 3(5): 1442-1476.
[121] LUO F, ROY A, SILVIOLI L, et al. P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction[J]. Nature Materials, 2020, 19(11): 1215-1223.
[122] XIAO M L, XING Z H, JIN Z, et al. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-Air batteries[J]. Advanced Materials, 2020, 32(49): 2004900.
[123] HU B T, HUANG A J, ZHANG X J, et al. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries[J]. Nano Research, 2021, 14: 3482-3488.
[124] YUAN K, LüTZENKIRCHEN-HECHT D, LI L, et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination[J]. Journal of the American Chemical Society, 2020, 142(5): 2404-2412.
[125] SHANG H S, JIANG Z L, ZHOU D N, et al. Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction[J]. Chemical Science, 2020, 11(23): 5994-5999.
[126] ZHUANG Z C, KANG Q, WANG D S, et al. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries[J]. Nano Research, 2020, 13: 1856-1866.
[127] MA C, ZHANG Y Q, FENG Y M, et al. Engineering Fe-N coordination structures for fast redox conversion in lithium-sulfur batteries[J]. Advanced Materials, 2021, 33(30): 2100171.
[128] DU Z Z, CHEN X J, HU W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2019, 141(9): 3977-3985.
[129] GULZAR U, LI T, BAI X, et al. Nitrogen-doped single-walled carbon nanohorns as a cost-effective carbon host toward high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5551-5559.
[130] ZHANG Z, KONG L L, LIU S, et al. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery[J]. Advanced Energy Materials, 2017, 7(11): 1602543.
[131] ZHOU G M, ZHAO S Y, WANG T S, et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries[J]. Nano Letters, 2020, 20(2): 1252-1261.
[132] ZHANG Y G, LIU J B, WANG J Y, et al. Engineering oversaturated Fe-N5 multi-functional catalytic sites for durable lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2021, 60(51): 26622-26629.
[133] ZHAO H, TIAN B B, SU C L, et al. Single-atom iron and doped sulfur improve the catalysis of polysulfide conversion for obtaining high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7171-7177.
[134] SUN R, BAI Y, LUO M, et al. Enhancing polysulfide confinement and electrochemical kinetics by amorphous cobalt phosphide for highly efficient lithium-sulfur batteries[J]. ACS Nano, 2021, 15(1): 739-750.
[135] WANG W H, WANG G H, CHEN G L, et al. The effect of sulfur vapor pressure on Cu2ZnSnS4 thin film growth for solar cells[J]. Solar Energy, 2017, 148: 12-16.
[136] BACON R F, FANELLI R. The viscosity of sulfur[J]. Journal of the American Chemical Society, 1943, 65(4): 639-648.
[137] ZHANG C, LV W, ZHANG W G, et al. Reduction of graphene oxide by hydrogen sulfide: A promising strategy for pollutant control and as an electrode for Li-S batteries[J]. Advanced Energy Materials, 2014, 4(7): 1301565.
[138] 范景莲, 黄伯云, 刘军, 等. 微波烧结原理与研究现状[J]. 粉末冶金工业, 2004, 14(1): 29-33.
[139] WAN T H, SACCOCCIO M, CHEN C, et al. Influence of the discretization methods on the distribution of relaxation times deconvolution: Implementing radial basis functions with DRT tools[J]. Electrochimica Acta, 2015, 184: 483-499.
[140] LU Y, ZHAO C Z, HUANG J Q, et al. The timescale identification decoupling complicated kinetic processes in lithium batteries[J]. Joule, 2022, 6(6): 1172-1198.
[141] ZHOU X, HUANG J, PAN Z Q, et al. Impedance characterization of lithium-ion batteries aging under high-temperature cycling: Importance of electrolyte-phase diffusion[J]. Journal of Power Sources, 2019, 426: 216-222.
[142] RISSE S, CAñAS N A, WAGNER N, et al. Correlation of capacity fading processes and electrochemical impedance spectra in lithium-sulfur cells[J]. Journal of Power Sources, 2016, 323: 107-114.
[143] SONG Y W, PENG Y Q, ZHAO M, et al. Understanding the impedance response of lithium polysulfide symmetric cells[J]. Small Science, 2021, 1(11): 2100042.
修改评论