中文版 | English
题名

布朗斯特酸催化的亚胺极性反转反应 和手性环丁烯的合成

其他题名
BRØNSTED ACID-CATALYZED UMPOLUNG REACTION OF IMINES AND SYNTHESIS OF CHIRAL CYCLOBUTENES
姓名
姓名拼音
LIN Sili
学号
12032811
学位类型
硕士
学位专业
070303 有机化学
学科门类/专业学位类别
07 理学
导师
谭斌
导师单位
化学系
论文答辩日期
2023-05-24
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

   手性布朗斯特酸催化作为一种重要的催化模式,以其绿色、高效的特性成功实现了诸多不对称催化反应,在医药和合成化学等领域中展现出较高的应用价值。因此,基于手性布朗斯特酸的催化模式受到科研工作者越来越多的关注和研究。一方面,发生极性反转后的醌亚胺可作为新型高效的、便捷合成的氮源亲电试剂,可应用于C-N键的构建,便于制备复杂的生物活性分子;另一方面,手性环丁烯不仅是构建药物活性分子或天然产物的核心骨架,还能进一步衍生化组装成其他复杂分子片段,其不对称合成具有较高的学术研究价值和应用前景。但目前关于布朗斯特酸催化的醌亚胺的不对称亲电反应和手性环丁烯的合成仍处于初步研究阶段。因此,本论文以手性布朗斯特酸为催化剂,探索了两种不对称催化反应类型,高收率、高立体选择性地实现了两类手性化合物的合成,主要内容如下:

   利用醌亚胺极性反转的策略,本文开发了手性磷酸催化1-萘胺的不对称亲电胺化反应,实现了稳定C-N轴的直接构建,以较好的反应收率和优异的对映选择性合成了C-N轴手性N-芳基磺酰胺化合物。该反应具有较好的底物普适性(39个例子,最高可达97%收率和97% ee),丰富了醌亚胺的极性反转反应在不对称催化领域中的应用,也为含C-N轴手性N-芳基磺酰胺化合物的高效不对称合成提供了新途径。

   利用小环具有较大环张力的特性,本文还开发了手性N-三氟磷酰胺催化二环[1.1.0]丁烷的不对称异构化反应,以较好的反应收率和对映选择性合成了一系列手性环丁烯化合物(39个例子,最高可达97%收率和96% ee),为高效构建手性环丁烯提供了新思路。此外,手性环丁烯可作为平台分子,通过环加成反应得到多种具有生物活性片段的手性二环[3.2.0]庚烷衍生物与二环[2.1.0]戊烷衍生物。手性环丁烯产物的进一步衍生化也体现了该反应具有重要的实用意义。

其他摘要

        As an important catalytic mode, organocatalysis has successfully been applied in many asymmetric reactions with its green and highly efficient characteristics, and has shown high application value in the fields of medicine and synthetic chemistry. Therefore, the catalytic model based on chiral Brønsted acid has attracted great attention by researchers. On one hand, the umpolung of iminoquinones, as a kind of novel, efficient and accessible nitrogen source electrophiles, has been applied to the construction of C-N bonds for the rapid and convenient preparation of complex structures. On the other hand, chiral cyclobutenes are not only the core frameworks of pharmaceutical active molecules or natural products, but also can be further derived and assembled into other complex molecular fragments, which has high academic research value and potential application. However, the research on asymmetric electrophilic reactions of iminoquinones and organocatalytic synthesis of chiral cyclobutenes are still in the preliminary stage. In this thesis, two kinds of asymmetric catalytic reactions were explored under chiral Brønsted acid catalysis, and the synthesis of chiral compounds was achieved with high yields and enantioselectivities. The main contents include:

         In this thesis, chiral phosphoric acid (CPA)-catalyzed asymmetric electrophilic amination of 1-naphthylamines has successfully been achieved by the strategy of umpolung of iminoquinones, which leads to the direct construction of stable C-N axis. This protocal exhibited broad substrate scope, affording C-N axially chiral N-arylsulfonamides with moderate to high yieds and high enantioselectivities (39 examples, up to 97% yield and 97% ee). This methodology enriches the asymmetric application of umpolung reaction of iminoquinones, and also offers a novel approach to facilitate the highly efficient asymmetric construction of C-N axially chiral N-arylsulfonamides.

        Meanwhile, due to the high ring strain energy of small rings, the asymmetric isomerization of bicyclo[1.1.0]butane catalyzed by chiral N-trifluorophosphoramide (NTPA) was achieved, in which stable chiral cyclobutene compounds were obtained with good to high yields and enantioselectivities (39 examples, up to 97% yield and 96% ee), providing a new path for the construction of chiral cyclobutenes. In addition, chiral cyclobutenes can be used as a kind of platform molecules to rapidly synthesize other complex structures through cycloaddition reaction to obtain a variety of bioactive fragments of chiral bicyclo[3.2.0]heptane and bicyclo[2.1.0]pentane. The further derivatization of chiral cyclobutene also shows that the reaction has important practical significance.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] CHENG J K, XIANG S H, TAN B. Organocatalytic enantioselective synthesis of axially chiral molecules: Development of strategies and skeletons [J]. Accounts of Chemical Research, 2022, 55(20): 2920-2937.
[2] XIANG S H, TAN B. Advances in asymmetric organocatalysis over the last 10 years [J]. Nature Communications, 2020, 11(1): 3786.
[3] AKIYAMA T, ITOH J, YOKOTA K, et al. Enantioselective mannich-type reaction catalyzed by a chiral Brønsted acid [J]. Angewandte Chemie International Edition, 2004, 43(12): 1566-1568.
[4] URAGUCHI D, TERADA M. Chiral Brønsted acid-catalyzed direct mannich reactions via electrophilic activation [J]. Journal of the American Chemical Society, 2004, 126: 5356-5357.
[5] CABALLERO-GARCí G, GOODMAN J M. N-triflylphosphoramides: Highly acidic catalysts for asymmetric transformations [J]. Organic & Biomolecular Chemistry, 2021, 19.
[6] CHENG J K, XIANG S H, TAN B. Imidodiphosphorimidates IDPis): Catalyst motifs with unprecedented reactivity and selectivity [J]. Chinese Journal of Chemistry, 2023, 41(6): 685-694.
[7] WU Y, HU L, LI Z, et al. Catalytic asymmetric umpolung reactions of imines [J]. Nature, 2015, 523(7561): 445-450.
[8] KATTAMURI P V, YIN J, SIRIWONGSUP S, et al. Practical singly and doubly electrophilic aminating agents: A new, more sustainable platform for carbon-nitrogen bond formation [J]. Journal of the American Chemical Society, 2017, 139(32): 11184-11196.
[9] QIN J, ZHOU T, ZHOU T P, et al. Catalytic atroposelective electrophilic amination of indoles [J]. Angewandte Chemie International Edition, 2022, 61(31): e202205159.
[10] MORI-QUIROZ L M, COMADOLL C G, SUPER J E, et al. Exploiting iminoquinones as electrophilic at nitrogen "N+" synthons for C-N bond construction [J]. Organic Letters, 2021, 23(18): 7008-7013.
[11] LAN W, LIU F, HU J, et al. Copper-catalyzed regiospecific amination of heteroarenes with quinoneimides [J]. Journal of Organic Chemistry, 2022, 87(9): 5592-5602.
[12] WANG Y H, TIAN J S, TAN P W, et al. Regiodivergent intramolecular nucleophilic addition of ketimines for the diverse synthesis of azacycles [J]. Angewandte Chemie International Edition, 2020, 59(4): 1634-1643.
[13] DIDIER D, REINERS F. Uncommon four-membered building blocks - cyclobutenes, azetines and thietes [J]. Chemical Reviews, 2021, 21(5): 1144-1160.
[14] LIANG Z, WANG L, WANG Y, et al. Cobalt-catalyzed diastereo- and enantioselective carbon-carbon bond forming reactions of cyclobutenes [J]. Journal of the American Chemical Society, 2023, 145(6): 3588-3598.
[15] OGOSHI S, KUMAR R, TAMAI E, et al. Nickel-catalyzed enantioselective synthesis of cyclobutenes via
[2+2] cycloaddition of α,β-unsaturated carbonyls with 1,3-enynes [J]. Synthesis, 2016, 48(17): 2789-2794.
[16] BURTON R R, TAM W. Study on the reactivity of oxabicyclic alkenes in Ruthenium-catalyzed
[2+2] cycloadditions [J]. Journal of Organic Chemistry, 2007, 72, 7333-7336.
[17] COCKBURN N, KARIMI E, TAM W. Ruthenium-catalyzed
[2 + 2] cycloadditions of bicyclic alkenes with alkynyl phosphonates [J]. Journal of Organic Chemistry, 2009, 74(15): 5762-5765.
[18] CHEN J, XU X, HE Z, et al. Nickel/Zinc iodide Co-catalytic asymmetric
[2+2] cycloaddition reactions of azabenzonorbornadienes with terminal alkynes [J]. Advanced Synthesis & Catalysis, 2018, 360(3): 427-431.
[19] QIN H, CHEN J, LI K, et al. Nickel-catalyzed asymmetric
[2+2] cycloaddition reaction of hetero-bicyclic alkenes with internal alkynes [J]. Chemistry - An Asian Journal, 2018, 13(17): 2431-2434.
[20] GARCIA-MORALES C, RANIERI B, ESCOFET I, et al. Enantioselective synthesis of cyclobutenes by intermolecular
[2+2] cycloaddition with non-C2 symmetric digold catalysts [J]. Journal of the American Chemical Society, 2017, 139(39): 13628-13631.
[21] PARSUTKAR M M, PAGAR V V, RAJANBABU T V. Catalytic enantioselective synthesis of cyclobutenes from alkynes and alkenyl derivatives [J]. Journal of the American Chemical Society, 2019, 141(38): 15367-15377.
[22] KOSSLER D, PERRIN F G, SULEYMANOV A A, et al. Divergent asymmetric synthesis of polycyclic compounds via vinyl triazenes [J]. Angewandte Chemie International Edition, 2017, 56(38): 11490-11493.
[23] HU J, YANG Q, YU L, et al. A study on the substituent effects of norbornadiene derivatives in Iridium-catalyzed asymmetric
[2 + 2] cycloaddition reactions [J]. Organic & Biomolecular Chemistry, 2013, 11(14): 2294-2301.
[24] HUANG D-J, RAYABARAPU D K, LI L-P, et al. Nickel-catalyzed
[2+2] cycloaddition of alkynes with activated cyclic alkenes: Synthesis and novel ring expansion studies of cyclobutene products [J]. Chemistry - A European Journal, 2000, 6(20): 3706-3713.
[25] KOSSLER D, CRAMER N. Neutral chiral cyclopentadienyl Ru(II)Cl catalysts enable enantioselective
[2+2]-cycloadditions [J]. Chemical Science, 2017, 8(3): 1862-1866.
[26] ENOMOTO K, OYAMA H, NAKADA M. Highly enantioselective catalytic asymmetric
[2+2] cycloadditions of cyclic α-alkylidene β-oxo imides with ynamides [J]. Chemistry, 2015, 21(7): 2798-2802.
[27] ITO H, HASEGAWA M, TAKENAKA Y, et al. Enantioselective total synthesis of (+)-tricycloclavulone [J]. Journal of the American Chemical Society, 2004, 126: 4520-4521.
[28] KANG T, GE S, LIN L, et al. A chiral N,N'-dioxide-Zn(II) complex catalyzes the enantioselective
[2+2] cycloaddition of alkynones with cyclic enol silyl ethers [J]. Angewandte Chemie International Edition, 2016, 55(18): 5541-5544.
[29] SCHOTES C, MEZZETTI A. Enantioselective ficini reaction: Ruthenium/PNNP-catalyzed
[2+2] cycloaddition of ynamides with cyclic enones [J]. Angewandte Chemie International Edition, 2011, 50(13): 3072-3074.
[30] ZHONG C, HUANG Y, ZHANG H, et al. Enantioselective synthesis of 3-substituted cyclobutenes by catalytic conjugate addition/trapping strategies [J]. Angewandte Chemie International Edition, 2020, 59(7): 2750-2754.
[31] XU Y, CONNER M L, BROWN M K. Cyclobutane and cyclobutene synthesis: Catalytic enantioselective
[2+2] cycloadditions [J]. Angewandte Chemie International Edition, 2015, 54(41): 11918-11928.
[32] FRUCTOS M R, PRIETO A.
[2+2] cycloaddition reactions promoted by group 11 metal-based catalysts [J]. Tetrahedron, 2016, 72(3): 355-369.
[33] MATURI M M, BACH T. Enantioselective catalysis of the intermolecular
[2+2] photocycloaddition between 2-pyridones and acetylenedicarboxylates [J]. Angewandte Chemie International Edition, 2014, 53(29): 7661-7664.
[34] WEN K G, LIU C, WEI D H, et al. Catalytic enantioselective desymmetrization of cyclobutane-1,3-diones by carbonyl-amine condensation [J]. Organic Letters, 2021, 23(3): 1118-1122.
[35] NIYOMCHON S, AUDISIO D, LUPARIA M, et al. Regio- and enantioselective cyclobutene allylations [J]. Organic Letters, 2013, 15(9): 2318-2321.
[36] LORTON C, CASTANHEIRO T, VOITURIEZ A. Catalytic and asymmetric process via PIII/PV=O redox cycling: Access to (trifluoromethyl)cyclobutenes via a Michael addition/Wittig olefination reaction [J]. Journal of the American Chemical Society, 2019, 141(26): 10142-10147.
[37] ZHOU X, WU Y, DENG L. Cinchonium betaines as efficient catalysts for asymmetric proton transfer catalysis: The development of a practical enantioselective isomerization of trifluoromethyl imines [J]. Journal of the American Chemical Society, 2016, 138(37): 12297-12302.
[38] WAN L Q, CAO J G, NIU D, et al. Cobalt-catalyzed umpolung alkylation of imines to generate alpha-branched aliphatic amines [J]. Organic Letters, 2021, 23(10): 3818-3822.
[39] ZHAN M, PU X, HE B, et al. Intramolecular umpolung allylation of imines [J]. Organic Letters, 2018, 20(18): 5857-5860.
[40] SHI L M, SUN X S, SHEN C, et al. Catalytic asymmetric synthesis of alpha-trifluoromethyl homoallylic amines via umpolung allylation/2-aza-cope rearrangement: Stereoselectivity and mechanistic insight [J]. Organic Letters, 2019, 21(12): 4842-4848.
[41] HAN X L, HU B, FEI C, et al. Catalytic asymmetric imine cross-coupling reaction [J]. Journal of the American Chemical Society, 2023, 145(8): 4400-4407.
[42] FIAUD J-C, KAGAN H B. Une nouvelle synthese d'α amino-acides. Synthese asymetrique de l'alanine. [J]. Tetrahedron Letters, 1970, 11: 1813-1816.
[43] NIWA Y, TAKAYAMA K, SHIMIZU M. Electrophilic amination with iminomalonate [J]. Tetrahedron Letters, 2001, 42: 5473–5476.
[44] LIU L, CHEN K, WU W Z, et al. Organocatalytic para-selective amination of phenols with iminoquinone monoacetals [J]. Organic Letters, 2017, 19(14): 3823-3826.
[45] LAN W, ZHU J, ABULAITI B, et al. Zinc trifluoromethanesulfonate-catalyzed para-selective amination of free anilines and free phenols with quinoneimides [J]. Journal of Organic Chemistry, 2022, 87(21): 13895-13906.
[46] KUMARASAMY E, RAGHUNATHAN R, SIBI M P, et al. Nonbiaryl and heterobiaryl atropisomers: Molecular templates with promise for atropselective chemical transformations [J]. Chemical Reviews, 2015, 115(20): 11239-11300.
[47] YAO Q J, XIE P P, WU Y J, et al. Enantioselective synthesis of atropisomeric anilides via pd(ii)-catalyzed asymmetric C-H olefination [J]. Journal of the American Chemical Society, 2020, 142(42): 18266-18276.
[48] KITAGAWA O. Chiral Pd-catalyzed enantioselective syntheses of various N-C axially chiral compounds and their synthetic applications [J]. Accounts of Chemical Research, 2021, 54(3): 719-730.
[49] LIU H, FENG W, KEE C W, et al. Brønsted base-catalyzed tandem isomerization-Michael reactions of alkynes: Synthesis of oxacycles and azacycles [J]. Advanced Synthesis & Catalysis, 2010, 352(18): 3373-3379.
[50] KITAGAWA O, KURIHARA D, TANABE H, et al. Catalytic enantioselective synthesis of key intermediates for net inhibitors using atropisomeric lactam chemistry [J]. Tetrahedron Letters, 2008, 49(3): 471-474.
[51] ZHANG L, ZHANG J, MA J, et al. Highly atroposelective synthesis of arylpyrroles by catalytic asymmetric Paal-Knorr reaction [J]. Journal of the American Chemical Society, 2017, 139(5): 1714-1717.
[52] WANG L, ZHONG J, LIN X. Atroposelective phosphoric acid catalyzed three-component cascade reaction: Enantioselective synthesis of axially chiral N-arylindoles [J]. Angewandte Chemie International Edition, 2019, 58(44): 15824-15828.
[53] ONG J Y, NG X Q, LU S, et al. Isothiourea-catalyzed atroposelective n-acylation of sulfonamides [J]. Organic Letters, 2020, 22(16): 6447-6451.
[54] LI D, WANG S, GE S, et al. Asymmetric synthesis of axially chiral anilides via organocatalytic atroposelective N-acylation [J]. Organic Letters, 2020, 22(14): 5331-5336.
[55] GAO Z, YAN C-X, QIAN J, et al. Enantioselective synthesis of axially chiral sulfonamides via atroposelective hydroamination of allenes [J]. ACS Catalysis, 2021, 11(12): 6931-6938.
[56] LU S, NG S V H, LOVATO K, et al. Practical access to axially chiral sulfonamides and biaryl amino phenols via organocatalytic atroposelective N-alkylation [J]. Nature Communications, 2019, 10(1): 3061.
[57] KIKUCHI Y, NAKAMURA C, MATSUOKA M, et al. Catalytic enantioselective synthesis of n-c axially chiral sulfonamides through chiral palladium-catalyzed N-allylation [J]. Journal of Organic Chemistry, 2019, 84(12): 8112-8120.
[58] NARASAKA K, HAYASHI Y, SHIMADZU H, et al. Asymmetric
[2 + 2] cycloaddition reaction catalyzed by a chiral titanium reagent [J]. Journal of the American Chemical Society, 1992, 114: 8869-8885.
[59] DENG Y, MASSEY L A, ZAVALIJ P Y, et al. Catalytic asymmetric
[3+1]-cycloaddition reaction of ylides with electrophilic metallo-enolcarbene intermediates [J]. Angewandte Chemie International Edition, 2017, 56(26): 7479-7483.
[60] XU Y, WANG Z, SUN J. Asymmetric
[3+1]-cycloaddition reaction via diazo discrimination [J]. Organic Letters, 2021, 23(19): 7613-7617.
[61] JIAO Z, SHI Q, ZHOU J S. Asymmetric intermolecular heck reaction of propargylic acetates and cycloalkenes to access fused cyclobutenes [J]. Angewandte Chemie International Edition, 2017, 56(46): 14567-14571.
[62] ZHANG F G, MAREK I. Brook rearrangement as trigger for carbene generation: Synthesis of stereodefined and fully substituted cyclobutenes [J]. Journal of the American Chemical Society, 2017, 139(24): 8364-8370.
[63] NING X, CHEN Y, HU F, et al. Palladium-catalyzed carbene coupling reactions of cyclobutanone n-sulfonylhydrazones [J]. Organic Letters, 2021, 23(21): 8348-8352.
[64] EGEA-ARREBOLA D, GOETZKE F W, FLETCHER S P. Rhodium-catalyzed asymmetric arylation of cyclobutenone ketals [J]. Angewandte Chemie International Edition, 2023, 62(13): e202217381.
[65] LORTON C, ROBLIN A, RETAILLEAU P, et al. Synthesis of functionalized cyclobutenes and spirocycles via asymmetric p(III)/p(V) redox catalysis [J]. Advanced Synthesis & Catalysis, 2021, 363(20): 4805-4810.
[66] ZHANG M, WANG X C. Bifunctional borane catalysis of a hydride transfer/enantioselective
[2+2] cycloaddition cascade [J]. Angewandte Chemie International Edition, 2021, 60(31): 17185-17190.
[67] SU L, REN T, DONG J, et al. Cu(I)-catalyzed 6-endo-dig cyclization of terminal alkynes, 2-bromoaryl ketones, and amides toward 1-naphthylamines: Applications and photophysical properties [J]. Journal of the American Chemical Society, 2019, 141(6): 2535-2544.
[68] MORE A A, RAMANA C V. Total synthesis of integrastatin b enabled by a benzofuran oxidative dearomatization cascade [J]. Organic Letters, 2016, 18(6): 1458-1461.
[69] CHANG X, MA P-L, CHEN H-C, et al. Asymmetric synthesis and application of chiral spirosilabiindanes [J]. Angewandte Chemie International Edition, 2020, 59(23): 8937-8940.
[70] ZHANG J, WANG H, REN S, et al. Cu(0)/selectfluor system-mediated mild synthesis of fluorinated fluorenones from nonaromatic precursors (1,6-enynes) involving C–C single bond cleavage [J]. Organic Letters, 2015, 17(12): 2920-2923.
[71] CAPPOZZI G, ROMEO G, MARCUZZI F. One-step synthesis of tertiary alkyl-substituted acetylenes from silylacetylenes [J]. Journal of the Chemical Society, Chemical Communications, 1982, (16): 959-960.
[72] LI P-H, YU L-Z, ZHANG X-Y, et al. Cu(i)-catalyzed coupling and cycloisomerization of diazo compounds with terminal yne-alkylidenecyclopropanes: Synthesis of functionalized cyclopenta[b]naphthalene derivatives [J]. Organic Letters, 2018, 20(15): 4516-4520.
[73] GAO Y, HUANG Y, WU W, et al. Pd-catalyzed C-H activation/oxidative cyclization of acetanilide with norbornene: Concise access to functionalized indolines [J]. Chemical Communications, 2014, 50(61): 8370-8373.
[74] CHEN Y-H, QI L-W, FANG F, et al. Organocatalytic atroposelective arylation of 2-naphthylamines as a practical approach to axially chiral biaryl amino alcohols [J]. Angewandte Chemie International Edition, 2017, 56(51): 16308-16312.
[75] KELLY C B, MILLIGAN J A, TILLEY L J, et al. Bicyclobutanes: From curiosities to versatile reagents and covalent warheads [J]. Chemical Science, 2022, 13(40): 11721-11737.
[76] KLEINMANS R, PINKERT T, DUTTA S, et al. Intermolecular
[2π + 2σ]-photocycloaddition enabled by triplet energy transfer [J]. Nature, 2022, 605(7910): 477-482.
[77] ZHENG Y, HUANG W, DHUNGANA R K, et al. Photochemical intermolecular
[3σ + 2σ]-cycloaddition for the construction of aminobicyclo
[3.1.1]heptanes [J]. Journal of the American Chemical Society, 2022, 144(51): 23685-23690.
[78] LIANG Y, KLEINMANS R, DANILIUC C G, et al. Synthesis of polysubstituted 2-oxabicyclo
[2.1.1]hexanes via visible-light-induced energy transfer [J]. Journal of the American Chemical Society, 2022, 144(44): 20207-20213.
[79] DHAKE K, WOELK K J, BECICA J, et al. Beyond bioisosteres: Divergent synthesis of azabicyclohexanes and cyclobutenyl amines from bicyclobutanes [J]. Angewandte Chemie International Edition, 2022, 61(27): e202204719.
[80] AGASTI S, BELTRAN F, PYE E, et al. A catalytic alkene insertion approach to bicyclo
[2.1.1]hexane bioisosteres [J]. Nature Chemistry, 10.1038/s41557-023-01135-y.
[81] WOLFL B, WINTER N, LI J, et al. Strain-release driven epoxidation and aziridination of bicyclo
[1.1.0]butanes via palladium catalyzed sigma-bond nucleopalladation [J]. Angewandte Chemie International Edition, 2023, 62(7): e202217064.
[82] GUO R, CHANG Y-C, HERTER L, et al. Strain-release
[2π + 2σ] cycloadditions for the synthesis of bicyclo
[2.1.1]hexanes initiated by energy transfer [J]. Journal of the American Chemical Society, 2022, 144(18): 7988-7994.
[83] MCNAMEE R E, HAUGLAND M M, NUGENT J, et al. Synthesis of 1,3-disubstituted bicyclo
[1.1.0]butanes via directed bridgehead functionalization [J]. Chemical Science, 2021, 12(21): 7480-7485.
[84] MURIEL B, GAGNEBIN A, WASER J. Synthesis of bicyclo
[3.1.0]hexanes by (3 + 2) annulation of cyclopropenes with aminocyclopropanes [J]. Chemical Science, 2019, 10(46): 10716-10722.
[85] NUNEWAR S, KUMAR S, TALAKOLA S, et al. Co(III), Rh(III) & Ir(III)-catalyzed direct c-h alkylation/alkenylation/arylation with carbene precursors [J]. Chemisty - An Asian Journal, 2021, 16(5): 443-459.
[86] DAVIES H M L, BECKWITH R E J. Catalytic enantioselective C−H activation by means of metal−carbenoid-induced c−h insertion [J]. Chemical Reviews, 2003, 103: 2861−2903.
[87] ZHU D, CHEN L, FAN H, et al. Recent progress on donor and donor-donor carbenes [J]. Chemical Society Reviews, 2020, 49(3): 908-950.

所在学位评定分委会
化学
国内图书分类号
O621.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544551
专题理学院_化学系
推荐引用方式
GB/T 7714
林思丽. 布朗斯特酸催化的亚胺极性反转反应 和手性环丁烯的合成[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032811-林思丽-化学系.pdf(14149KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[林思丽]的文章
百度学术
百度学术中相似的文章
[林思丽]的文章
必应学术
必应学术中相似的文章
[林思丽]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。