[1] CHENG J K, XIANG S H, TAN B. Organocatalytic enantioselective synthesis of axially chiral molecules: Development of strategies and skeletons [J]. Accounts of Chemical Research, 2022, 55(20): 2920-2937.
[2] XIANG S H, TAN B. Advances in asymmetric organocatalysis over the last 10 years [J]. Nature Communications, 2020, 11(1): 3786.
[3] AKIYAMA T, ITOH J, YOKOTA K, et al. Enantioselective mannich-type reaction catalyzed by a chiral Brønsted acid [J]. Angewandte Chemie International Edition, 2004, 43(12): 1566-1568.
[4] URAGUCHI D, TERADA M. Chiral Brønsted acid-catalyzed direct mannich reactions via electrophilic activation [J]. Journal of the American Chemical Society, 2004, 126: 5356-5357.
[5] CABALLERO-GARCí G, GOODMAN J M. N-triflylphosphoramides: Highly acidic catalysts for asymmetric transformations [J]. Organic & Biomolecular Chemistry, 2021, 19.
[6] CHENG J K, XIANG S H, TAN B. Imidodiphosphorimidates IDPis): Catalyst motifs with unprecedented reactivity and selectivity [J]. Chinese Journal of Chemistry, 2023, 41(6): 685-694.
[7] WU Y, HU L, LI Z, et al. Catalytic asymmetric umpolung reactions of imines [J]. Nature, 2015, 523(7561): 445-450.
[8] KATTAMURI P V, YIN J, SIRIWONGSUP S, et al. Practical singly and doubly electrophilic aminating agents: A new, more sustainable platform for carbon-nitrogen bond formation [J]. Journal of the American Chemical Society, 2017, 139(32): 11184-11196.
[9] QIN J, ZHOU T, ZHOU T P, et al. Catalytic atroposelective electrophilic amination of indoles [J]. Angewandte Chemie International Edition, 2022, 61(31): e202205159.
[10] MORI-QUIROZ L M, COMADOLL C G, SUPER J E, et al. Exploiting iminoquinones as electrophilic at nitrogen "N+" synthons for C-N bond construction [J]. Organic Letters, 2021, 23(18): 7008-7013.
[11] LAN W, LIU F, HU J, et al. Copper-catalyzed regiospecific amination of heteroarenes with quinoneimides [J]. Journal of Organic Chemistry, 2022, 87(9): 5592-5602.
[12] WANG Y H, TIAN J S, TAN P W, et al. Regiodivergent intramolecular nucleophilic addition of ketimines for the diverse synthesis of azacycles [J]. Angewandte Chemie International Edition, 2020, 59(4): 1634-1643.
[13] DIDIER D, REINERS F. Uncommon four-membered building blocks - cyclobutenes, azetines and thietes [J]. Chemical Reviews, 2021, 21(5): 1144-1160.
[14] LIANG Z, WANG L, WANG Y, et al. Cobalt-catalyzed diastereo- and enantioselective carbon-carbon bond forming reactions of cyclobutenes [J]. Journal of the American Chemical Society, 2023, 145(6): 3588-3598.
[15] OGOSHI S, KUMAR R, TAMAI E, et al. Nickel-catalyzed enantioselective synthesis of cyclobutenes via
[2+2] cycloaddition of α,β-unsaturated carbonyls with 1,3-enynes [J]. Synthesis, 2016, 48(17): 2789-2794.
[16] BURTON R R, TAM W. Study on the reactivity of oxabicyclic alkenes in Ruthenium-catalyzed
[2+2] cycloadditions [J]. Journal of Organic Chemistry, 2007, 72, 7333-7336.
[17] COCKBURN N, KARIMI E, TAM W. Ruthenium-catalyzed
[2 + 2] cycloadditions of bicyclic alkenes with alkynyl phosphonates [J]. Journal of Organic Chemistry, 2009, 74(15): 5762-5765.
[18] CHEN J, XU X, HE Z, et al. Nickel/Zinc iodide Co-catalytic asymmetric
[2+2] cycloaddition reactions of azabenzonorbornadienes with terminal alkynes [J]. Advanced Synthesis & Catalysis, 2018, 360(3): 427-431.
[19] QIN H, CHEN J, LI K, et al. Nickel-catalyzed asymmetric
[2+2] cycloaddition reaction of hetero-bicyclic alkenes with internal alkynes [J]. Chemistry - An Asian Journal, 2018, 13(17): 2431-2434.
[20] GARCIA-MORALES C, RANIERI B, ESCOFET I, et al. Enantioselective synthesis of cyclobutenes by intermolecular
[2+2] cycloaddition with non-C2 symmetric digold catalysts [J]. Journal of the American Chemical Society, 2017, 139(39): 13628-13631.
[21] PARSUTKAR M M, PAGAR V V, RAJANBABU T V. Catalytic enantioselective synthesis of cyclobutenes from alkynes and alkenyl derivatives [J]. Journal of the American Chemical Society, 2019, 141(38): 15367-15377.
[22] KOSSLER D, PERRIN F G, SULEYMANOV A A, et al. Divergent asymmetric synthesis of polycyclic compounds via vinyl triazenes [J]. Angewandte Chemie International Edition, 2017, 56(38): 11490-11493.
[23] HU J, YANG Q, YU L, et al. A study on the substituent effects of norbornadiene derivatives in Iridium-catalyzed asymmetric
[2 + 2] cycloaddition reactions [J]. Organic & Biomolecular Chemistry, 2013, 11(14): 2294-2301.
[24] HUANG D-J, RAYABARAPU D K, LI L-P, et al. Nickel-catalyzed
[2+2] cycloaddition of alkynes with activated cyclic alkenes: Synthesis and novel ring expansion studies of cyclobutene products [J]. Chemistry - A European Journal, 2000, 6(20): 3706-3713.
[25] KOSSLER D, CRAMER N. Neutral chiral cyclopentadienyl Ru(II)Cl catalysts enable enantioselective
[2+2]-cycloadditions [J]. Chemical Science, 2017, 8(3): 1862-1866.
[26] ENOMOTO K, OYAMA H, NAKADA M. Highly enantioselective catalytic asymmetric
[2+2] cycloadditions of cyclic α-alkylidene β-oxo imides with ynamides [J]. Chemistry, 2015, 21(7): 2798-2802.
[27] ITO H, HASEGAWA M, TAKENAKA Y, et al. Enantioselective total synthesis of (+)-tricycloclavulone [J]. Journal of the American Chemical Society, 2004, 126: 4520-4521.
[28] KANG T, GE S, LIN L, et al. A chiral N,N'-dioxide-Zn(II) complex catalyzes the enantioselective
[2+2] cycloaddition of alkynones with cyclic enol silyl ethers [J]. Angewandte Chemie International Edition, 2016, 55(18): 5541-5544.
[29] SCHOTES C, MEZZETTI A. Enantioselective ficini reaction: Ruthenium/PNNP-catalyzed
[2+2] cycloaddition of ynamides with cyclic enones [J]. Angewandte Chemie International Edition, 2011, 50(13): 3072-3074.
[30] ZHONG C, HUANG Y, ZHANG H, et al. Enantioselective synthesis of 3-substituted cyclobutenes by catalytic conjugate addition/trapping strategies [J]. Angewandte Chemie International Edition, 2020, 59(7): 2750-2754.
[31] XU Y, CONNER M L, BROWN M K. Cyclobutane and cyclobutene synthesis: Catalytic enantioselective
[2+2] cycloadditions [J]. Angewandte Chemie International Edition, 2015, 54(41): 11918-11928.
[32] FRUCTOS M R, PRIETO A.
[2+2] cycloaddition reactions promoted by group 11 metal-based catalysts [J]. Tetrahedron, 2016, 72(3): 355-369.
[33] MATURI M M, BACH T. Enantioselective catalysis of the intermolecular
[2+2] photocycloaddition between 2-pyridones and acetylenedicarboxylates [J]. Angewandte Chemie International Edition, 2014, 53(29): 7661-7664.
[34] WEN K G, LIU C, WEI D H, et al. Catalytic enantioselective desymmetrization of cyclobutane-1,3-diones by carbonyl-amine condensation [J]. Organic Letters, 2021, 23(3): 1118-1122.
[35] NIYOMCHON S, AUDISIO D, LUPARIA M, et al. Regio- and enantioselective cyclobutene allylations [J]. Organic Letters, 2013, 15(9): 2318-2321.
[36] LORTON C, CASTANHEIRO T, VOITURIEZ A. Catalytic and asymmetric process via PIII/PV=O redox cycling: Access to (trifluoromethyl)cyclobutenes via a Michael addition/Wittig olefination reaction [J]. Journal of the American Chemical Society, 2019, 141(26): 10142-10147.
[37] ZHOU X, WU Y, DENG L. Cinchonium betaines as efficient catalysts for asymmetric proton transfer catalysis: The development of a practical enantioselective isomerization of trifluoromethyl imines [J]. Journal of the American Chemical Society, 2016, 138(37): 12297-12302.
[38] WAN L Q, CAO J G, NIU D, et al. Cobalt-catalyzed umpolung alkylation of imines to generate alpha-branched aliphatic amines [J]. Organic Letters, 2021, 23(10): 3818-3822.
[39] ZHAN M, PU X, HE B, et al. Intramolecular umpolung allylation of imines [J]. Organic Letters, 2018, 20(18): 5857-5860.
[40] SHI L M, SUN X S, SHEN C, et al. Catalytic asymmetric synthesis of alpha-trifluoromethyl homoallylic amines via umpolung allylation/2-aza-cope rearrangement: Stereoselectivity and mechanistic insight [J]. Organic Letters, 2019, 21(12): 4842-4848.
[41] HAN X L, HU B, FEI C, et al. Catalytic asymmetric imine cross-coupling reaction [J]. Journal of the American Chemical Society, 2023, 145(8): 4400-4407.
[42] FIAUD J-C, KAGAN H B. Une nouvelle synthese d'α amino-acides. Synthese asymetrique de l'alanine. [J]. Tetrahedron Letters, 1970, 11: 1813-1816.
[43] NIWA Y, TAKAYAMA K, SHIMIZU M. Electrophilic amination with iminomalonate [J]. Tetrahedron Letters, 2001, 42: 5473–5476.
[44] LIU L, CHEN K, WU W Z, et al. Organocatalytic para-selective amination of phenols with iminoquinone monoacetals [J]. Organic Letters, 2017, 19(14): 3823-3826.
[45] LAN W, ZHU J, ABULAITI B, et al. Zinc trifluoromethanesulfonate-catalyzed para-selective amination of free anilines and free phenols with quinoneimides [J]. Journal of Organic Chemistry, 2022, 87(21): 13895-13906.
[46] KUMARASAMY E, RAGHUNATHAN R, SIBI M P, et al. Nonbiaryl and heterobiaryl atropisomers: Molecular templates with promise for atropselective chemical transformations [J]. Chemical Reviews, 2015, 115(20): 11239-11300.
[47] YAO Q J, XIE P P, WU Y J, et al. Enantioselective synthesis of atropisomeric anilides via pd(ii)-catalyzed asymmetric C-H olefination [J]. Journal of the American Chemical Society, 2020, 142(42): 18266-18276.
[48] KITAGAWA O. Chiral Pd-catalyzed enantioselective syntheses of various N-C axially chiral compounds and their synthetic applications [J]. Accounts of Chemical Research, 2021, 54(3): 719-730.
[49] LIU H, FENG W, KEE C W, et al. Brønsted base-catalyzed tandem isomerization-Michael reactions of alkynes: Synthesis of oxacycles and azacycles [J]. Advanced Synthesis & Catalysis, 2010, 352(18): 3373-3379.
[50] KITAGAWA O, KURIHARA D, TANABE H, et al. Catalytic enantioselective synthesis of key intermediates for net inhibitors using atropisomeric lactam chemistry [J]. Tetrahedron Letters, 2008, 49(3): 471-474.
[51] ZHANG L, ZHANG J, MA J, et al. Highly atroposelective synthesis of arylpyrroles by catalytic asymmetric Paal-Knorr reaction [J]. Journal of the American Chemical Society, 2017, 139(5): 1714-1717.
[52] WANG L, ZHONG J, LIN X. Atroposelective phosphoric acid catalyzed three-component cascade reaction: Enantioselective synthesis of axially chiral N-arylindoles [J]. Angewandte Chemie International Edition, 2019, 58(44): 15824-15828.
[53] ONG J Y, NG X Q, LU S, et al. Isothiourea-catalyzed atroposelective n-acylation of sulfonamides [J]. Organic Letters, 2020, 22(16): 6447-6451.
[54] LI D, WANG S, GE S, et al. Asymmetric synthesis of axially chiral anilides via organocatalytic atroposelective N-acylation [J]. Organic Letters, 2020, 22(14): 5331-5336.
[55] GAO Z, YAN C-X, QIAN J, et al. Enantioselective synthesis of axially chiral sulfonamides via atroposelective hydroamination of allenes [J]. ACS Catalysis, 2021, 11(12): 6931-6938.
[56] LU S, NG S V H, LOVATO K, et al. Practical access to axially chiral sulfonamides and biaryl amino phenols via organocatalytic atroposelective N-alkylation [J]. Nature Communications, 2019, 10(1): 3061.
[57] KIKUCHI Y, NAKAMURA C, MATSUOKA M, et al. Catalytic enantioselective synthesis of n-c axially chiral sulfonamides through chiral palladium-catalyzed N-allylation [J]. Journal of Organic Chemistry, 2019, 84(12): 8112-8120.
[58] NARASAKA K, HAYASHI Y, SHIMADZU H, et al. Asymmetric
[2 + 2] cycloaddition reaction catalyzed by a chiral titanium reagent [J]. Journal of the American Chemical Society, 1992, 114: 8869-8885.
[59] DENG Y, MASSEY L A, ZAVALIJ P Y, et al. Catalytic asymmetric
[3+1]-cycloaddition reaction of ylides with electrophilic metallo-enolcarbene intermediates [J]. Angewandte Chemie International Edition, 2017, 56(26): 7479-7483.
[60] XU Y, WANG Z, SUN J. Asymmetric
[3+1]-cycloaddition reaction via diazo discrimination [J]. Organic Letters, 2021, 23(19): 7613-7617.
[61] JIAO Z, SHI Q, ZHOU J S. Asymmetric intermolecular heck reaction of propargylic acetates and cycloalkenes to access fused cyclobutenes [J]. Angewandte Chemie International Edition, 2017, 56(46): 14567-14571.
[62] ZHANG F G, MAREK I. Brook rearrangement as trigger for carbene generation: Synthesis of stereodefined and fully substituted cyclobutenes [J]. Journal of the American Chemical Society, 2017, 139(24): 8364-8370.
[63] NING X, CHEN Y, HU F, et al. Palladium-catalyzed carbene coupling reactions of cyclobutanone n-sulfonylhydrazones [J]. Organic Letters, 2021, 23(21): 8348-8352.
[64] EGEA-ARREBOLA D, GOETZKE F W, FLETCHER S P. Rhodium-catalyzed asymmetric arylation of cyclobutenone ketals [J]. Angewandte Chemie International Edition, 2023, 62(13): e202217381.
[65] LORTON C, ROBLIN A, RETAILLEAU P, et al. Synthesis of functionalized cyclobutenes and spirocycles via asymmetric p(III)/p(V) redox catalysis [J]. Advanced Synthesis & Catalysis, 2021, 363(20): 4805-4810.
[66] ZHANG M, WANG X C. Bifunctional borane catalysis of a hydride transfer/enantioselective
[2+2] cycloaddition cascade [J]. Angewandte Chemie International Edition, 2021, 60(31): 17185-17190.
[67] SU L, REN T, DONG J, et al. Cu(I)-catalyzed 6-endo-dig cyclization of terminal alkynes, 2-bromoaryl ketones, and amides toward 1-naphthylamines: Applications and photophysical properties [J]. Journal of the American Chemical Society, 2019, 141(6): 2535-2544.
[68] MORE A A, RAMANA C V. Total synthesis of integrastatin b enabled by a benzofuran oxidative dearomatization cascade [J]. Organic Letters, 2016, 18(6): 1458-1461.
[69] CHANG X, MA P-L, CHEN H-C, et al. Asymmetric synthesis and application of chiral spirosilabiindanes [J]. Angewandte Chemie International Edition, 2020, 59(23): 8937-8940.
[70] ZHANG J, WANG H, REN S, et al. Cu(0)/selectfluor system-mediated mild synthesis of fluorinated fluorenones from nonaromatic precursors (1,6-enynes) involving C–C single bond cleavage [J]. Organic Letters, 2015, 17(12): 2920-2923.
[71] CAPPOZZI G, ROMEO G, MARCUZZI F. One-step synthesis of tertiary alkyl-substituted acetylenes from silylacetylenes [J]. Journal of the Chemical Society, Chemical Communications, 1982, (16): 959-960.
[72] LI P-H, YU L-Z, ZHANG X-Y, et al. Cu(i)-catalyzed coupling and cycloisomerization of diazo compounds with terminal yne-alkylidenecyclopropanes: Synthesis of functionalized cyclopenta[b]naphthalene derivatives [J]. Organic Letters, 2018, 20(15): 4516-4520.
[73] GAO Y, HUANG Y, WU W, et al. Pd-catalyzed C-H activation/oxidative cyclization of acetanilide with norbornene: Concise access to functionalized indolines [J]. Chemical Communications, 2014, 50(61): 8370-8373.
[74] CHEN Y-H, QI L-W, FANG F, et al. Organocatalytic atroposelective arylation of 2-naphthylamines as a practical approach to axially chiral biaryl amino alcohols [J]. Angewandte Chemie International Edition, 2017, 56(51): 16308-16312.
[75] KELLY C B, MILLIGAN J A, TILLEY L J, et al. Bicyclobutanes: From curiosities to versatile reagents and covalent warheads [J]. Chemical Science, 2022, 13(40): 11721-11737.
[76] KLEINMANS R, PINKERT T, DUTTA S, et al. Intermolecular
[2π + 2σ]-photocycloaddition enabled by triplet energy transfer [J]. Nature, 2022, 605(7910): 477-482.
[77] ZHENG Y, HUANG W, DHUNGANA R K, et al. Photochemical intermolecular
[3σ + 2σ]-cycloaddition for the construction of aminobicyclo
[3.1.1]heptanes [J]. Journal of the American Chemical Society, 2022, 144(51): 23685-23690.
[78] LIANG Y, KLEINMANS R, DANILIUC C G, et al. Synthesis of polysubstituted 2-oxabicyclo
[2.1.1]hexanes via visible-light-induced energy transfer [J]. Journal of the American Chemical Society, 2022, 144(44): 20207-20213.
[79] DHAKE K, WOELK K J, BECICA J, et al. Beyond bioisosteres: Divergent synthesis of azabicyclohexanes and cyclobutenyl amines from bicyclobutanes [J]. Angewandte Chemie International Edition, 2022, 61(27): e202204719.
[80] AGASTI S, BELTRAN F, PYE E, et al. A catalytic alkene insertion approach to bicyclo
[2.1.1]hexane bioisosteres [J]. Nature Chemistry, 10.1038/s41557-023-01135-y.
[81] WOLFL B, WINTER N, LI J, et al. Strain-release driven epoxidation and aziridination of bicyclo
[1.1.0]butanes via palladium catalyzed sigma-bond nucleopalladation [J]. Angewandte Chemie International Edition, 2023, 62(7): e202217064.
[82] GUO R, CHANG Y-C, HERTER L, et al. Strain-release
[2π + 2σ] cycloadditions for the synthesis of bicyclo
[2.1.1]hexanes initiated by energy transfer [J]. Journal of the American Chemical Society, 2022, 144(18): 7988-7994.
[83] MCNAMEE R E, HAUGLAND M M, NUGENT J, et al. Synthesis of 1,3-disubstituted bicyclo
[1.1.0]butanes via directed bridgehead functionalization [J]. Chemical Science, 2021, 12(21): 7480-7485.
[84] MURIEL B, GAGNEBIN A, WASER J. Synthesis of bicyclo
[3.1.0]hexanes by (3 + 2) annulation of cyclopropenes with aminocyclopropanes [J]. Chemical Science, 2019, 10(46): 10716-10722.
[85] NUNEWAR S, KUMAR S, TALAKOLA S, et al. Co(III), Rh(III) & Ir(III)-catalyzed direct c-h alkylation/alkenylation/arylation with carbene precursors [J]. Chemisty - An Asian Journal, 2021, 16(5): 443-459.
[86] DAVIES H M L, BECKWITH R E J. Catalytic enantioselective C−H activation by means of metal−carbenoid-induced c−h insertion [J]. Chemical Reviews, 2003, 103: 2861−2903.
[87] ZHU D, CHEN L, FAN H, et al. Recent progress on donor and donor-donor carbenes [J]. Chemical Society Reviews, 2020, 49(3): 908-950.
修改评论