[1] WEGENER A. The origin of continents and oceans[M]. Courier Corporation, 1966:268-270.
[2] HESS H H. History of ocean basins[J]. Geological Society of America, 1962: 599- 620.
[3] MORGAN, W J. Rise, trenches, great faults, and crustal[J]. Journal of GeophysicalResearch, 1968, 73(6): 1959-1982.
[4] FRISCH W, MESCHEDE M, BLAKEY R. Plate Tectonic: Contiental Drift and Mountain Building[M]. Heidelberg: Springer, 2011: 6.
[5] MORGAN, W J. Palte Motions and Deep Mantle Convection[J]. Geological Societyof America Memoirs, 1972, 132: 7-22.
[6] MACDONALD K C. Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothemal processes within the palte boundary zone[J]. Annual Review of Earth and Planetary Sciences, 1982, 10: 155.
[7] MACDONALD K C, FOX P J, PERRAM L J. et al. A new view of the mid-ocean ridge from the behaviour of ridge-axis discontinuities[J]. Nature, 1988, 335(6187): 217-225.
[8] MACDONALD K C, SCHEIRER D S, CARBOTTE S M. Mid-ocean ridges: Discontinuities, segments and giant cracks[J].Science, 1991, 253(5023): 986-994.
[9] SMALL C. Global systematics of mid-ocean ridge morphology[J]. Geophysical Monogrph, 1998, 106: 1-25.
[10] 李江海,刘持恒,韩喜球.全国洋中脊系统的构造特征及其运动学意义[J].地学前缘,2019,26(3): 155-162.
[11] FUKAO Y, OBAYASHI M. Subducted slabs stagnant above, penetrating through, and through, and trapped below the 660 km discontinuity[J]. Journal of GeophysicalResearch: Solid Earth, 2013, 118(11): 5920-5938.
[12] CHEN Y J, MORGAN J P. A nonlinear rheology model for mid-ocean ridge axis topography[J]. Journal of Geophysical Research, 1990, 95(B11): 17583-17604.
[13] MORGAN J P, CHEN Y J. The genesis of oceanic crust: magma injection, hydrothermal circulation, and crustal flow[J].Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6283-6297.
[14] MORGAN J P, CHHEN Y J. Dependence of ridge-axis morphology on magmasupply and spreading rate[J]. Nature, 1993, 364: 706-708.
[15] BAKER E, Chen Y J, MORGAN J P. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges[J]. Earth and Planetary Science Letter, 1996, 142(1-2): 137-145.
[16]BECKER T W, BOSCHI L. A comparison of tomographic and geodynamic mantle models[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(1): 2001GC000171.
[17]NIU Y L, GREEN D H. The petrological control on the lithosphere-asthenosphere boundary (LAB) beneath ocean basins[J]. Earth-Science Reviews, 2018, 185: 301-307.
[18]PUTHE C, GERYA T. Dependence of mid-ocean ridge morphology on spreading rate in numerical 3-D models[J]. Gondwana Research, 2014, 25(1): 270-283.
[19]CARBOTTE S M, SMITH D K, CANNAT M, et al. Tectonic and magmatic segmentation of the Global Ocean Ridge System: a synthesis of observations[J]. Geologcal Society, 2015, 420(1): 249-295.
[20]TOLSTOY M. Mid-ocean ridge eruption as a climate value[J].Geophysical Research Letters, 2015, 42(5): 1346-1351.
[21]GERMAN C R, PETERSEN S, HANNINGTON M D. Hydrothermal exploration of mid-ocean ridges: Where might the largest sulfied deposits be forming?[J]. Chemical Geology, 2016, 420: 114-126.
[22]ANDERSEN C, RUPKE L, HASENCLEVER J, et al. Fault geometry and permeability contrast contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge[J]. Geology, 2016, 43: 51-54.
[23]李龑,牛雄伟,阮爱国,等.洋中脊扩张速率对洋壳速度结构的约束[J].地球物理学报,2020,63(5):1913-1926.
[24]CHEN Y J. Oceanic crustal thickness versus spreading rate[J]. Geophysical Research Letters, 1992, 19(8): 753-756.
[25]MAGDE L S, SPARKS D W, DETRICK R S. The relationship between buoyant mantl flow, melt migration, and gravity bull’s eyes at the mid-Atlantic ridge between 33°N and 35°N[J]. Earth and Planetary Science Letters, 1997, 148(1-2): 59-67.
[26]RABINOWICZ M, ROUZO S, SEMPERE J C, et al. Three-dimensional mantle flow beneath mid-ocean ridges[J]. Journal of Geophysical Research: Solid Earth, 1993, 91(B3): 3739-3762.
[27]LANGMUIR C, FORSYTH D. Thermodynamic modeling of post-entrapment crystallization in igneous phases[J]. Journal of Volcanology and Geothermal Research, 2004, 137(4): 247-260.
[28]KLEIN E M, LANGMUIR C H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B8): 8089-8115.
[29]NIU Y L, BATIZA R. In situ densities of MORB melts and residual mantle: Implication for buoyancy forces beneath mid-ocean ridges[J]. The journal of Geology, 1991, 99(5): 767-775.
[30]宋珏琛,李江海,冯博.慢速-超慢速扩张洋中脊热液活动及其机理[J].地质学报,2021,95(8):2274-2282.
[31]李三忠,索艳慧,余珊,等.西南印度洋构造地貌与构造过程[J].大地构造与成矿学,2015,39(1):15-29.
[32]MORGAN W J. Convection Plumes in the Lower Mantle[J]. Nature, 1971, 230.
[33]OSEI T A, SOBOLEV S V, STEINBERGER B, et al. Evaluating the influence of plate boundary friction and mantle viscosity on plate velocities[J]. Geochemistry, Geophysics, Geosystems, 2018, 19: 642-666.
[34]KOELEMEIJER P, DEUSS A, RITSEMA J. Density structure of Earth’s lowermost mantle from Stoneley mode splitting observations[J].Nature Communication, 2017, 8.
[35]LI X, KIND R, PRIESTLEY K, et al. Mapping the Hawaiian plume conduit with converted seismic waves[J]. Nature, 2000, 405: 938-941.
[36]WOLFE C J, SOLOMON S C, LASKE G, et al. Mantle shear-wave velocity structure beneath the Hawaiian hot spot[J]. Science, 2009, 326: 1388-1390.
[37]GERYA T. Precambrian geodynamics: Concepts and models[J]. Gondwana Research, 2014, 25: 442-463.
[38]ROWLEY D B, FORTE A M, ROWAN C J, et al. Kinematics and dynamics of the east Pacific rise linked to a stable, deep-mantle upwelling[J]. Science Advances, 2016, 2: 18.
[39]BURKE K, STEINBERGER B, TORSVIK T H, et al. Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary[J]. Earth and Planetary Science Letters, 2008, 265: 49-60
[40]MULLER R D, SETON M, ZAHIROVIC S, et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup[J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 107-138.
[41]ZAHIROVIC S, MATTHEWS K J, FLAMENT N, et al. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic[J]. Earth-Science Reviews, 2016, 162: 293-337.
[42]SETON M, MULLER R D, ZAHIROVIC S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 2012, 113(3-4): 212-270.
[43]SUN X, SUN W, HU Y, et al. Major Miocene geological events in southern Tibet and eastern Asia induced by the subduction of the Ninetyeast Ridge[J]. Acta Geochimica, 2018, 37: 395-401.
[44]孙卫东.“岩浆引擎”与板块运动驱动力[J].科学通报, 2019, 64: 2988-3006.
[45]NIU Y, HEKINIAN R. Spreading-rate dependence of the extent of mantle melting beneath ocean ridges[J]. Nature, 1997, 385: 326-329.
[46]FORSYTH D, UYEDA S. On the relative importance of the driving forces of plate motion[J]. Geophysical Journal International, 1975, 43(1): 163-200.
[47]CARLSON R L, HILDE T W C, UYEDA S. The driving mechanism of plate tectonics: relation to age of the lithosphere at trenches[J]. Geophysical Research Letters, 1983, 10(4): 297-300.
[48]PACANOVSKY K M, DAVIS D M, RICHARDSON R M, et al. Intraplate stresses and plate-driving forces in the Philippine Sea Plate[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B1): 1095-1110.
[49]VAN BENTHEM S, GOVERS R. The Caribbean plate: Pulled, pushed, or dragged?[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B10).
[50]GRAEME E, AFFELIA D W. Ridge push, mantle plumes and the speed of the Indian plate[J]. Geophysical Journal International, 2013, 194: 670-677.
[51]郑群凡,石耀霖.印度板块持续向北运动的驱动力来源[J]. 中国科学院大学学报: 2021, 38(6): 722-728.
[52]MULLER R D, ZAHIROVIC S, WILLIAMS S E, et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic[J]. Tectonics, 2019, 38: 1884-1907.
[53]MATTHEWS K J, MALONEY K T, ZAHIROVIC S, et al. Global plate boundary evolution and kinematics since the late Paleozoic[J]. Global and Planetary Change, 2016, 146: 226-250.
[54]GEE J, KENT D. Source of oceanic magnetic anomalies and the geomagnetic polarity timescale[J]. Treatrise Geophys, 2007, 5: 455-507.
[55]HANDY M, USTASZEWSKI K, KISSLING E. Reconstructing the Alps-Carpathians-Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion[J]. International Journal of Earth Sciences,2015, 104(1): 1-26.
[56]LEPICHON X. Sea-floor spreading and continental drift[J]. Journal of Geophysical Research, 1968, 73: 3661-3697.
[57]MINSTER J B, JORDAN T H, MOLNAR P, et al. Numerical modelling of instantaneous plate tectonics[J]. Geophysical Journal Royal Astronomical Society, 1974, 36: 541-576.
[58]LI S Z, SUO Y H, LI X Y, et al. Microplate tectonics: new insights from micro-blocks in the global oceans, continental margins and deep mantle[J]. Earth-Science Reviews, 2018, 185: 1029-1064.
[59]李三忠,索艳慧,周洁,等.微板块与大板块:基本原理与范式转换[J].地质学报,2022,96(10):3542-6558.
[60]SAGER W W, HUANG Y M, TOMINAGA M, et al. Oceanic plateau formation by seafloor spreading implied by Tamu Massif magnetic anomalies[J]. Nature Geoscience, 2019, 12: 661-666.
[61]BURKE K, STEINBERGER B, TORSVIK T H, et al.Plume generation zones at the margins of large low shear velocity provinces on the core-matle boundary[J]. Earth and Planetary Science Letters, 2008, 265(1-2): 49-60.
[62]TORSVIK T H, SMETHURST M A, BURKE K, et al. Large igneous provinces general from the margins of the large low-velocity provinces in the deep mantle[J]. Geophysical Journal International, 2010, 167: 1447-1460.
[63]TORSVIK T H, VOO R V D, PREEDEN U, et al. Phanerozoic polar wander, palaeogrography and dynamics[J]. Earth-Science Reviews, 2012, 114(3): 32-658.
[64]BOYDEN J A, MULLER R D, GRUNIS M, et al. Next-generation Plate-Tectonic Reconstructions Using Gplates[M]. Cambridge:Cambridge University Press, 2011: 95-114.
[65]GURNIS M, TURNER M, ZAHIROVIC S, et al.Plate tectonic reconstructions with continuously closing plate[J]. Computers and Geosciences, 2012, 38(1): 35-42.
[66]GURNIS M, YANG T, CANNON J, et al. Global tectonic reconstructions with continuously deforming and evolving rigid plates[J].Computers and Geosciences, 2018, 116: 32-41.
[67]MULLER R D , CANNON J, QIN X D, et al. GPlates:Buiding a virtual earth through deep time[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2243-2261.
[68]LIU S F, GURNIS M, MA P, et al. Reconstruction of northeast Asian deformation integraed with western Pacific plate subduction since 200 Ma[J]. Earth-Science Revies, 2017, 175: 114-142.
[69]OROWAN E. Continental drift and the origin of mountains: Hot creep and creep fracture are crucial factors in the formation of continents and mountains[J]. Science, 1964, 146: 1003-1010.
[70]TURCOTTE D L, SCHUBERT G. Geodynamics[M]. Cambridge University Press, 1982: 440-475.
[71]HARLAND W B, COX A V, LEWELLYN P G et al. A Geologic Time Scale[M]. Cambridge University Press, 1982: 131-133.
[72]RUBEY W W, HUBBERT M K. Role of fluid pressure in mechanics of overthrust faulting. 2. Overthrust belt in geosynclinal area of western Wyoming in light of fluid-pressure hypothesis[J]. Geological Society of America Bulletin, 1959, 70: 167−205.
[73]HALES A L. Gravitational sliding and continental drift[J]. Earth and Planetary Science Letters, 1969, 6: 31-34.
[74]DAVIS D M, SOLOMON S C. True polar wander and plate-driving forces[J]. Journal of Geophysical Research[J]: Solid Earth, 1985, 90(B2): 1837-1841.
[75]PENNINGTON W D. The effect of oceanic crustal structure on phase changes and subduction[J]. Tectonophysics, 1984, 102: 377-398.
[76]LI J, WANG X, WANG X, et al. P and SH velocity structure in the upper mantle beneath northeast China: Evidence for a stagnant slab in hydrous mantle transition zone[J]. Earth and Planetary Science Letters, 2013, 367: 71-81.
[77]李江海,刘仲兰.地幔内板片俯冲运动模式及其大地构造意义[J]. 地质论评, 2019, 65(2): 454-463.
[78]WENG H H, AMPUERO J P. Integrated rupture mechanics for slow slip events and earthquakes[J]. Nature Communication, 2022, 13(1): 7321.
[79]ZHU R X, FAN H R, LI J W, et al. Decratonic gold deposits[J]. Science China-earth Sciences, 2015, 58: 1523-1537.
[80]ARTYUSHKOV E V. Stresses in the lithosphere caused by crustal thickness inhomogeneities[J]. Journal of Geophysical Research, 1973, 78: 7675-7708.
[81]ZHOU Z, LIN J. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench[J]. Tectonophysics, 2018, 734: 59-68.
[82]WESSEL P, SMITH W H F. NEW, improved version of Generic Mapping Tools released[J]. Eos, Transactions American Geophysical Union, 1998, 79(47): 579.
[83]TOZER B, SANDWELL D T, SMITH W H F, et al. Global Bathymetry and Topography at 15 Arc Sec: SRTM15+[J]. Earth and Space Science, 2019, 6: 1847-1864.
[84]HAYES G P, WALD D J, JOHNSON R L. Slab1.0: A three-dimensional model of global subduction zone geometries[J]. Journal of Geophysical Research, 2012, 117 (B01302).
[85]HAYES G P, MOORE G L, PORTNER D, et al. Slab2, a comprehensive subductionzone geometry model[J]. Science, 2018, 362(6410).HERRON E M. Sea-floor spreading and the Cenozoic history of the east-central Pacific[J].Geological Society of America Bulletin, 1972, 83: 1671-1692.
修改评论