中文版 | English
题名

无人地效飞行器的建模与控制

其他题名
MODELING AND CONTROL OF UNMANNED WING-IN-GROUND CRAFTS
姓名
姓名拼音
MEI Yihan
学号
12032395
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
王浩
导师单位
力学与航空航天工程系
外机构导师单位
南方科技大学
论文答辩日期
2023-05-18
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

地效飞行器是贴近地面或水面飞行的特种飞行器,通过利用地面效应实现高速高效、大载重飞行,兼顾了船舶和普通飞行器的优点。国内外研究学者对大型载人地效飞行器的固有稳定性和控制研究进行了全面系统的研究,但是较少涉及到小型无人地效飞行器主动飞行控制的研究。因此,无人地效飞行器的构型设计以及开发与其相匹配的、具备鲁棒性强的飞行控制系统,对小型无人地效飞行器具有重要意义。
本研究通过仿生设计,借鉴鹈鹕的外形,设计了小型无人地效飞行器“Aero-WIG”。首先,利用气动分析软件完成建模,通过数值模拟得到了Aero-WIG 的气动数据,分析了其在地面效应区域的气动特性,并通过函数拟合建立了Aero-WIG气动模型。其次,基于螺旋桨的数值模拟数据建立推力模型, 并通过室内飞行实验测试验证了上述推力模型的准确性。结合Aero-WIG 气动模型、推力模型、推导的飞行动力学方程,在MATLAB 中建立了Aero-WIG 的纵向运动仿真模型。然后,基于PID 控制器和Aero-WIG 的控制方法,设计了5 种不同的精准高度控制系统。通过建立的仿真模型完成了控制系统的参数调节,并通过飞行仿真比较了不同控制器在无地面效应工况下的高度控制效果。通过分析结果,选出鲁棒性强的精准高度控制系统作为Aero-WIG 的纵向控制系统。最后,通过数值模拟仿真,对该控制系统在不同地面效应工况下的控制效果进行了全面系统的分析。结果表明,该控制系统在不同的地面效应区域都能够实现对Aero-WIG 高度的精准控制。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] ROZHDESTVENSKY K V. Wing-in-ground effect vehicles[J]. Progress in Aerospace Sciences, 2006, 42(3): 211-283.
[2] TRAUB L W. Experimental and analytic investigation of ground effect[J]. Journal of Aircraft, 2015, 52(1): 235-243.
[3] MATDAUD Z, ZHAHIR A, PUA’AT A, et al. Stabilizing attitude control for mobility of wing in ground (WIG) craft - a review[J/OL]. IOP Conference Series: Materials Science and Engineering, 2019, 642: 012005. DOI: 10.1088/1757-899X/642/1/012005.
[4] AMIR M A U, MAIMUN A, MAT S, et al. Wing in ground effect craft: a review of the state of current stability knowledge[C]//International Conference on Ocean Mechanical and Aerospace for Scientists and Engineer. 2016.
[5] BATUBARA F D, GULTOM R A, BURA R O. Desain konseptual integrasi sistem drone/UAV dan sensor radar pasif seabagai fungsi situasional blank spot filler sistem radar pertahanan udara (studi: satuan radar 211 tanjung kait)[J]. Teknologi Penginderaan, 2020, 2(1).
[6] SKOLNIK M I. Radar handbook[M]. McGraw-Hill Education, 2008.
[7] YUN L, BLIAULT A, DOO J. WIG craft and ekranoplan[J]. Ground Effect Craft Technology, 2010, 2.
[8] 郝晓伟, 薛翔. 地效飞行器的战略价值透析[J]. 国防科技工业, 2006(7): 2.
[9] BUTOESCU V A J. Wing in ground effect over a wavy surface[J]. INCAS Bulletin, 2018, 10 (2): 157-172.
[10] KAARIO T J. The principles of ground effect vehicles[C]//Princeton Univ. Symposium on Ground Effect Phenomena; a Compilation of the Papers Presented Oct: volume 21. 1959: 22-23.
[11] JOERG G W. History and development of the aerodynamic ground effect craft (AGEC) with tandem wings[J]. Ram Wing and Ground Effect Craft, 1987.
[12] TAYLOR J. Jane’s all the world’s aircraft 1978-79 jump jet. The revolutionary V/STOL fighter [J]. Aeronautical Journal, 1978.
[13] FISCHER H, MATJASIC K. From airfisch to hoverwing[C]//Workshop WISE up to ekranoplan GEMs, The University New South Wales. 1998: 69-89.
[14] Airfish 8[EB/OL]. https://www.wigetworks.com/airfish-8.
[15] LIANG Y, GUIHUA P, YOUNONG X, et al. Research and design of dynamic aircushion wing in ground effect craft (DACWIG) type ’SWAN’[C]//Proceedings of the 3rd international conference for high performance marine vehicles—HMPV. 2000: 36-52.
[16] PHILLIPS S J. Jane’s high-speed marine transportation: Ed. 36 (2003-2004)[M]. Jane’s Information Group, 2003.
[17] HAMEED H. The design of a four-seat reverse delta WIG craft[M]. Maldives National Journal of Research, 2019.
[18] 海南英格地效翼船制造有限公司. 英格CYG-11[EB/OL]. http://www.ygdxyc.com/index.aspx.
[19] QU Q, ZHE L, LIU P, et al. Numerical study of aerodynamics of a wing-in-Ground-Effect Craft [J]. Journal of Aircraft, 2014, 51(3): 913-924.
[20] QU Q, WEI W, LIU P, et al. Airfoil aerodynamics in ground effect for wide range of angles of attack[J]. Aiaa Journal, 2015, 53(4): 1-14.
[21] HE W, GUAN Y, THEOFILIS V, et al. Stability of low-Reynolds-number separated flow around an airfoil near a wavy ground[J]. AIAA Journal, 2019, 57(1): 29-34.
[22] HE W, PÉREZ J M, YU P, et al. Non-modal stability analysis of low-Re separated flow around a NACA 4415 airfoil in ground effect[J]. Aerospace Science and Technology, 2019, 92: 269-279.
[23] TUMSE S, TASCI M O, KARASU I, et al. Effect of ground on flow characteristics and aerodynamic performance of a non-slender delta wing[J]. Aerospace Science and Technology, 2021, 110: 106475.
[24] TREMBLAY-DIONNE V, LEE T. Experimental study on effect of wavelength and amplitude of wavy ground on a NACA 0012 airfoil[J]. Journal of Aerospace Engineering, 2019, 32(5): 04019064.
[25] LEE T, TREMBLAY-DIONNE V. Experimental investigation of the aerodynamics and flowfield of a NACA 0015 airfoil over a wavy ground[J]. Journal of Fluids Engineering, 2018, 140 (7).
[26] TREMBLAY-DIONNE V, LEE T. Effect of trailing-edge flap deflection on a symmetric airfoil over a wavy ground[J]. Journal of Fluids Engineering, 2019, 141(6).
[27] WANG L, YANG K, YUE T, et al. Wing-in-ground craft longitudinal modeling and simulation based on a moving wavy ground test[J]. Aerospace Science and Technology, 2022, 126: 107605.
[28] 林峰, 杨韡, 杨志刚. 鸭式布局地效飞行器空气动力设计及数值研究[J]. 飞行力学, 2011,29(6): 5.
[29] 李玉龙, 杨韡, 杨志刚. 鸭式布局地效飞行器纵向静稳定性数值研究[J]. 飞行力学, 2010(001): 028.
[30] 李玉龙, 杨韡, 杨志刚. 鸭式布局地效翼数值研究[J]. 航空计算技术, 2010, 40(4): 5.
[31] 李少凯. 鸭式布局在地效飞行器中的应用研究[D]. 南京航空航天大学, 2012.
[32] 邓新禹. 小型无人地效飞行器气动仿真与飞控系统研究[D]. 南昌航空大学, 2014.
[33] 彭云龙. 无人地效翼船气动仿真与飞控系统研究[D]. 南昌航空大学, 2015.
[34] NEBYLOV A. Controlled WIG flight-stability and efficiency problems[C]//2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No. 03EX775): volume 1. IEEE, 2003: 106-111.
[35] NEBYLOV A V, NEBYLOV V A. Controlled Wig flight concept[J]. IFAC Proceedings Volumes, 2014, 47(3): 900-905.
[36] NEBYLOV A, NEBYLOV V. Modern problems of WIG-craft navigation and flight control [C]//2021 28th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). IEEE, 2021: 1-3.
[37] NEBYLOV A, NEBYLOV V, FABRE P. WIG-craft flight control above the waved sea[J]. IFAC-PapersOnLine, 2015, 48(9): 102-107.
[38] NEBYLOV A, NEBYLOV V, KNYAZHSKY A. Metrology problems of WIG-craft motion control[C]//2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 2018: 424-429.
[39] NEBYLOV A, NEBYLOV V, SHARAN S. Development of new-generation automatic control systems for wing-in-ground effect crafts & amphibious seaplanes[J]. IFAC Proceedings Volumes, 2014, 47(1): 219-225.
[40] NEBYLOV A V. Principles and systems of heavy WIG-craft flight control[J]. IFAC Proceedings Volumes, 2010, 43(15): 106-111.
[41] AHSAN M, SHAFIQUE K, MANSOOR A B, et al. Performance comparison of two altitudecontrol algorithms for a fixed-wing UAV[C]//2013 3rd IEEE International Conference on Computer, Control and Communication (IC4). IEEE, 2013: 1-5.
[42] AKYUREK S, KAYNAK U, KASNAKOGLU C. Altitude control for small fixed-wing aircraft using H∞ loop-shaping method[J]. IFAC-PapersOnLine, 2016, 49(9): 111-116.
[43] ELIJAH T, JAMISOLA R S, TJIPARURO Z, et al. A review on control and maneuvering of cooperative fixed-wing drones[J]. International Journal of Dynamics and Control, 2021, 9: 1332-1349.
[44] HERNANDEZ J L, GONZÁLEZ-HERNÁNDEZ I, LOZANO R. Attitude and altitude control for a fixed wing UAV applied to photogrammetry[C]//2019 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2019: 498-502.
[45] MELKOU L, HAMERLAIN M, REZOUG A. Fixed-wing UAV attitude and altitude control via adaptive second-order sliding mode[J]. Arabian Journal for Science and Engineering, 2018, 43: 6837-6848.
[46] TRILAKSONO B R, NASUTION S H, PURWANTO E B, et al. Design and implementation of hardware-in-the-loop-simulation for uav using pid control method[C]//2013 3rd International Conference on Instrumentation, Communications, Information Technology and Biomedical Engineering (ICICI-BME). IEEE, 2013: 124-130.
[47] ZHAI R, ZHOU Z, ZHANG W, et al. Control and navigation system for a fixed-wing unmanned aerial vehicle[J]. Aip Advances, 2014, 4(3): 031306.
[48] JI H, YAN J, ZHAO Y, et al. Control system design for WIG aircraft on the wavy water surface[C]//2021 International Conference on Control, Automation and Information Sciences (ICCAIS). IEEE, 2021: 567-571.
[49] PATRIA D, ROSSI C, FERNANDEZ R A S, et al. Nonlinear control strategies for an autonomous wing-in-ground-effect vehicle[J]. Sensors, 2021, 21(12): 4193.
[50] ETKIN B, LL D R. Dynamics of flight[J]. John Wiley & Sons, Inc, 1959.
[51] STENGEL R F. Flight dynamics[M]. Princeton University Press, 2022.
[52] NIKOLAJ. The bald eagle flies over the water[EB/OL]. 2017. https://www.zastavki.com/rus/Animals/Birds/wallpaper-113076.htm.
[53] Boeing Pelican[EB/OL]. 2002. https://en.wikipedia.org/wiki/Boeing_Pelican.
[54] GROUP U A A. SD7003[EB/OL]. 2019. https://m-selig.ae.illinois.edu/ads/coord_database.html.
[55] PHILLIPS W F, HUNSAKER D F. Lifting-line predictions for induced drag and lift in ground effect[J]. Journal of Aircraft, 2013, 50(4): 1226-1233.
[56] SU S, SHAN X, YU P, et al. The inherent stability characteristics of a Wing-in-Ground (WIG) craft in various ground effect regions[C]//AIAA AVIATION 2022 Forum. 2022: 3598.
[57] HILL P G, PETERSON C R. Mechanics and thermodynamics of propulsion[J]. Reading, 1992.
[58] DETERS R W, ANANDA KRISHNAN G K, SELIG M S. Reynolds number effects on the performance of small-scale propellers[C]//32nd AIAA applied aerodynamics conference. 2014: 2151.
[59] APC propeller performance data[EB/OL]. https://www.apcprop.com/technical-information/file-downloads/.
[60] 吴森堂. 飞行控制系统. 第2 版[M]. 飞行控制系统. 第2 版, 2013.
[61] ETKIN B, REID L D. Dynamics of Flight: Stability and Control. Jonh Wiley & Sons[J]. Inc.„ 1996.
[62] GU D W, PETKOV P, KONSTANTINOV M M. Robust control design with MATLAB®[M]. Springer Science & Business Media, 2005.
[63] GOLNARAGHI F, KUO B C. Automatic control systems[M]. McGraw-Hill Education, 2017.
[64] QUEVEDO J. Digital control: past, present and future of PID control[C]//Proc. IFAC Workshop, Terrassa, Spain, April 5-7. 2000.
[65] LEVINE W S. The Control Handbook (three volume set)[M]. CRC press, 2018.
[66] Overshoot[EB/OL]. https://en.wikipedia.org/wiki/Overshoot_(signal).
[67] WANG H, TEO C, KHOO B, et al. Computational aerodynamics and flight stability of wingin-ground (WIG) craft[J]. Procedia Engineering, 2013, 67: 15-24.
[68] KORNEV N, GROSS A. Investigations of the safety of flight of WIG craft[J]. Ship Technology Research, 2014, 61(2): 80-92.

所在学位评定分委会
力学
国内图书分类号
V249.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544553
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
梅一涵. 无人地效飞行器的建模与控制[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032395-梅一涵-力学与航空航天(9396KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[梅一涵]的文章
百度学术
百度学术中相似的文章
[梅一涵]的文章
必应学术
必应学术中相似的文章
[梅一涵]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。