[1] ROZHDESTVENSKY K V. Wing-in-ground effect vehicles[J]. Progress in Aerospace Sciences, 2006, 42(3): 211-283.
[2] TRAUB L W. Experimental and analytic investigation of ground effect[J]. Journal of Aircraft, 2015, 52(1): 235-243.
[3] MATDAUD Z, ZHAHIR A, PUA’AT A, et al. Stabilizing attitude control for mobility of wing in ground (WIG) craft - a review[J/OL]. IOP Conference Series: Materials Science and Engineering, 2019, 642: 012005. DOI: 10.1088/1757-899X/642/1/012005.
[4] AMIR M A U, MAIMUN A, MAT S, et al. Wing in ground effect craft: a review of the state of current stability knowledge[C]//International Conference on Ocean Mechanical and Aerospace for Scientists and Engineer. 2016.
[5] BATUBARA F D, GULTOM R A, BURA R O. Desain konseptual integrasi sistem drone/UAV dan sensor radar pasif seabagai fungsi situasional blank spot filler sistem radar pertahanan udara (studi: satuan radar 211 tanjung kait)[J]. Teknologi Penginderaan, 2020, 2(1).
[6] SKOLNIK M I. Radar handbook[M]. McGraw-Hill Education, 2008.
[7] YUN L, BLIAULT A, DOO J. WIG craft and ekranoplan[J]. Ground Effect Craft Technology, 2010, 2.
[8] 郝晓伟, 薛翔. 地效飞行器的战略价值透析[J]. 国防科技工业, 2006(7): 2.
[9] BUTOESCU V A J. Wing in ground effect over a wavy surface[J]. INCAS Bulletin, 2018, 10 (2): 157-172.
[10] KAARIO T J. The principles of ground effect vehicles[C]//Princeton Univ. Symposium on Ground Effect Phenomena; a Compilation of the Papers Presented Oct: volume 21. 1959: 22-23.
[11] JOERG G W. History and development of the aerodynamic ground effect craft (AGEC) with tandem wings[J]. Ram Wing and Ground Effect Craft, 1987.
[12] TAYLOR J. Jane’s all the world’s aircraft 1978-79 jump jet. The revolutionary V/STOL fighter [J]. Aeronautical Journal, 1978.
[13] FISCHER H, MATJASIC K. From airfisch to hoverwing[C]//Workshop WISE up to ekranoplan GEMs, The University New South Wales. 1998: 69-89.
[14] Airfish 8[EB/OL]. https://www.wigetworks.com/airfish-8.
[15] LIANG Y, GUIHUA P, YOUNONG X, et al. Research and design of dynamic aircushion wing in ground effect craft (DACWIG) type ’SWAN’[C]//Proceedings of the 3rd international conference for high performance marine vehicles—HMPV. 2000: 36-52.
[16] PHILLIPS S J. Jane’s high-speed marine transportation: Ed. 36 (2003-2004)[M]. Jane’s Information Group, 2003.
[17] HAMEED H. The design of a four-seat reverse delta WIG craft[M]. Maldives National Journal of Research, 2019.
[18] 海南英格地效翼船制造有限公司. 英格CYG-11[EB/OL]. http://www.ygdxyc.com/index.aspx.
[19] QU Q, ZHE L, LIU P, et al. Numerical study of aerodynamics of a wing-in-Ground-Effect Craft [J]. Journal of Aircraft, 2014, 51(3): 913-924.
[20] QU Q, WEI W, LIU P, et al. Airfoil aerodynamics in ground effect for wide range of angles of attack[J]. Aiaa Journal, 2015, 53(4): 1-14.
[21] HE W, GUAN Y, THEOFILIS V, et al. Stability of low-Reynolds-number separated flow around an airfoil near a wavy ground[J]. AIAA Journal, 2019, 57(1): 29-34.
[22] HE W, PÉREZ J M, YU P, et al. Non-modal stability analysis of low-Re separated flow around a NACA 4415 airfoil in ground effect[J]. Aerospace Science and Technology, 2019, 92: 269-279.
[23] TUMSE S, TASCI M O, KARASU I, et al. Effect of ground on flow characteristics and aerodynamic performance of a non-slender delta wing[J]. Aerospace Science and Technology, 2021, 110: 106475.
[24] TREMBLAY-DIONNE V, LEE T. Experimental study on effect of wavelength and amplitude of wavy ground on a NACA 0012 airfoil[J]. Journal of Aerospace Engineering, 2019, 32(5): 04019064.
[25] LEE T, TREMBLAY-DIONNE V. Experimental investigation of the aerodynamics and flowfield of a NACA 0015 airfoil over a wavy ground[J]. Journal of Fluids Engineering, 2018, 140 (7).
[26] TREMBLAY-DIONNE V, LEE T. Effect of trailing-edge flap deflection on a symmetric airfoil over a wavy ground[J]. Journal of Fluids Engineering, 2019, 141(6).
[27] WANG L, YANG K, YUE T, et al. Wing-in-ground craft longitudinal modeling and simulation based on a moving wavy ground test[J]. Aerospace Science and Technology, 2022, 126: 107605.
[28] 林峰, 杨韡, 杨志刚. 鸭式布局地效飞行器空气动力设计及数值研究[J]. 飞行力学, 2011,29(6): 5.
[29] 李玉龙, 杨韡, 杨志刚. 鸭式布局地效飞行器纵向静稳定性数值研究[J]. 飞行力学, 2010(001): 028.
[30] 李玉龙, 杨韡, 杨志刚. 鸭式布局地效翼数值研究[J]. 航空计算技术, 2010, 40(4): 5.
[31] 李少凯. 鸭式布局在地效飞行器中的应用研究[D]. 南京航空航天大学, 2012.
[32] 邓新禹. 小型无人地效飞行器气动仿真与飞控系统研究[D]. 南昌航空大学, 2014.
[33] 彭云龙. 无人地效翼船气动仿真与飞控系统研究[D]. 南昌航空大学, 2015.
[34] NEBYLOV A. Controlled WIG flight-stability and efficiency problems[C]//2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No. 03EX775): volume 1. IEEE, 2003: 106-111.
[35] NEBYLOV A V, NEBYLOV V A. Controlled Wig flight concept[J]. IFAC Proceedings Volumes, 2014, 47(3): 900-905.
[36] NEBYLOV A, NEBYLOV V. Modern problems of WIG-craft navigation and flight control [C]//2021 28th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). IEEE, 2021: 1-3.
[37] NEBYLOV A, NEBYLOV V, FABRE P. WIG-craft flight control above the waved sea[J]. IFAC-PapersOnLine, 2015, 48(9): 102-107.
[38] NEBYLOV A, NEBYLOV V, KNYAZHSKY A. Metrology problems of WIG-craft motion control[C]//2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 2018: 424-429.
[39] NEBYLOV A, NEBYLOV V, SHARAN S. Development of new-generation automatic control systems for wing-in-ground effect crafts & amphibious seaplanes[J]. IFAC Proceedings Volumes, 2014, 47(1): 219-225.
[40] NEBYLOV A V. Principles and systems of heavy WIG-craft flight control[J]. IFAC Proceedings Volumes, 2010, 43(15): 106-111.
[41] AHSAN M, SHAFIQUE K, MANSOOR A B, et al. Performance comparison of two altitudecontrol algorithms for a fixed-wing UAV[C]//2013 3rd IEEE International Conference on Computer, Control and Communication (IC4). IEEE, 2013: 1-5.
[42] AKYUREK S, KAYNAK U, KASNAKOGLU C. Altitude control for small fixed-wing aircraft using H∞ loop-shaping method[J]. IFAC-PapersOnLine, 2016, 49(9): 111-116.
[43] ELIJAH T, JAMISOLA R S, TJIPARURO Z, et al. A review on control and maneuvering of cooperative fixed-wing drones[J]. International Journal of Dynamics and Control, 2021, 9: 1332-1349.
[44] HERNANDEZ J L, GONZÁLEZ-HERNÁNDEZ I, LOZANO R. Attitude and altitude control for a fixed wing UAV applied to photogrammetry[C]//2019 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2019: 498-502.
[45] MELKOU L, HAMERLAIN M, REZOUG A. Fixed-wing UAV attitude and altitude control via adaptive second-order sliding mode[J]. Arabian Journal for Science and Engineering, 2018, 43: 6837-6848.
[46] TRILAKSONO B R, NASUTION S H, PURWANTO E B, et al. Design and implementation of hardware-in-the-loop-simulation for uav using pid control method[C]//2013 3rd International Conference on Instrumentation, Communications, Information Technology and Biomedical Engineering (ICICI-BME). IEEE, 2013: 124-130.
[47] ZHAI R, ZHOU Z, ZHANG W, et al. Control and navigation system for a fixed-wing unmanned aerial vehicle[J]. Aip Advances, 2014, 4(3): 031306.
[48] JI H, YAN J, ZHAO Y, et al. Control system design for WIG aircraft on the wavy water surface[C]//2021 International Conference on Control, Automation and Information Sciences (ICCAIS). IEEE, 2021: 567-571.
[49] PATRIA D, ROSSI C, FERNANDEZ R A S, et al. Nonlinear control strategies for an autonomous wing-in-ground-effect vehicle[J]. Sensors, 2021, 21(12): 4193.
[50] ETKIN B, LL D R. Dynamics of flight[J]. John Wiley & Sons, Inc, 1959.
[51] STENGEL R F. Flight dynamics[M]. Princeton University Press, 2022.
[52] NIKOLAJ. The bald eagle flies over the water[EB/OL]. 2017. https://www.zastavki.com/rus/Animals/Birds/wallpaper-113076.htm.
[53] Boeing Pelican[EB/OL]. 2002. https://en.wikipedia.org/wiki/Boeing_Pelican.
[54] GROUP U A A. SD7003[EB/OL]. 2019. https://m-selig.ae.illinois.edu/ads/coord_database.html.
[55] PHILLIPS W F, HUNSAKER D F. Lifting-line predictions for induced drag and lift in ground effect[J]. Journal of Aircraft, 2013, 50(4): 1226-1233.
[56] SU S, SHAN X, YU P, et al. The inherent stability characteristics of a Wing-in-Ground (WIG) craft in various ground effect regions[C]//AIAA AVIATION 2022 Forum. 2022: 3598.
[57] HILL P G, PETERSON C R. Mechanics and thermodynamics of propulsion[J]. Reading, 1992.
[58] DETERS R W, ANANDA KRISHNAN G K, SELIG M S. Reynolds number effects on the performance of small-scale propellers[C]//32nd AIAA applied aerodynamics conference. 2014: 2151.
[59] APC propeller performance data[EB/OL]. https://www.apcprop.com/technical-information/file-downloads/.
[60] 吴森堂. 飞行控制系统. 第2 版[M]. 飞行控制系统. 第2 版, 2013.
[61] ETKIN B, REID L D. Dynamics of Flight: Stability and Control. Jonh Wiley & Sons[J]. Inc.„ 1996.
[62] GU D W, PETKOV P, KONSTANTINOV M M. Robust control design with MATLAB®[M]. Springer Science & Business Media, 2005.
[63] GOLNARAGHI F, KUO B C. Automatic control systems[M]. McGraw-Hill Education, 2017.
[64] QUEVEDO J. Digital control: past, present and future of PID control[C]//Proc. IFAC Workshop, Terrassa, Spain, April 5-7. 2000.
[65] LEVINE W S. The Control Handbook (three volume set)[M]. CRC press, 2018.
[66] Overshoot[EB/OL]. https://en.wikipedia.org/wiki/Overshoot_(signal).
[67] WANG H, TEO C, KHOO B, et al. Computational aerodynamics and flight stability of wingin-ground (WIG) craft[J]. Procedia Engineering, 2013, 67: 15-24.
[68] KORNEV N, GROSS A. Investigations of the safety of flight of WIG craft[J]. Ship Technology Research, 2014, 61(2): 80-92.
修改评论