中文版 | English
题名

基于纳米压印技术的全硅介质超透镜的制备工艺研究

其他题名
RESEARCH ON THE FABRICATION PROCESS OF ALL-SILICON DIELECTRIC METALENS BASED ON NANOIMPRINT LITHOGRAPHY
姓名
姓名拼音
ZHANG Xuanming
学号
12032242
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
程鑫
导师单位
材料科学与工程系
论文答辩日期
2023-05-17
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

传统的光学共聚焦系统往往通过增加一定数量的光学透镜或者使用不同材料的光学透镜组合来实现多波长共聚焦,使得系统具有较大的体积和重量。超透镜作为二维平面亚波长微元结构组成的光学超构表面,通过设计其微元结构的相位和偏振等可实现传统透镜组的聚焦和成像功能,在高度集成化、微型化和便携式的光学共聚焦系统中展现出了巨大的应用潜力。

本文根据传输相位原理和超透镜聚焦相位分布公式设计了一种由矩形纳米硅柱构成的全硅介质超透镜,该透镜可以在波长为10.6 μm的x线偏振光和波长为9.3 μm的y线偏振光入射时实现共聚焦。超透镜整体为边长30 mm的正方形,由4840×4840个全硅介质微元结构按照周期性排列组成,其中矩形硅柱的长宽在1.55 μm范围内变化,高度固定为6.8 μm,排列周期为6.2 μm。根据几何参数,本文通过激光直写光刻技术和感应耦合等离子体刻蚀技术制备了超透镜样品,激光共聚焦显微镜对结构的表征结果表明加工符合设计要求。

由于纳米压印技术在光学超构表面产业化方面展现出的巨大潜力,本文对紫外光固化纳米压印技术和感应耦合等离子体刻蚀技术转移超透镜图案的工艺进行了重点研究。综合分析了压印过程中压印胶的流变和填充机理以及脱模过程中力与界面的相互作用,并提炼出压印胶厚度、压印力、压印时间、固化时间、脱模方式以及脱模速度等关键因素对压印工艺进行综合设计,成功把超透镜图案从硅模版转移到了压印胶PixNIL-ST2上。

因为PixNIL-ST2中含有TiO2,本文选择了Cl2/BCl3作为残胶层刻蚀气体并确定刻蚀参数,该条件下其对PixNIL-ST2的刻蚀速率约为2.09 nm/s,然后使用深硅刻蚀工艺对PixNIL-ST2进行刻蚀测定了PixNIL-ST2对硅的刻蚀选择比约为7,最后借助这两个工艺对转移到压印胶层中的超透镜结构进行逐层刻蚀得到了全硅介质超透镜。

超透镜的聚焦和成像实验结果表明经本文所研究的纳米压印工艺制备得到的超透镜具有良好的光场会聚能力和长红外成像能力,本文的研究工作可以为光学超构表面的实际工程应用提供一定的理论依据和技术支持。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] KHORASANINEJAD M, CAPASSO F. Metalenses: Versatile multifunctional photonic components[J]. Science, 2017, 358(6367): eaam8100.
[2] LALANNE P, CHAVEL P. Metalenses at visible wavelengths: past, present, perspectives[J]. Laser & Photonics Reviews, 2017, 11(3): 1600295.
[3] TSENG M L, HSIAO H H, CHU C H, et al. Metalenses: advances and applications[J]. Advanced Optical Materials, 2018, 6(18): 1800554.
[4] CHEN M K, WU Y, FENG L, et al. Principles, functions, and applications of optical meta-lens[J]. Advanced Optical Materials, 2021, 9(4): 2001414.
[5] AI W, ZHOU P, SUN R, et al. Control of resonance absorption modes for broadband infrared metamaterial absorber[J]. IEEE Photonics Journal, 2018, 11(1): 1-10.
[6] HUANG Y, XU H, LU Y, et al. All-dielectric metasurface for achieving perfect reflection at visible wavelengths[J]. The Journal of Physical Chemistry C, 2018, 122(5): 2990-2996.
[7] LI Z, LIU W, TANG C, et al. A bilayer plasmonic metasurface for polarization-insensitive bidirectional perfect absorption[J]. Advanced Theory and Simulations, 2020, 3(2): 1900216.
[8] LEVINSON H J. The potential of EUV lithography[C]//35th European Mask and Lithography Conference (EMLC 2019). SPIE, 2019, 11177: 1117702.
[9] TAO L, RAMACHANDRAN S, NELSON C T, et al. Durable diamond-like carbon templates for UV nanoimprint lithography[J]. Nanotechnology, 2008, 19(10): 105302.
[10] HSU Y, FANG X, WANG L A, et al. Sub-100 nm ALD-assisted nanoimprint lithography for realizing vertical organic transistors with high ON/OFF ratio and high output current[J]. Organic Electronics, 2014, 15(12): 3609-3614.
[11] YU N, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.
[12] CHEN X, HUANG L, MÜHLENBERND H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3(1): 1198.
[13] NI X, ISHII S, KILDISHEV A V, et al. Ultra-thin, planar, babinet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2013, 2(4): e72-e72.
[14] DECKER M, STAUDE I, FALKNER M, et al. High-efficiency dielectric Huygens’ surfaces[J]. Advanced Optical Materials, 2015, 3(6): 813-820.
[15] CHONG K E, STAUDE I, JAMES A, et al. Polarization-independent silicon metadevices for efficient optical wavefront control[J]. Nano Letters, 2015, 15(8): 5369-5374.
[16] CAI H, CZAPLEWSKI D, OGANDO K, et al. Ultrathin transmissive metasurfaces for multi-wavelength optics in the visible[J]. Applied Physics Letters, 2019, 114(7): 071106.
[17] FAN Z B, SHAO Z K, XIE M Y, et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging[J]. Physical Review Applied, 2018, 10(1): 014005.
[18] OLLANIK A J, OGUNTOYE I O, HARTFIELD G Z, et al. Highly sensitive, affordable, and adaptable refractive index sensing with silicon-based dielectric metasurfaces[J]. Advanced Materials Technologies, 2019, 4(2): 1800567.
[19] DECKER M, STAUDE I. Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics[J]. Journal of Optics, 2016, 18(10): 103001.
[20] LIN D, FAN P, HASMAN E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302.
[21] KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194.
[22] SOARES L L, CESCATO L. Metallized photoresist grating as a polarizing beam splitter[J]. Applied Optics, 2001, 40(32): 5906-5910.
[23] BURALLI D A, MORRIS G M. Design of a wide field diffractive landscape lens[J]. Applied Optics, 1989, 28(18): 3950-3959.
[24] ARBABI E, ARBABI A, KAMALI S M, et al. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules[J]. Optica, 2016, 3(6): 628-633.
[25] KHORASANINEJAD M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824.
[26] AIETA F, KATS M A, GENEVET P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345.
[27] CHEN W T, ZHU A Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226.
[28] WANG S, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187.
[29] TRAUB M C, LONGSINE W, TRUSKETT V N. Advances in nanoimprint lithography[J]. Annual Review of Chemical and Biomolecular Engineering, 2016, 7(1): 583-604.
[30] HU T, TSENG C K, FU Y H, et al. Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer[J]. Optics Express, 2018, 26(15): 19548-19554.
[31] LI N, FU Y H, DONG Y, et al. Metasurface beam deflector array on a 12-inch glass wafer[C]//Optical Fiber Communication Conference. Optica Publishing Group, 2020: W2A. 9.
[32] SHARMA E, RATHI R, MISHARWAL J, et al. Evolution in lithography techniques: microlithography to nanolithography[J]. Nanomaterials, 2022, 12(16): 2754.
[33] NI X, EMANI N K, KILDISHEV A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427-427.
[34] HUANG L, CHEN X, MÜHLENBERND H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4(1): 2808.
[35] HUANG L, MÜHLENBERND H, LI X, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444-6449.
[36] LUO X, HU Y, LI X, et al. Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption[J]. Advanced Optical Materials, 2020, 8(8): 1902020.
[37] LI X, CHEN L, LI Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102.
[38] AVAYU O, ALMEIDA E, PRIOR Y, et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8(1): 14992.
[39] TSENG A A. Recent developments in micromilling using focused ion beam technology[J]. Journal of Micromechanics and Microengineering, 2004, 14(4): R15.
[40] NI X, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4(1): 2807.
[41] WAN W, GAO J, YANG X. Full-color plasmonic metasurface holograms[J]. ACS Nano, 2016, 10(12): 10671-10680.
[42] CHOUDHURY S, GULER U, SHALTOUT A, et al. Pancharatnam-berry phase manipulating metasurface for visible color hologram based on low loss silver thin film[J]. Advanced Optical Materials, 2017, 5(10): 1700196.
[43] CHEN Y, YANG X, GAO J. Spin-selective second-harmonic vortex beam generation with babinet-inverted plasmonic metasurfaces[J]. Advanced Optical Materials, 2018, 6(19): 1800646.
[44] LEE Y U, KIM J, WOO J H, et al. Electro-optic switching in phase-discontinuity complementary metasurface twisted nematic cell[J]. Optics Express, 2014, 22(17): 20816-20827.
[45] ZHAO Z, PU M, GAO H, et al. Multispectral optical metasurfaces enabled by achromatic phase transition[J]. Scientific Reports, 2015, 5(1): 15781.
[46] WANG B, DONG F, LI Q T, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8): 5235-5240.
[47] ZHANG Y, LIU W, GAO J, et al. Generating focused 3D perfect vortex beams by plasmonic metasurfaces[J]. Advanced Optical Materials, 2018, 6(4): 1701228.
[48] CHEN S, CAI Y, LI G, et al. Geometric metasurface fork gratings for vortex-beam generation and manipulation[J]. Laser & Photonics Reviews, 2016, 10(2): 322-326.
[49] CHEN C F, KU C T, TAI Y H, et al. Creating optical near-field orbital angular momentum in a gold metasurface[J]. Nano Letters, 2015, 15(4): 2746-2750.
[50] KARVOUNIS A, GHOLIPOUR B, MACDONALD K F, et al. All-dielectric phase-change reconfigurable metasurface[J]. Applied Physics Letters, 2016, 109(5): 051103.
[51] GHOLIPOUR B, ADAMO G, CORTECCHIA D, et al. Organometallic perovskite metasurfaces[J]. Advanced Materials, 2017, 29(9): 1604268.
[52] SMALLEY J S T, VALLINI F, MONTOYA S A, et al. Luminescent hyperbolic metasurfaces[J]. Nature Communications, 2017, 8(1): 13793.
[53] YAN C, LI X, PU M, et al. Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces[J]. ACS Photonics, 2019, 6(3): 628-633.
[54] CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint of sub-25 nm vias and trenches in polymers[J]. Applied Physics Letters, 1995, 67(21): 3114-3116.
[55] MAKAROV S V, MILICHKO V, USHAKOVA E V, et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces[J]. ACS Photonics, 2017, 4(4): 728-735.
[56] CHEN W, TYMCHENKO M, GOPALAN P, et al. Large-area nanoimprinted colloidal Au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces[J]. Nano Letters, 2015, 15(8): 5254-5260.
[57] IWANAGA M. Large-area metasurfaces produced with nm precision by UV nanoimprint lithography[C]//2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016: 1857-1861.
[58] MIYAZAKI H T, KASAYA T, OOSATO H, et al. Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing[J]. Science and Technology of Advanced Materials, 2015, 16(3): 035005.
[59] LEE G Y, HONG J Y, HWANG S H, et al. Metasurface eyepiece for augmented reality[J]. Nature Communications, 2018, 9(1): 4562.
[60] NAGATO K, TAKAHASHI K, SATO T, et al. Laser-assisted replication of large-area nanostructures[J]. Journal of Materials Processing Technology, 2014, 214(11): 2444-2449.
[61] HASAN R M M, LUO X, SUN J. Rolling nanoelectrode lithography[J]. Micromachines, 2020, 11(7): 656.
[62] 田源, 葛浩, 卢明辉, 等. 声学超构材料及其物理效应的研究进展[J]. 物理学报, 2019, 68(19): 194301.
[63] ARBABI A, HORIE Y, BALL A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6(1): 7069.
[64] KHORASANINEJAD M, CROZIER K B. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter[J]. Nature Communications, 2014, 5(1): 5386.
[65] ZHAN A, COLBURN S, TRIVEDI R, et al. Low-contrast dielectric metasurface optics[J]. ACS Photonics, 2016, 3(2): 209-214.
[66] ESTAKHRI N M, NEDER V, KNIGHT M W, et al. Visible light, wide-angle graded metasurface for back reflection[J]. ACS Photonics, 2017, 4(2): 228-235.
[67] DEVLIN R C, KHORASANINEJAD M, CHEN W T, et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum[J]. Proceedings of the National Academy of Sciences, 2016, 113(38): 10473-10478.
[68] VO S, FATTAL D, SORIN W V, et al. Sub-wavelength grating lenses with a twist[J]. IEEE Photonics Technology Letters, 2014, 26(13): 1375-1378.
[69] CHEN W T, ZHU A Y, KHORASANINEJAD M, et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging[J]. Nano Letters, 2017, 17(5): 3188-3194.
[70] 李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255-275.
[71] WEST P R, STEWART J L, KILDISHEV A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 2014, 22(21): 26212-26221.
[72] LALANNE P, ASTILEAN S, CHAVEL P, et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings[J]. Optics Letters, 1998, 23(14): 1081-1083.
[73] SHEN Y, LUO X. Efficient bending and focusing of light beam with all-dielectric subwavelength structures[J]. Optics Communications, 2016, 366(1): 174-178.
[74] KHORASANINEJAD M, ZHU A Y, ROQUES-CARMES C, et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 2016, 16(11): 7229-7234.
[75] SMITH D R, SCHULTZ S, MARKOŠ P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 2002, 65(19): 195104.
[76] PEREZ E X. Simulation programs for the analysis of multilayer media[J]. Design, Fabrication and Characterization of Porous Silicon Multilayer Optical Devices, 2007(1): 27-56.
[77] ARBABI A, HORIE Y, BAGHERI M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937-943.
[78] MUELLER J P B, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901.
[79] YEE K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307.
[80] JIAO D, LU M, MICHIELSSEN E, et al. A fast time-domain finite element-boundary integral method for electromagnetic analysis[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(10): 1453-1461.
[81] LIU V, FAN S. S4: A free electromagnetic solver for layered periodic structures[J]. Computer Physics Communications, 2012, 183(10): 2233-2244.
[82] 葛德彪. 电磁波时域有限差分方法[M]. 陕西: 西安电子科技大学出版社, 2005.
[83] GRAY S K, KUPKA T. Propagation of light in metallic nanowire arrays: finite-difference time-domain studies of silver cylinders[J]. Physical Review B, 2003, 68(4): 045415.
[84] COURANT R, FRIEDRICHS K, LEWY H. Über die partiellen differenzengleichungen der mathematischen physik[J]. Mathematische Annalen, 1928, 100(1): 32-74.
[85] TSAY W J, POZAR D M. Application of the FDTD technique to periodic problems in scattering and radiation[J]. IEEE Microwave and Guided Wave Letters, 1993, 3(8): 250-252.
[86] BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2): 185-200.
[87] ZHAO W, JIANG H, LIU B, et al. Dielectric Huygens’ metasurface for high-efficiency hologram operating in transmission mode[J]. Scientific Reports, 2016, 6(1): 30613.
[88] 胡跃强, 李鑫, 王旭东, 等. 光学超构表面的微纳加工技术研究进展[J]. 红外与激光工程, 2020, 49(9): 20201035.
[89] 丁玉成, 兰红波, 邵金友, 等. 纳米压印光刻技术[J]. 青岛理工大学学报, 2010, 15(7): 211-245.
[90] 朱兆颖. 紫外纳米压印关键技术-图形转移层与模压曝光工艺研究[D]. 上海: 同济大学, 2007.
[91] 李延强, 兰红波. 大面积纳米压印揭开式脱模机理和规律[J]. 中国机械工程, 2017, 28(04): 470.
[92] AMIRSADEGHI A, LEE J J, PARK S. Polymerization shrinkage stress measurement for a UV-curable resist in nanoimprint lithography[J]. Journal of Micromechanics and Microengineering, 2011, 21(11): 115013.
[93] GILJEAN S, BIGERELLE M, ANSELME K, et al. New insights on contact angle/roughness dependence on high surface energy materials[J]. Applied Surface Science, 2011, 257(22): 9631-9638.
[94] LI M, CHEN Y, LUO W, et al. Demolding force dependence on mold surface modifications in UV nanoimprint lithography[J]. Microelectronic Engineering, 2021, 236(1): 111470.
[95] SCARFATO P, SCHIAVONE N, ROSSI G, et al. An easy route to wettability changes of polyethylene terephthalate-silicon oxide substrate films for high barrier applications, surface-modified with a self-assembled monolayer of fluoroalkylsilanes[J]. Polymers, 2019, 11(2): 257.
[96] NORASETTHEKUL S, PARK P Y, BAIK K H, et al. Dry etch chemistries for TiO2 thin films[J]. Applied Surface Science, 2001, 185(1-2): 27-33.
[97] YEOMÚ G Y. Etch characteristics of TiO2 etched by using an atomic layer etching technique with BCl3 gas and an Ar neutral beam[J]. Journal of the Korean Physical Society, 2009, 54(3): 976-980.
[98] 范瑞钦. 二氧化钛波导刻蚀工艺优化研究[D]. 哈尔滨工业大学, 2019.

所在学位评定分委会
物理学
国内图书分类号
TN305.7
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544556
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
张轩铭. 基于纳米压印技术的全硅介质超透镜的制备工艺研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032242-张轩铭-材料科学与工程(5268KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张轩铭]的文章
百度学术
百度学术中相似的文章
[张轩铭]的文章
必应学术
必应学术中相似的文章
[张轩铭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。